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We introduce a distance-based phylogeny reconstruction method called ‘‘weighted neighbor joining,’’ or ‘‘Weigh-
bor’’ for short. As in neighbor joining, two taxa are joined in each iteration; however, the Weighbor criterion for
choosing a pair of taxa to join takes into account that errors in distance estimates are exponentially larger for longer
distances. The criterion embodies a likelihood function on the distances, which are modeled as correlated Gaussian
random variables with different means and variances, computed under a probabilistic model for sequence evolution.
The Weighbor criterion consists of two terms, an additivity term and a positivity term, that quantify the implications
of joining the pair. The first term evaluates deviations from additivity of the implied external branches, while the
second term evaluates confidence that the implied internal branch has a positive branch length. Compared with
maximum-likelihood phylogeny reconstruction, Weighbor is much faster, while building trees that are qualitatively
and quantitatively similar. Weighbor appears to be relatively immune to the ‘‘long branches attract’’ and ‘‘long
branch distracts’’ drawbacks observed with neighbor joining, BIONJ, and parsimony.

Introduction

The neighbor joining (NJ) method (Saitou and Nei
1987) is widely used to construct large phylogenies be-
cause of its elegance and speed, and because when given
exact distances, it is guaranteed to reproduce the correct
tree. In fact, Atteson (1997) proved that if the distances
have very small errors, the correct tree is still obtained,
implying that NJ is consistent. Consistency is an im-
portant and desirable feature that some other methods
(e.g., parsimony and the unweighted pair grouping
method with arithmetic means [UPGMA]) lack, but it
offers no guarantee of efficiency or of unbiased behavior
when the sequences are of finite length.

In maximum-likelihood (ML) phylogeny recon-
struction (Felsenstein 1981), the effect of a sequence on
probabilities at an internal node decays exponentially
with distance from that node, making ML trees robust
to the presence of distant taxa. For example, one can
expect the resolved branches in a primate tree recon-
structed by ML to be robust with respect to adding bird
or lizard sequences to the data set if the model of evo-
lution is held fixed. Distance-based methods must con-
tend with random errors in the distances that grow ex-
ponentially with distance. Because NJ is based on a cri-
terion that does not downweight longer distances, inclu-
sion of different bird or reptile sequences can change
the reconstructed branching order of the primates much
more easily with NJ than with ML. This has motivated
us to create a fast method that, like ML, is inherently
robust to the presence of distant taxa.

Abbreviations: FM, Fitch-Margoliash; JC, Jukes-Cantor; LBA,
long branches attract; LBD, long branch distracts; ML, maximum like-
lihood; NJ, neighbor joining.

Key words: Weighbor, evolutionary tree reconstruction, distance
methods, long-branch attraction, long branch distracts.
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NJ, like UPGMA before it, consists of two main
steps that are repeated until a tree is complete. The first
step consists of choosing a pair of taxa to be joined, i.e.,
replaced by a single new node representing their im-
mediate common ancestor. In the second step, distances
from the new node to all other nodes are inferred. Re-
cently, Gascuel (1997) introduced an improvement on
NJ called BIONJ, which uses the same first step as NJ,
but in the second step uses weighted averages to reduce
the variance in the estimates of the new distances. The
weights used by BIONJ are based on variances expected
for short distances in any evolutionary model.

In our method, which we call ‘‘weighted neighbor
joining,’’ or ‘‘Weighbor’’ for short, both NJ steps are
redesigned. Our second step is not very different from
BIONJ’s, but in our first step we replace the minimum-
evolution criterion put forth by Saitou and Nei (1987)
with a likelihood-based criterion. This criterion models
the distances as random variables obeying a Gaussian
distribution (which approaches the true distribution in
the limit of long sequences), each with an appropriate
variance. In the studies in this paper, the formula spec-
ifying the variance as a function of distance is computed
from the Jukes and Cantor (JC; 1969) model. The var-
iance in a JC distance estimate (Nei, Stephens, and Sai-
tou 1985; Bulmer 1991) can be written

s2(d) 5 e8d/3 D(1 2 D)/L, (1)

where d is the distance, L is the sequence length, and D
5 ¾(1 2 e24d/3) is the sequence dissimilarity (a.k.a.
Hamming distance). Variance functions for other models
of evolution can also be used. By applying the variance
formula in a way that subtracts off the additive varia-
tions (defined below), much of the covariance between
distances is accounted for as well.

Criterion for Choosing the Best Pair to Join
The Weighbor criterion for deciding which pair to

join is based on two subcriteria that hold for neighbors
(and only for neighbors) when distances are exact. Using
the labeling of nodes in figure 1, with dij denoting the
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FIG. 1.—Node labeling convention. External nodes i and j are the
taxa being evaluated as potential neighbors. Internal nodes P and Q
are defined by the tree relating the four taxa i, j, k, and l.

distance between nodes i and j, the subcriteria applying
to neighbors i and j are:

Additivity: dik 2 djk is constant for all choices of a third
taxon k.

We call this criterion ‘‘additivity’’ because it will hold
if dik 5 diP 1 dPk holds for all k (and likewise with j in
place of i), with P shown in figure 1, in which case dik

2 djk 5 diP 2 djP.

Positivity: dik 1 djl 2 dij 2 dkl $ 0 for all choices of
two other taxa k and l.

This requires the internal branch in the four-taxon tree
((i, j), (k, l)) to have a nonnegative length. That is, dPQ

$ 0 in figure 1. Because Q is defined by k and l, choices
of these taxa that give the smallest dPQ result in the
strongest test of this subcriterion.

Due to variations (errors) associated with finite se-
quence length, estimated distances are not expected to
satisfy these criteria in every case in which i and j are
neighbors. However, it is possible (using an additional
simplifying assumption that the correlations between
distances correspond to those for a star phylogeny) to
determine the likelihood of the observed distances being
generated if the two nodes are in fact sister taxa (i.e.,
neighbors). Thus, the pair of sequences to be joined at
a given step in the procedure may be chosen as the pair
for which this likelihood is highest. Estimating the neg-
ative log-likelihood gives us a ‘‘cost function.’’ At each
stage, we join the pair with the lowest cost, thereby
maximizing the probability of a correct join.

Schematically, our cost function S(i, j) is the sum
of two terms, one for each subcriterion:

S(i, j) [ gAdd(i, j) 1 Pos(i, j). (2)

General features of the terms Add(i, j) and Pos(i, j) are
discussed in the following subsections, with more ex-
plicit definitions being given in appendix 1. The con-
stant g is used to address the reality that the tree may
not be at all starlike by correcting for potential corre-
lations among different terms in Add(i, j). This is
achieved by taking g , 1 when more than four taxa are
present, as discussed in appendix 2.

Evaluating Additivity

The likelihood that the observed distances are com-
patible with the additivity criterion for a given pair of
taxa i and j is the likelihood that the various dik 2 djk

values are all estimates of the same thing, diP 2 djP, where

the overbar indicates the optimally weighted average
(see appendix 1). Taking the distance errors to be Gauss-
ian gives us a negative log-likelihood of the form

2[d 2 d 2 (d 2 d )]1 ik jk iP jP
Add(i, j) [ .O 2 22 s (d , d ) 1 s (d , d )k¸{i,j} nonadd iP Pk nonadd jP Pk

(3)

This can be interpreted as a weighted least-squares x2

function; it is also equivalent to a weighted version of
the ‘‘ThreeTree’’ criterion of OOta and Saitou (1998).
The variances s in the denominator consider only2

nonadd
‘‘nonadditive’’ variations and are computed according to

s (diP, dPk) [ s2(dik) 2 s2(diP) 2 s2(dPk),2
nonadd (4)

where diP and dPk are simple estimates given in appendix
1. As discussed in appendix 3, using nonadditive vari-
ances in the denominator of equation (3) accounts for
the correlations among the distances in the numerator.

Evaluating Positivity

Positivity is defined by an inequality, so the like-
lihood calculation involves integrating over all amounts
by which the inequality could be satisfied. This integral
results in the complementary error function erfc(x) de-
fined by (2/Ïp)# dy. The negative log-likelihood2` 2yex

that an instance dPQ of a Gaussian random variable with
variance s comes from a distribution with a positive2

PQ

mean is

2d1 PQ
Pos(i, j) [ 2ln erfc . (5)1 1 222 Ï2sPQ

The precise definition of dPQ and the estimation of sPQ

are discussed below and in appendices 1 and 4; for now,
let dPQ be defined by figure 1. The log of the error func-
tion behaves linearly when |dPQ| K sPQ, and in this sit-
uation, Pos(i, j) begins to resemble the linear NJ crite-
rion, although with different coefficients. If the estimat-
ed length has a large negative value (dPQ/sPQ K 21),
the penalty against joining the pair increases quadrati-
cally. If the estimate has a large positive value (dPQ k
sPQ), the function is nearly zero and virtually indepen-
dent of dPQ; thus, pairs that clearly obey the positivity
criterion are compared on the basis of additivity alone.

Heuristics to Expedite the Best Pair Search

For Weighbor to be useful, it should be much faster
than ML on large trees, which implies that it should
require no more than order N3 steps. While Add(i, j) can
be exactly implemented in an order N3 algorithm by
storing N2 sums and updating them, the positivity mea-
sure entails greater complexity. The most thorough mea-
sure of positivity would require evaluating dPQ for every
quartet, which is impossible for an N3 method. This
forces us to use certain heuristics to keep the calculation
time proportional to N3.

Briefly, for each node i remaining at a given iter-
ation, we first employ a series of pairwise comparisons
aimed at finding the node j that is the most likely sister
of i. In a comparison between j and j9, we let k 5 j9 and
average over l (l ¸ {i, j, k}) in figure 1 to obtain an
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estimate of Pos(i, j) 2 Pos(i, j9). Once the most prom-
ising j is found for a given i, the cost function S(i, j) is
evaluated for this pair, using an additional heuristic
search to find the k and l that cause the worst value of
the Pos(i, j) criterion (i.e., minimize dPQ/sPQ). The pair
i, j giving the best value of S(i, j) will be the pair that
is joined. See www.t10.lanl.gov/billb/weighbor/techni-
cal for further details.

These heuristics allow Weighbor to estimate the
complete tree in order N3 steps, like NJ and BIONJ. For
comparison, the heuristic stepwise addition phase of ML
phylogeny methods requires a number of steps propor-
tional to N3L (more precisely, N3La, where La is the num-
ber of nonequivalent columns in the alignment; but in
the worst case, La 5 L). Stepwise addition using the
method of Fitch and Margoliash (1967) (henceforth
‘‘FM’’) is order N4, while Bulmer’s (1991) generalized
least-squares method is N6. Distance methods also use
an additional order N2L when the distance matrix is
computed.

The heuristics we use are not guaranteed to find the
optimal pair to join according to the criterion described
above. They also can potentially create sensitivity to the
order of taxa in the distance matrix. However, as shown
below, making use of these heuristics, the method dis-
plays performance approaching that of ML and superior
to that of existing N3 methods in dealing with long
branches.

Calculating Distances to and from the New Node
Once we have decided to join nodes i and j at a

new node (called P), there are three kinds of quantities
that must be calculated in preparation for the next iter-
ation. The first are the distances from i and j to P; the
second are the distances from P to all of the remaining
nodes; and the third are variables that will keep track of
the variances in the latter distances.

Calling the newly created node P, the distance from
i to P is computed as

diP [ max(0, min(dij, (Dbij 1 dij)/2)), (6)

where Dbij is the weighted average diP 2 djP of appendix
1. The min and max functions in diP only come into
play when the distances violate the triangle inequality.
In cases where dPQ was estimated to be negative, a cor-
rection to this formula is applied (see appendix 5).

The distance from P to some remaining taxon k ¸
{i, j} is given by the weighted average

2 2(d 2 d )/s (iP) 1 (d 2 d )/s ( jP)ik iP avg jk jP avg
d 5 , (7)Pk 2 21/s (iP) 1 1/s ( jP)avg avg

where s (iP) is the mean squared nonadditivity2
avg

s (diP, dPk) averaged over k. The use of a variance2
nonadd

averaged over k was put forward by Gascuel (1997) for
BIONJ. It is important that the same weights are used
for all k, because this causes errors in dij to act as ad-
ditive errors in later iterations.

The expected error in dPk will be greater than (or,
if diP 5 0 or djP 5 0, equal to) the error expected for
an actual sequence at P, because some of the error in
diP and djP is passed on to dPk. We keep track of this

increased error by introducing a quantity cP, which is
the amount of distance one would add to dPk to get the
right expected error. These quantities must be included
whenever the variance formulas are used, which become

2s (d 1 c , d 1 c )nonadd iP i kP k

2 2[ s (d 1 c 1 c ) 2 s (d 1 c )ik i k iP i

22 s (d 1 c ) (8)kP k

The calculation of the c’s is given in appendix 6, al-
though ci is zero for any i that is an actual sequence.

Results

We conducted a variety of tests based on sequences
generated under the JC model to compare Weighbor
with six other methods. The problem of choosing a spe-
cific set of trees on which to compare different tree re-
construction methods is complicated by topological bi-
ases present in many (possibly all) methods. Once the
relative bias between two methods is identified, it is of-
ten easy to choose specific trees that will make one
method look either better or worse than the other. To
avoid this, we consider trees that either explicitly test
for bias or are expected to be essentially neutral with
respect to bias.

Four-Taxon Star

‘‘Long branches attract’’ (LBA) is a topological
bias toward trees with long branches joined as neighbors
(Felsenstein 1978). To test for LBA, we simulated four-
taxon star phylogenies with two long and two short
branches as shown in figure 2. An unbiased method
should choose randomly and equally among the three
possible bifurcating topologies. The excess frequency
with which the long branches are joined we identify as
topological bias (Bruno and Halpern 1999)

As is well known, parsimony is inconsistent (Fel-
senstein 1978), which implies that for some trees it ex-
hibits maximal topological bias when the sequence
length is infinite. In figure 2, on sequences of length
500, parsimony exhibits a very large bias that increases
rapidly with increasing length of the long branches.
Both NJ and the PHYLIP implementation of FM (Fitch
and Margoliash 1967; Felsenstein 1997) likewise dem-
onstrate significant, although much smaller, LBA biases
that also increase steadily with increasing length of the
long branches. The same holds for BIONJ, which is to-
pologically equivalent to NJ on four taxa.

Maximum likelihood (we used fastDNAml [Olsen
et al. 1994]) and Weighbor show no significant bias in
these tests, except perhaps for very long branch lengths.
Because Weighbor is intended to approximate ML, it is
reassuring that the two resemble each other in this test.
One might also have expected Weighbor’s bias to be
intermediate between the biases of positivity-based
methods, such as NJ, and additivity-based methods, such
as FM; however, the PHYLIP FM program, called
‘‘Fitch,’’ requires branch lengths to be positive, appar-
ently causing it to have the bias of a positivity-based
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FIG. 2.—LBA bias versus length of long branches. JC sequences
of length 500 were simulated on a starlike tree with two short branches
of length 0.15 connected to two long branches of length b (see inset).
All simulations were repeated 1,000 times. Zero bias implies that each
tree is reconstructed in one-third of the repetitions. Plotted is the excess
fraction of repetitions in which the long branches are joined. Error bars
represent one standard deviation. Fitch refers to the PHYLIP imple-
mentation of the FM method, parsimony refers to the Dnapars program
in PHYLIP; ML refers to FastDNAml, and Weighbor is the weighted
neighbor joining method described here. Distance matrices for all dis-
tance methods were computed by the JC formula; infinite distances
were replaced by the effectively infinite value of 30.0 changes per site
(0.75 2 D ø 10218).

FIG. 3.—Fraction correct versus length of a long external branch.
JC sequences of length 500 were simulated on a tree with four branch-
es of length 0.1 connected by an internal branch of length 0.01, and a
fifth taxon connected near one tip by a branch of length b (see inset).
This figure demonstrates a case of ‘‘long branch distracts’’ (LBD), as
does figure 4. Error bars in this plot and in figure 4 would be 61.3%–
1.6%, or slightly larger than the symbols, as in figure 2.

method. The absence of detectable LBA bias in Weigh-
bor is one good reason for using it.

Based on these bias results, one can predict—and
we have confirmed—that parsimony, NJ, and Fitch will
perform worse than Weighbor on four-taxon trees with
a short internal branch and two long branches that are
not joined (this part of the tree space is known as the
Felsenstein Zone). Conversely, these biased methods
can perform better than Weighbor (and ML!) if the long
branches are neighbors in the correct tree and if these
branches are of sufficient length.

Trees that obey the molecular clock will tend to
favor the LBA bias, because if a clocklike tree has two
longest branches, these branches necessarily join. Thus,
if real data tend to be clocklike, a biased method could
have an advantage. On the other hand, Weighbor gives
the correct tree when the distances are exact, suggesting
that it is consistent and that if the data are sufficiently
convincing, the true tree will be found. Biased methods
systematically jump to the conclusion of a clocklike tree
(or rather a tree with long branches joined) before the
data really support it. Their biases will also tend to result
in inflated—and hence misleading—bootstrap values for
trees with long branches joined.

Lack of bias alone does not make a method worth
using, because choosing a topology at random would
also be unbiased by our definition; thus, the ability to
find the correct tree when one exists must be tested. In
order to avoid any influence of the bias effects we have

already tested, we desire test trees that are as neutral as
possible with respect to the LBA bias, for example, a
four-taxon tree that has all external branch lengths equal.
Tests of such symmetric four-taxon trees show negligi-
ble differences in performance between Weighbor and
the other methods (data not shown), but adding addi-
tional taxa to such a tree yields more interesting results.

Five-Taxon Tree with a Long External Branch

We consider a symmetric four-taxon tree with a
fifth taxon with a longer branch added well away from
the short internal branch (fig. 3). This tree still avoids
effects of the LBA bias (as there is only one long
branch), but reveals notable differences among some of
the methods. Here we see that three methods, BIONJ,
FM, and Weighbor, perform almost as well as maximum
likelihood, and these methods are not much affected by
the length of the long branch out to a length of 1.0. At
lengths beyond 1.0, all methods, including ML, perform
progressively worse. This is to be expected due to the
difficulty of placing such a distant taxon correctly in the
tree.

Clearly, NJ and parsimony begin to feel the effects
of the long branch sooner than this. The presence of the
long branch interferes with their ability to resolve the
short internal branch, even when placement of the long
branch itself should not be difficult. When the length of
the long branch is 1.0, NJ positions this branch correctly
97% of the time; that is, 97% of the time, the tree re-
constructed by NJ has the correct topology or one of the
two incorrect topologies obtained by incorrect joins
around the short internal branch. ML performs equally
well in this regard. This implies that the long branch
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FIG. 4.—Fraction correct versus length of a long internal branch.
JC sequences of length 500 were simulated on a tree built from two
symmetric trees connected by a branch of length b (see inset). ML
(local) is the default search of FastDNAml, and ML (global) is
FastDNAml with the more thorough ‘‘global’’ rearrangements option;
both methods performed identically in the preceding figures.

FIG. 5.—Log of fraction correct versus log of sequence length.
Sequences of different lengths were simulated on the tree of figure 4
with the length of the central branch b 5 1.25.

creates difficulties for NJ not because it is hard to place,
but because it causes unnecessary mistakes elsewhere in
the tree. We refer to this phenomenon as ‘‘long branch
distracts’’ or LBD (not to be confused with similar ter-
minology that was used to describe cases where absence
of LBA is disadvantageous [Whiting 1998]). LBD is
caused by a method failing to sufficiently deemphasize
the inherently less reliable information contained in lon-
ger distances. The existence of the LBD phenomenon
has been recognized before (Pollock and Goldstein
1995; Gascuel 1997) and is partly addressed by the
BIONJ program, which successfully avoids LBD in this
test.

Parsimony clearly out-performs NJ in this test. It
performs worse than the other methods, however. The
term LBD may not fully describe parsimony’s difficulty,
because when the length of the long branch is 1.0, par-
simony positions it correctly only 91% of the time.

Eight-Taxon Tree with Long Internal Branch

A more stringent test of LBD is shown in figure 4,
where the long branch is now an internal branch. Again,
we imposed symmetry on the tree so that LBA bias
would not be a factor.

BIONJ is vulnerable to LBD in this case because
BIONJ’s joining criterion is no different from NJ’s, and
a difficult choice must be made while the long branch
is still present. Indeed, for any tree that contains a long
internal branch and short internal branches in the sub-
trees at both ends of the long branch, BIONJ will at
some iteration be faced with this problem. We find that
BIONJ is only slightly better than NJ in this test, and
both methods suffer from LBD: when the long branch
had a length b 5 0.8, it was positioned correctly 98%

of the time by all methods except parsimony (93%),
meaning that positioning of the long branch was not the
problem.

Parsimony performs quite poorly when the central
branch is long, although when this branch is short, par-
simony is second only to the likelihood methods. Par-
simony’s victories with b 5 0.2 over FM, NJ, and
BIONJ are statistically significant (P , 0.05), but its
advantage over Weighbor is not.

Weighbor performs better than NJ, BIONJ, and, by
a small margin, FM over the entire range of distances.
At very long distances, Weighbor also performs better
than maximum likelihood using the default local search
method of FastDNAml for some choices of the input
order of taxa (data not shown); with randomized (‘‘jum-
bled’’) input order, FastDNAml is indistinguishable
from Weighbor when b 5 1.5.

We also investigated how performance varies with
sequence length. Figure 5 shows results for a tree from
figure 4 with an internal branch length b 5 1.25. In this
figure, Weighbor is about 30% more efficient than par-
simony, meaning it can achieve the same accuracy with
30% less data, and is even more efficient relative to NJ
and BIONJ. Recall that NJ is consistent, so it will ap-
proach 100% correctness with infinite sequence length
(when there will be no distance errors); but because NJ
does not account for the shape of the error distribution,
its efficiency is far from optimal. Everywhere on this
plot, Weighbor’s efficiency relative to global ML is at
least 90%, and differences between Weighbor and local
ML are not statistically significant.

When the long internal branch is reduced to a
length of 0.2, all methods perform better and the advan-
tage of using Weighbor is reduced. In this case, Weigh-
bor is about 80% as efficient as local and global ML,
10% more efficient than BIONJ, and 15% more efficient
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than NJ (data not shown), while differences between
Weighbor and parsimony or FM are not significant.

Overall Performance
To summarize, we find that Weighbor is not no-

ticeably influenced by LBA or LBD in our tests. On
trees that have only short branches (d # 0.25 in our
tests), LBA and LBD are not an issue, and the differ-
ences among methods appear minor. However, when
long branches are present, more dramatic differences be-
come evident, and Weighbor performs better than all of
the methods in our tests except ML.

We know of no examples in which Weighbor is
outperformed by NJ or BIONJ, except for trees for
which those methods benefit from the LBA bias, and for
any such tree, there are always similar trees with dif-
ferent connectivity for which the LBA bias causes the
biased methods perform worse (Bruno and Halpern
1999). Parsimony performs well on trees with only short
branches (d # 0.25), but it performs poorly when long
branches (d . 0.5) are present in these tests.

Speed
Weighbor is an order N3 algorithm, and it will run

on 256 taxa in about 20 min on a 256-MHz Tatung
UltraSparc workstation. Weighbor is about 5 times as
fast as parsimony (PHYLIP’s Dnapars; Felsenstein
1989) and 200–350 times as fast as FastDNAml using
the default local search on sequences of length 500. This
factor has only been investigated on up to 64 taxa for
FastDNAml but should be relatively independent of the
number of taxa; on the other hand, the factor will gen-
erally increase with the length of the sequences, al-
though it will also depend on the diversity of the se-
quences. Weighbor is faster than the order N4 Fitch-Mar-
goliash method on 16 or more taxa. Weighbor is sub-
stantially slower than both NJ and BIONJ, and the latter
could be preferable for very large problems when speed
is the primary consideration.

Discussion

By measuring statistical compatibility with the ad-
ditivity and positivity requirements, Weighbor effective-
ly avoids the LBA bias observed in all of the other
methods we tested except ML. Our likelihood-based for-
malism also results in appropriately less weight being
given to long distances, allowing Weighbor to avoid
LBD, which clearly affects the performance of NJ and
BIONJ. Trees containing two or more distant clades
(such as the tree with primates and birds mentioned in
the Introduction) are most seriously affected by LBD
and stand to benefit most from the use of Weighbor. On
trees without distant clades, Weighbor still performs as
well as or better than NJ and BIONJ, and Weighbor’s
lack of LBA bias is an added benefit. Parsimony per-
forms very well when all the taxa are so closely related
that the probability of back substitution is always small,
but when one or more long branches are present, par-
simony is not a good choice. Based on our tests, Weigh-
bor seems to be a good all-purpose molecular phylogeny
reconstruction method for problems for which ML is too

slow. Weighbor could also be useful for finding an initial
tree which could be further refined by some ML search.

The Weighbor program, including source code, is
freely available on the Internet at www.t10.lanl.gov/
billb/weighbor or by anonymous ftp at ftp-t10.lanl.gov
in pub/billb/weighbor. The sequence length L and the
alphabet size b used in calculating variances are adjust-
able command line parameters. For JC, b 5 4, while b
, 4 can allow for nucleotide bias or invariant sites, and
b . 4 can be used for protein sequences. Generalizing
the program to use a more complex model for the func-
tion that specifies how variance increases with distance
is straightforward. We expect the current version, with
appropriate use of the alphabet size parameter (see ‘‘pa-
rameters’’ on the webpage), to work well for most mo-
lecular applications. Whenever the variance grows rap-
idly with distance and long branches are present, Weigh-
bor should perform notably better than alternative meth-
ods that ignore this variance growth.

In our simulations, the distance matrix was always
computed using the correct (JC) model. In real appli-
cations, the correct model is unknown, but the best
available model should be used to compute the distance
matrix, so that the mean nonadditivity will nearly equal
zero (Swofford et al. 1996; Halpern and Bruno 1998).
One should also be aware that certain methods for com-
puting distances, notably the K2P (Kimura 1980) and
Tamura-Nei (1993) formulas, are not very efficient es-
timators and should be avoided in favor of generalized
least-squares (Goldstein and Pollock 1994; Pollock
1998) or ML distances.
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APPENDIX 1
Complete Definitions of Add(i, j) and Pos(i, j)

We rewrite equation (3) as follows:

Add(i, j) [ aij(D2bij 2 (Dbij)2)/2. (9)

The sums aij, Dbij, and D2bij, which are stored and up-
dated from one iteration to next, are defined by
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1
a [ (10)Oij 2 2s 1 sk¸{i,j} ik;j jk;i

1 1
Db [ (d 2 d ) (11)Oij ik jk2 2a s 1 sk¸{i,j}ij ik;j jk;i

1 1
2 2D b [ (d 2 d ) , (12)Oij ik jk2 2a s 1 sk¸{i,j}ij ik;j jk;i

where s is short-hand for s (diP 1 ci, dPk 1 ck),2 2
ik;j nonadd

with

diP 5 min(max((dik 1 dij 2 djk)/2,0),dik). (13)

If i and j are neighbors, then Dbij is the weighted least-
squares estimate of diP 2 djP in figure 1.

The positivity score Pos(i, j) is calculated as fol-
lows. Rewriting equation (5),

2z1 PQ
Pos(i, j) [ 2ln erfc , (14)1 2[ ]2 Ï2

we define zPQ to be the z score by which dPQ is positive,
and we estimate it by

d (ij, kl)PQ
z 5 min , (15)PQ 2 2 2k,l¸{i,j} Ïs (ij, kl) 1 (s 1 s )/8PQ ij;k ij;l

where the min is further approximated by a heuristic
linear time search, and dPQ(ij, kl) and s (ij, kl) are es-2

PQ

timated as follows. Letting

1
w(ik, jl) 5 , (16)

2 2 2 2min(s , s ) 1 min(s , s )ik;j ik;l jl;i jl;k

(d 1 d )w(ik, jl) 1 (d 1 d )w(il, jk)ik jl il jk
d (ij, kl) 5PQ [ w(ik, jl) 1 w(il, jk)

2 d 2 d 2 (17)ij kl @]
 1

2 2 1 s 1 skl;i kl;jw(ik, jl) 1 w(il, jk) 2s (ij, kl) 5  PQ 2 

4 4. (18)

The essence of these formulas is that there are two partly
independent ways to compute dPQ, and we take their
weighted average. The reason for terms like min(s ,2

ik;j

s ) in w(ik, jl) is discussed in appendix 4. Part of the2
ik;l

variance in dPQ is kept separate from s for conve-2
PQ

nience in appendix 5. Variants of the equations for dPQ

and sPQ used in the heuristic stage of finding the best
candidate neighbor for every remaining node are found
in the technical documentation on the Weighbor website.

APPENDIX 2
The g Factor and Correlations in Add(i,j)

For a star phylogeny, the various terms in the sum
defining Add(i, j) are independent. However, if the tree
is not a star, some terms are correlated and effectively
counted more than once, giving Add(i, j) too much

weight relative to Pos(i, j). We correct for this using the
factor g, taking

g 5 1/(N 2 3), (19)

where N is the number of nodes remaining in the prob-
lem (i.e., the original number of taxa minus the number
of iterations completed). This corresponds to N 2 3 of
the taxa being highly correlated, i.e., tightly clustered in
the tree, and three taxa i, j, and k branching near P,
making it difficult to decide whether i and j are really
neighbors. This value of g is the smallest value we ex-
pect to be useful, as it corresponds to the maximum
possible correlation that still leaves a difficult decision.
This choice perhaps biases the method toward behaving
more like NJ because it maximizes the influence of the
positivity criterion, but it seems to work well in our tests
and might be a good idea for the following reason. An
excellent positivity score implies a large dPQ and/or
small diP and dPj (giving a small sPQ), which implies
that i and j are highly correlated. Emphasizing positivity
causes such a pair to be joined early in the tree-building
process, making the tree more starlike in later iterations,
reducing neglected correlations, and possibly improving
accuracy.

Further theoretical and computational investiga-
tions of the benefits of different choices for g are prob-
ably warranted, although the results might be tree-spe-
cific. However, some simulations we have done suggest
that different choices may have only a small effect, pro-
vided g 5 1 when N 5 4 (because there is no possibility
of subclustering among the taxa not being joined when
there are only two of them) and provided g gets small
for large N.

APPENDIX 3
Nonadditive Variances

Variations in the number of substitutions on any
single branch cause correlations in the distance errors in
such a way that the errors caused by such variations
cancel out for our purposes. For instance, in equation
(3), variations in the number of substitutions on the
branch connecting P to k affect both dik and djk equally
and therefore cancel each other. Similarly, variations in
the number of substitutions on the branch from i to P
affect dik and diP 2 djP equally and cancel.

More generally, variations in the number of sub-
stitutions on any single branch are of no importance for
distance-based topology estimation, although they do
contribute to errors and uncertainty in the final branch
length estimates. Data from a tree with variations in the
number of substitutions on individual branches can be
considered to have come from a tree with the same to-
pology but different branch lengths and no such varia-
tions. Hence, such variations cannot cause the errors that
result in topology mistakes, such as deviations from ad-
ditivity in the distance matrix or violations of positivity.
The variations that do cause the distance matrix to vi-
olate additivity and/or positivity, such as variations in
the number of convergent substitutions on two different
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branches, we call nonadditive variations and denote by
s .2

nonadd
To explicitly define nonadditivity, suppose we are

given sequences i and j and also have the actual se-
quence of their most recent common ancestor, P, so that
we can directly estimate the pairwise distances among
the three. We define the nonadditivity associated with
the two branches connected at P to be

Nonadditivity(diP, dPj) [ dij 2 dPi 2 dPj. (20)

If the model of evolution used to estimate the distances
is correct, the expected nonadditivity should be zero, but
its variance will, of course, be positive for sequences of
finite length. This variance, or mean squared nonaddi-
tivity, can be calculated from the distances either by
assuming that the nonadditivity and the errors in dPi and
dPj are all independent (which is true in the limit of long
sequences) or by using the established covariance
Cov(dij, dPi) 5 s2(dPi) (Nei, Stephens, and Saitou 1985;
Bulmer 1991). In either case, the result for the expected
value of (dij 2 dPi 2 dPj)2 is the pleasantly simple re-
lationship of equation (4) (with j substituted for k).

APPENDIX 4
Estimating dPQ when it Is Nonnegligible

In equations 16 and 17, min(s , s ) is used for2 2
ik;j ik;l

the variance of dik to determine the relative weights of
the two possible dPQ expressions. For a star, dPQ 5 0,
and s and s both estimate s (diP, dPk). The use2 2 2

ik;j ik;l nonadd
of min(s , s ) is intended to deal crudely with the2 2

ik;j ik;l

effects of dPQ . 0. For example, if diP 5 0 and dQl 5
0, but dPQ, djP, and dQk are positive, then the expression
using dik 1 djl is infinitely better than the one using dil

1 djk, because dik 1 djl entails nonadditive errors of
Nonadditivity(dPQ, dQk) plus Nonadditivity(djP, dPQ),
while dil 1 djk entails both of those plus Nonadditivi-
ty(djP, dQk) as well (the correct definition of Nonadditiv-
ity(djP, dQk) turns out to be djk 2 djQ 2 dPk 1 dPQ). Our
formulas completely favor the better estimate in such a
case, although they are slightly biased toward underes-
timating the variance otherwise. It would be preferable
to have an estimate that was unbiased but still worked
well in the extreme cases, but we have not been able to
construct such an estimate without resorting to iteration,
and the current method seems to work well.

APPENDIX 5
Correcting for Negative zPQ

If zPQ in equation (15) is negative for the pair being
joined, then the positivity constraint is violated and
should be given consideration in estimating diP. A negative
zPQ(i, j) suggests a positive error in dij, but errors in other
distances could also be the cause. We seek the most
likely compromise distances consistent with dPQ $ 0.

Because this correction is applied at most once per
iteration, we can compute more time-consuming esti-
mates of dPQ and s , given on the webpage. The un-2

PQ

certainties of all other distances except dij are reflected
in this s , while the uncertainty in dij is represented by2

PQ

s , computed as the average of s over k. The amount2 2
ij ij;k

by which dij was most likely overestimated, according
to these variances, is

222d /sPQ PQ
h 5 . (21)

2 24/s 1 1/sij PQ

When s k s , there is little correction to dij, but when2 2
PQ ij

s k s , dij absorbs the entire correction 22dPQ need-2 2
ij PQ

ed to get dPQ out of negative territory. Once h is deter-
mined, if it is positive (which it is whenever the full z
score is negative), it is subtracted from dij for all of the
calculations involving P. Thus, diP and di9P are reduced,
and this causes distances from P to all the other taxa to
increase. When the node Q is created in some later it-
eration, dPQ will usually still come out negative, but by
a smaller amount. It will then be forced to zero by the
triangle inequality checking of equation (6).

APPENDIX 6
Estimating Nonadditive Variances at Internal
Nodes

As described above, when node P is introduced to
join nodes i and j, the expected error in dPk is a function
of not only dPk, but also an additional quantity cP that
reflects errors propagated from i and from j. To compute
the cP that will give the appropriate nonadditive vari-
ance, we need the inverse of the s2 function, which we
write as [s2]21. For JC, this is

b 2 1
2 21 2 2[s ] (x) 5 ln({2[xb L 1 (b 2 1) ]}

b

24 [bÏ4x(b 2 1)L 1 (b 2 1)

1 (b 2 1)(b 2 2)]), (22)

where b is the alphabet size. For more complex models,
this inverse could be computed numerically. We obtain
cP by plugging into [s2]21 the amount of extra nonad-
ditive variance expected in the distances dPk compared
with what would be expected if there were a leaf at P.
This is computed by propagating the variances in the
branch lengths diP and djP, plus any c’s associated with
them, through the weights in equation (7). The variance
in dij also contributes to errors in dPk, but this contri-
bution is the same for all k and is therefore ignored
because it does not contribute to nonadditivity in sub-
sequent iterations. We obtain

2 2s (c 1 b ) s (c 1 b ) i i;j j j;i
1

2 2 2 2(s (iP)) (s ( jP))avg avg 2 21c 5 [s ] . (23)P  21 1
1 2 21 2s (iP) s ( jP)avg avg 
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