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Abstract—The low spatial resolution of hyperspectral images
leads to the coexistence of multiple ground objects in a single
pixel (called mixed pixels). A large number of mixed pixels in a
hyperspectral image hinders the subsequent analysis and applica-
tion of the image. In order to solve this problem, a novel sparse
unmixing method, which considers highly similar patches in non-
local regions of a hyperspectral image, is proposed in this article.
This method exploits spectral correlation by using collaborative
sparsity regularization and spatial information by employing total
variation and weighted nonlocal low-rank tensor regularization.
To effectively utilize the tensor decomposition, nonlocal similar
patches are first grouped together. Then, these nonlocal patches are
stacked to form a patch group tensor. Finally, weighted low-rank
tensor regularization is enforced to constrain the patch group to
obtain an estimated low-rank abundance image. Experiments on
simulated and real hyperspectral datasets validated the superiority
of the proposed method in better maintaining fine details and
obtaining better unmixing results.

Index Terms—Low-rank, nonlocal similarity, sparse unmixing,
tensor decomposition.
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I. INTRODUCTION

A
hyperspectral image (HSI) is a three-dimensional (3-D)

data cube composed of tens or even hundreds of contin-

uous bands, with wavelengths ranging from 400 to 2500 nm.

Each pixel in the HSI can be regarded as a continuous spectral

signature, thus the HSI has a high spectral resolution (usually

less than 10 nm) [1]. With such characteristics, HSI has been

widely used in various fields, such as mineral exploration and

military target identification [2]–[4]. However, multiple ground

objects coexist in a single pixel (called a mixed pixel) of the HSI

[5] due to the low spatial resolution, which severely impacts the

precision of the subsequent HSI processing. It is important to

extract the spectrum of each ground object from the mixed pixel

and to obtain the corresponding abundance coefficients. That

is, each mixed pixel is decomposed into products of different

pure spectra (called endmembers) [6] and their corresponding

proportions (called abundance coefficients) [7]. To solve the

unmixing problem, two main basic models, the linear mixture

model (LMM) [8]–[10] and nonlinear mixture model [11]–[14],

are widely used. The LMM assumes that a linear mixture of

pure endmembers can represent the observed spectral signature

of each mixed pixel. Because the LMM has simplicity and

clear physical meaning, it is widely used for hyperspectral

unmixing.

With the LMM, the traditional endmember extraction meth-

ods are based on statistical and geometrical techniques. Al-

though these methods, such as the pixel purity index [15] and

vertex component analysis [16], require only minimal prior

information about the HSI, they assume the existence of pure

pixels, which is not true for most scenes. To overcome this

disadvantage, methods that do not involve the assumption of

pure pixel existence, such as iterative constrained endmembers

[17], have been proposed and have achieved great progress. In

addition, some researchers have proposed support vector ma-

chine methods [18]–[20], convolutional neural network methods

[21]–[29], and nonnegative matrix factorization (NMF) methods

[30]–[32] for hyperspectral unmixing. However, the support

vector machine and convolutional neural network methods have

shown poor unmixing performance and have even failed to

unmix in instances with strong noise. The limitation of the NMF

methods is that they are the nonconvex problems, and may obtain

virtual endmembers that have no physical meaning.
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Fig. 1. Flow chart of the proposed WNLTDSU method.

To overcome these drawbacks according to compressive sens-

ing theory [33]–[35], sparse unmixing techniques use a known

spectral library to compose the endmember matrix instead of

extracting endmembers from the HSI and then estimate the

corresponding abundance coefficients. To obtain precise results,

some prior knowledge is introduced into the sparse unmixing

model, such as the abundance nonnegativity constraint (ANC)

[36], abundance sum-to-one constraint [37], and sparseness

of abundance [38]. The variable splitting and augmented La-

grangian for sparse unmixing (SUnSAL) [39] is a typical sparse

unmixing method. They used the l1 norm to describe sparsity.

In order to enhance the sparsity of the spectrum, the collabora-

tive SUnSAL (CLSUnSAL) method [40] indicates whether the

spectrum of mixed pixels in homogeneous regions have high

similarity and whether the corresponding abundance vectors

have a high correlation. This prior can be expressed by applying

the l2,1 norm constraint to the abundance matrix. In addition,

Deng et al. [41] used smooth l0 sparse regularization and Sun

et al. [42] utilized l1/2 sparse regularization for hyperspectral

unmixing, respectively, which characterizes the sparsity of abun-

dance better than the l1 norm. However, these methods ignore

the spatial information in the HSI, such as the spatial distribution

of pixels and the correlation between adjacent pixels [43], [44].

To account for the local spatial correlation, many sparse

unmixing methods add total variation (TV) regularization to

promote local smoothness in the spatial domain [45]–[47]. To

explore nonlocal spatial information, many sparse unmixing

methods use a nonlocal means of regularization to maintain

similar spatial structure information in the HSI [48]–[50].

For the past few years, the low-rank property of the HSI has

been widely used in the fields of denoising, restoration, and

classification, which has achieved superior results [51]–[59].

Rizkinia et al. [60] converted the abundance matrix to 3-D and

exploited low-rank attributes in the local region by using a local

patch. Zhang et al. [61] proposed a low-rank representation

and spectral library pruning method based on the assumption

that adjacent pixels have similar abundance coefficients, and the

abundance coefficients of the ground objects have small values.

Hong et al. [62] utilized a subspace with a low-rank attribute

embedding method to improve the unmixing results.

Nevertheless, the unmixing methods discussed above do not

use spatial and spectral information fully, and HSI unmixing

performance still needs to be improved. In the spatial domain,

the pixels in a local region usually contains the same or similar

materials. In an HSI, there are many such local regions with

similar characteristics. That is to say, HSI has a strong nonlocal

similarity [63], [64]. Based on this prior, a weighted nonlocal

low-rank tensor decomposition method for HSI sparse unmixing

(WNLTDSU) is proposed in this study. Fig. 1 presents the flow

chart for the WNLTDSU. Given a 3-D abundance HSI image,

a 3-D local patch is first utilized to slide across all dimensions

of the HSI. For the local patch, similar patches are searched

for in a sufficiently large enough local window of the image

(in practice, usually not search the similar patches in the whole

image). Then, similar patches are combined to construct a 3-D

tensor. Next, the tensor unfolds into a matrix along mode-3,

and a weighted low-rank constraint is applied to estimate the

abundance matrix of these patches. Finally, the reconstructed

abundance matrix of these patches is folded into a tensor so that

an estimated abundance image of the local patch is obtained.

Meanwhile, collaborative sparsity and TV regularization jointly

improve the unmixing performance.

This study makes three contributions.

1) The nonlocal cubic patches are grouped together to form

series of low-rank tensors (using weighted nuclear norm)

that have potential in exploring the spatial-spectral infor-

mation deeply and have been proven to perform better than

conventional low-rank regularizers in sparse unmixing of

HSIs.

2) By utilizing TV, collaborative sparsity and nonlocal tensor

low-rank regularizations, the proposed method simultane-

ously exploits the local spatial smoothness, global row

sparsity, and nonlocal low rankness, thus suppressing

noises and maintaining the structural information of the

abundance image much better.

3) The proposed model can be effectively solved by ADMM

algorithm and extensive experimental results validate its

superiority in the field of hyperspectral unmixing.

In Section II, we discuss the notations and preliminaries of

the tensor and the sparse unmixing of HSI based on the LMM. In

Section III, the weighted low-rank tensor decomposition method

and the steps for solving the proposed model are described in

detail. Section IV analyzes the experimental results for both the

simulated and real hyperspectral datasets. Finally, in Section V,

we conclude the study.

II. RELATED WORK

A. Tensor Notation and Preliminaries

In this section, we illustrate some notation and preliminaries

for the tensors that are used in this article. We use lowercase

letters to denote scalars, i.e., t. Vectors are represented by lower-

case bold letters, i.e., t. Matrices are denoted by uppercase bold

letters, i.e., T. Tensors are represented by uppercase bold calli-

graphic letters, i.e., T . A tensor can be considered to be a multi-

dimensional number sequence, and its mode number represents
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its order [65]. For an M-order tensor T ∈ R
I1×I2×···×IM , the

element value of tensor T at the (i1, i2, . . . , iM ) location is de-

noted by ti1,i2,...,iM , where i1 = 1, 2, . . . , I1, i2 = 1, 2, . . . , I2,

· · ·, iM = 1, 2, . . . , IM . We give the definitions for a tensor in

the following.

Definition 1 (the norm of a tensor): Given an M-order tensor

T ∈ R
I1×I2×···×IM , the Frobenius norm of T is

‖T ‖F =

√

∑I1

i1=1

∑I2

i2=2
· · ·

∑IM

iM=1
|ti1,i2,...,iM |2. (1)

The l1 norm is calculated as

||T ||1 =

I1
∑

i1=1

I2
∑

i2=2

· · ·

IM
∑

iM=1

|ti1,i2,...,iM |. (2)

Definition 2 (the mode-m unfolding and folding of a tensor):

Let T ∈ R
I1×I2×···×IM be an M-order tensor. The unfolding of

T along mode-m, where m = I1, I2, . . . , IM , can be expressed

as T(m) ∈ R
Im×(I1×I2×···×Im−1×Im+1×···×IM ). The term foldm

represents the inverse operation of unfolding along mode-m, i.e.,

T = foldm(T(m)).
Definition 3 (the m-order product of a tensor and a matrix):

Given an M-order tensor T ∈ R
I1×I2×···×IM and a matrix O ∈

R
Jm×Im , the m-order product of T and O is defined as

Z = T ×mO (3)

where Z ∈ R
I1×I2×···×Im−1×Jm×Im+1×···×IM .

B. Linear Spectral Unmixing Model

The LMM assumes that an observed HSI Y ∈ R
r×c×b can be

represented as the endmember spectrum in the HSI multiplied

by the corresponding abundance coefficient [66], i.e.,

Y = U×3E+N (4)

where E ∈ R
b×s is the endmember matrix, U ∈ R

r×c×s repre-

sents the abundance image, N ∈ R
r×c×b denotes the noise and

model error, s is the number of spectra of E, and r, c, and b are

the height, width, and number of the spectral bands in the HSI,

respectively.

C. Sparse Unmixing Model

Sparse unmixing replaces the endmember matrix with a large

spectral library A ∈ R
b×l, where l represents the spectrum

number contained in A. The sparse unmixing model is

Y = X×3A+N (5)

whereX ∈ R
r×c×l represents the abundance image correspond-

ing to A.

Sparse unmixing is based on the fact that the endmember

spectrum number in the HSI is much smaller than the spectrum

number contained in the spectral library. Thus, there are only

a few nonzero values in X, which implies that X is sparse.

Considering the physical meaning, the ANC is used to ensure

that there are no negative values in the abundance image. The

sparse unmixing optimization problem can be described as

min
X

1

2
||X×3A−Y ||2F + λ||X||0 s.t. X ≥ 0 (6)

where λ denotes the sparsity parameter and ||X||0 represents the

number of nonzero values in X.

Since (6) is a nonconvex optimization problem, it is difficult

to solve. However, with the restricted isometry property (RIP)

condition [67], (6) can be transformed into a convex optimization

problem using the l1 norm. The optimization problem becomes

min
X

1

2
||X×3A−Y ||2F + λ||X||1 s.t. X ≥ 0 (7)

where ||X||1 =
∑r

i=1

∑c
j=1

∑l
m=1 |xi,j,m|.

The HSI usually contains only a small number of endmem-

bers. Multiplying the corresponding abundance image by a

spectral library containing a large number of spectra to represent

this HSI inevitably results in an abundance image that contains

only a few nonzero values, and all pixels in the abundance image

share the same active set of endmembers. That is to say, the

abundance image shows sparsity along the spectral dimension.

To make use of this prior, the l2,1 norm is then enforced on the

abundance image X unfolding along mode-3. The model can be

described as

min
X

1

2
||X×3A−Y ||2F + λ||X||2,1 s.t. X ≥ 0 (8)

where the collaborative sparsity regularization can be defined as

||X||2,1 = ||X(3)||2,1 =

l
∑

i=1

√

∑r×c

j=1
x2
ij (9)

where X(3) ∈ R
l×(r×c) and xij is the element in X(3).

However, the above-mentioned unmixing method ignores the

spatial correlation in the HSI. In order to consider the spatial

correlation, an anisotropic TV regularization [45] is added to

(7) to promote a smooth transition between adjacent pixels. The

problem can be written as

min
X

1

2
||X×3A−Y ||2F + λ||X||1 + λTV ||X||TV s.t. X ≥ 0

(10)

where λTV is the parameter of TV regularization. The

anisotropic TV can be defined as

||X ||TV = ||DX ||1 = ||DhX||1 + ||DvX||1 (11)

whereD is composed of two operators,Dh andDv , that calculate

the horizontal and vertical differential in the spatial domain,

respectively. LetX(ri, cj , lk) denote the intensity at the location

(ri, cj , lk), so the two differential operators can be defined as
{

DhX(ri, cj , lk) = X(ri, cj + 1, lk)−X(ri, cj , lk)

DvX(ri, cj , lk) = X(ri + 1, cj , lk)−X(ri, cj , lk)
(12)

where ri = 1, 2, . . . , r, cj = 1, 2, . . . , c and lk = 1, 2, . . . , l.
Although the methods discussed above have some advantages,

they do not use the spatial and spectral information fully. Thus,

we propose weighted low-rank tensor decomposition regular-

ization for sparse unmixing (WNLTDSU) of the HSI to further

exploit the spatial and spectral information.
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Fig. 2. Procedure for nonlocal low-rank tensor decomposition.

III. PROPOSED METHOD

A. Weighted Nonlocal Low-Rank Tensor

Decomposition Regularization

The HSI is a 3-D data cube (height, width, and number of

spectral bands) that has a high correlation in both the spatial

and spectral domains. In the spatial domain, the pixels in a local

region have a high correlation, which is reflected in the fact

that it contains the same or similar materials. In an HSI, there

are many such local regions with similar features. This indicates

that HSI has a strong nonlocal similarity. In the abundance image

of the HSI, the similarity of the HSI is maintained [68]. Thus,

the abundance image can be estimated by the low-rank method.

Inspired by this prior, we decided to employ low-rank tensor

decomposition to utilize the nonlocal similarity property. The

reason is that the HSI is well-suited to representation by tensor

due to its 3-D structure, and the tensor representation method

maintains the spectral correlation and spatial structure of the

HSI at the same time.

The traditional unmixing method vectorizes the abundance

image of the HSI according to the spectral dimension and

converts it to a 2-D matrix to consider the linear correlation

in the spectrum. On this basis, TV regularization is applied to

utilize the spatial information. However, considering only the

correlation of the spectrum often leads to poor performance,

especially in a scene with strong noise, while using only TV

to consider the spatial information leads to over-smoothing. To

overcome these drawbacks, we propose a weighted low-rank

tensor decomposition regularization that associates the spatial

and spectral information. Fig. 2 illustrates the procedure for

nonlocal low-rank tensor decomposition. Note that the patch

group tensor is unfolding along mode-3, and the corresponding

abundance matrix is arranged in a square matrix. This is different

from the traditional arrangement along the nonlocal similarity

mode (mode-2). For example, let the patch size be 5× 5× 5. For

a key patch, we searched four similar patches in the abundance

image, and stacked these patches and the key patch to form

a patch group tensor. Then, the tensor was decomposed to the

abundance matrix with 25× 25 size, while the traditional tensor

decomposition methods decomposed the tensor into a 125× 5
matrix. The reason we did not adopt the traditional tensor decom-

position method is because the abundance image is sparse, and

contains many zero values. The unmixing performance using

the traditional tensor decomposition is very poor. After several

experiments, we found that the best results were obtained by

decomposing the tensor into a square abundance matrix.

For the abundance image X ∈ R
r×c×l, we used a local patch,

represented by Xq ∈ R
rq×cq×lq , to slide across all dimensions

of X, where r, c, and l are, respectively, the height, width, and

spectral band number of the abundance image, while rq , cq ,

and lq are, respectively, the height, width, and spectral band

number of the local patch, and q = 1, 2, . . . , Q. The Q represents

the total number of patches in the abundance image X. For a

local patch Xq , called a key patch, the block matching method

[69] was used to search similar patches of Xq in the abundance

image. The k number of patches that are most similar to Xq and

Xq were stacked to form a patch group tensor, represented by

Xq ∈ R
rq×cq×lq(k+1). Then, the patch group tensor unfolded

along mode-3 so that the abundance matrix X
q

(3) of Xq was

obtained. The weighted nuclear norm was used to estimate the

abundance matrix ofXq . Hence, we have the following equation:

||Xq||w,∗ =

rank(Xq

(3)
)

∑

j=1

wjσj(X
q

(3)) (13)

where σj(X
q

(3)) and wj ≥ 0 represent the jth singular value

and the weight corresponding to the jth singular value in X
q

(3),

respectively.

In order to determine the weight w, we took advantage of

the fact that the larger singular value in X
q

(3) represents the

main components. In the process of unmixing, we try to retain

the larger singular value and shrink the smaller singular value.

Hence, the weight of the jth singular value wj should be in-

versely proportional to the singular value σj(X
q

(3)), which can

be defined as

wj = d
√

(k + 1)/(σj(X
q

(3)) + δ) (14)

where d > 0 represents a constant, k is the number of patches

that are most similar to Xq , and δ = 10−16 is used to ensure the

denominator is not zero.

With the weight setting above, the estimated abundance

matrix X̂
q

(3) can be solved using the singular value threshold

method:

X̂
q

(3) = USw

(

∑

)

V
T (15)
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where Sw(
∑

) is the soft threshold function under the weight

w, and U and V are the left singular matrix and right singular

matrix, respectively. The estimated abundance image X̂ q can be

obtained by fold3(X̂
q

(3)).
Applying the above operation to Q local patches, the abun-

dance image X can be estimated. Thus, the weighted low-rank

tensor decomposition regularization can be defined as

||X||w,∗ =

Q
∑

q=1

||Xq||w,∗ (16)

where Q represents the total number of patches in the abundance

image X.

B. Proposed Model and Optimization

After adding three regularizations, collaborative sparsity,

TV, and weighted nonlocal low-rank tensor decomposition

to the sparse unmixing model, the problem of the proposed

WNLTDSU method is

min
X

1

2
||X×3A− Y||2F + λ||X ||2,1

+ λTV ||DX ||1 + λWT ||X ||w,∗ s.t. X ≥ 0 (17)

where λ, λTV , and λWT represent the contributions of the col-

laborative sparsity, TV, and weighted nonlocal low-rank tensor

decomposition regularizations in the proposed model, respec-

tively.

The proposed model is difficult to solve directly. There-

fore, we used the alternating direction method of multipliers

(ADMM) [70] to transform the problem of (17) into several

subproblems that are easy to solve. With the ADMM, (17) can

be equivalently converted to

min
X

1

2
||G1 −Y ||2F + λ||G2||2,1

+ λTV ||G4||1 + λWT ||G5||w,∗ + lR+(G6)

s.t. G1 = X×3A

G2 = X

G3 = X

G4 = DG3

G5 = X

G6 = X (18)

where G1, G2, G3, G4, G5, and G6 are six introduced variables,

which transforms the proposed model into several subproblems.

lR+(X) is used to ensure that the solution to X is greater than

or equal to zero (if X ≥ 0, lR+(X) = 0; otherwise lR+(X) =
+∞).

The Lagrangian function associated with (18) is

L(X,G1,G2,G3,G4,G5,G6,H1,H2,H3,H4,H5,H6)

= min
X

1

2
||G1 − Y ||2F + λ||G2||2,1

+ λTV ||G4||1 + λWT ||G5||w,∗ + lR+(G6)

+
µ

2
||G1 −X×3A+H1||

2
F +

µ

2
||G2 −X +H2||

2
F

+
µ

2
||G3 −X +H3||

2
F +

µ

2
||G4 −DG3 +H4||

2
F

+
µ

2
||G5 −X +H5||

2
F +

µ

2
||G6 −X +H6||

2
F (19)

where µ represents the Lagrangian penalty factor, and H1, H2,

H3, H4, H5, and H6 denote the six Lagrangian multipliers.

According to the ADMM, the X, G1, G2, G3, G4, G5, and G6

are solved iteratively in sequence. In the following, we discuss

the solutions to these subproblems. The optimization problem

of X is

X[i+1] = argmin
X

µ

2
||G

[i]
1 −X×3A+H

[i]
1 ||2F

+
µ

2
||G

[i]
2 −X+H

[i]
2 ||2F +

µ

2
||G

[i]
3 −X+H

[i]
3 ||2F

+
µ

2
||G

[i]
5 −X+H

[i]
5 ||2F +

µ

2
||G

[i]
6 −X+H

[i]
6 ||2F . (20)

The solution to (20) is

X[i+1] = ((G
[i]
1 +H

[i]
1 )×3A

T + G
[i]
2 +H

[i]
2 + G

[i]
3

+H
[i]
3 + G

[i]
5 +H

[i]
5 + G

[i]
6 +H

[i]
6 )×3(A

T
A+ 4I)−1

(21)

where I represents the identity matrix, and AT denotes the

transpose of A.

The optimization problem of G1, G2, G3, G4, G5, and G6 can

be expressed as follows:

G
[i+1]
1 = argmin

G1

1

2
||G1 −Y ||2F +

µ

2
||G1

−X[i]×3A+H
[i]
1 ||2F . (22)

G
[i+1]
2 = argmin

G2

λ||G2||2,1 +
µ

2
||G2 −X[i] +H

[i]
2 ||2F . (23)

G
[i+1]
3 = argmin

G3

µ

2
||G3 −X[i] +H

[i]
3 ||2F +

µ

2
||G

[i]
4

−DG3 +H
[i]
4 ||2F . (24)

G
[i+1]
4 = argmin

G4

λTV ||G4||1 +
µ

2
||G4 −X[i] +H

[i]
4 ||2F .

(25)

G
[i+1]
5 = argmin

G5

λWT ||G5||w,∗ +
µ

2
||G5 −X[i] +H

[i]
5 ||2F .

(26)

G
[i+1]
6 = argmin

G6

lR+(G6) +
µ

2
||G6 −X[i] +H

[i]
6 ||2F . (27)

The solution to G1 is

G
[i+1]
1 =

1

1 + µ
[Y + µ(X[i]×3A−H

[i]
1 ||2F )]. (28)

For collaborative sparsity regularization, the solution is ob-

tained by the vect-soft threshold [71]

G
[i+1]
2 = vect− soft

(

X[i] −H
[i]
2 ,

λ

µ

)

(29)
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where the vect-soft-threshold function is calculated as

vect− soft(ϕ, ζ) = ϕ(max{||ϕ||2 − ζ, 0}/max{||ϕ||2 −
ζ, 0}+ ζ).

G3 can be calculated by
(

DTD + I)G
[i+1]
3 = (X[i] −H

[i]
3 +DT (G

[i]
4 +H

[i]
4 )

)

(30)

whereI denotes the identity tensor.D is a convolution, operating
only in the spatial domain. The solution to G3 in (30) can be

acquired by a fast Fourier transform [72]:

G
[i+1]
3

= ifft

(

X[i] −H
[i]
3 +DT (G

[i]
4 +H

[i]
4 )

1+ fft(Dh)
T fft(Dh) + fft(Dv)

T fft(Dv)

)

(31)

where fft and ifft represent the Fourier transform and the inverse
Fourier transform, respectively.

G4 in TV regularization is solved by the soft threshold [73]:

G
[i+1]
4 = soft

(

H
[i]
4 −DG

[i]
3 ,

λTV

µ

)

(32)

where soft(ϕ, ζ) represents the soft threshold function, and the
solution is soft(ϕ, ζ) = sign(ϕ)max{|ϕ| − ζ, 0}.

To solve G5, the weighted nuclear norm is applied to each

abundance image of the patch group tensor to obtain the recon-

structed abundance image, which can be represented as

G
[i+1]
5 = shrinkage

(

X[i] −H
[i]
5 ,

wλWT

µ

)

(33)

where shrinkage (ϕ, ζ) = diag (max {SV D (ϕ )− ζ, 0}),
SV D(·)
denotes singular value decomposition.

Finally, the solution to G6 is solved by

G
[i+1]
6 = max

(

X[i] −H
[i]
6 , 0

)

. (34)

In each iteration, X is first updated, and then G1, G2, G3, G4,

G5, and G6 are updated in sequence. When the stop condition

is satisfied, the model stops iterating and outputs the abundance

image X. The pseudocode for the proposed model is given in

Algorithm 1.

C. Computational Efficiency

Before the time complexity discussion, recall that rq , cq , and

lq are, respectively, the height, width, and spectral band number

of the local patch, k is the number of patches that are most

similar to Xq , and Q represents the total number of local patches

in the abundance image X. The most time-consuming step of

the proposed model is the calculation of G5. For a patch group

tensor, the time complexity of the weighted nonlocal low-rank

tensor decomposition step is O(rqcq(lq(k + 1))2). The size of

the patch and the number of similar patches affect the complexity

of this step. Because there are Q local patches in the abundance

image, the overall time-consumption is O(rqcq(lq(k + 1))2Q).

IV. EXPERIMENTS AND ANALYSIS

In this section, we present the unmixing performance of

the proposed method (WLTDSU) by utilizing two simulated

Algorithm 1: Pseudocode of the Proposed Model.

1. Initialization: set i = 0, choose λ, λTV , λWT , µ, X[0],

G
[0]
1 ,· · ·, G

[0]
6 , H

[0]
1 ,· · ·, H

[0]
6

2. while some stopping criterion is not satisfied do

3. X [i+1] =
argmin

X
L(X ,G

[i]
1 , . . . ,G

[i]
6 ,H

[i]
1 , . . . ,H

[i]
6 )

4. for j = 1, …,6 do

5. G
[i+1]
j = argmin

Gj

L(X [i],G
[i]
1 , . . . ,Gj , . . . ,G

[i]
6 )

6. end for

7. Update Lagrange multipliers

8. H
[i+1]
1 = H

[i]
1 −X[i+1]×3A+ G

[i+1]
1

9. H
[i+1]
4 = H

[i]
4 −DG

[i+1]
3 + G

[i+1]
4

10. H
[i+1]
j = H

[i]
j −X[i+1] + G

[i+1]
j , j = 2, 3, 5, 6

11. Update iteration i = i+ 1
12. end while

hyperspectral datasets and one real hyperspectral dataset. We

compare the unmixing performance of the proposed method

with the performance of several state-of-the-art methods, such as

the CLSUnSAL method [40], SUnSAL with TV regularization

(SUnSAL-TV) method [45], joint local abundance sparse un-

mixing (J-LASU) method [60], sparse unmixing with l1-l2 spar-

sity and TV regularization (l1-l2 SUnSAL-TV) method [74], and

the sparse unmixing with nonlocal low-rank prior (NLLRSU)

method [75].

A. Experiments With Simulated Datasets

To construct spectral library A for the simulated dataset ex-

periments, we used the USGS spectral library (named splib06)

[76], which was released in September 2007. Spectral library

A contains 240 spectral curves of different ground objects ran-

domly selected from the splib06. The spectral curves in A have

224 spectral bands, and the distribution of the spectral curve is

between 400–2500 nm. The spectral angle was set to greater

than 4.4 to avoid the effect of high mutual coherence between

spectral curves in the spectral library.

1) Simulated Dataset 1 (DS1): Five spectral curves were

randomly selected from spectral library A as endmembers to

generate the DS1. The data generation followed the LMM and

imposed the ANC and sum-to-one constraint on the abundance

image, which had 75× 75 pixels. As shown in Fig. 3(a), the

endmembers are evenly distributed in the square regions. The

true abundance images of DS1 are shown in Fig. 3(b)–(f). There

are pure regions, denoted in red, composed of pure endmembers,

and mixed regions composed of endmembers ranging from two

to five. The background pixels are composed of the same five

endmembers, but the abundance values of these endmembers are

randomly fixed to 0.1149, 0.0741, 0.2003, 0.2055, and 0.4051.

2) Simulated Dataset 2 (DS2): The DS2 had 100 × 100 pix-

els and was constructed by randomly selecting nine spectral

curves from spectral library A. The distribution of the nine

endmembers were constrained by the ANC and sum-to-one

constraint. The abundance images of DS2 satisfied the Dirich-

let function on the probability simplex. Fig. 4 shows the true
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Fig. 3. True abundance images of endmembers in the simulated dataset 1 (DS1). (a) Simulated image. (b) Endmember 1. (c) Endmember 2. (d) Endmember 3.
(e) Endmember 4. (f) Endmember 5.

Fig. 4. True fractional abundances of endmembers in the simulated dataset 2 (DS2). (a) Endmember 1. (b) Endmember 2. (c) Endmember 3. (d) Endmember 4.
(e) Endmember 5. (f) Endmember 6. (g) Endmember 7. (h) Endmember 8. (i) Endmember 9.

abundance images. The abundance images show homogeneity

and piecewise smoothing in the spatial domain.

After DS1 and DS2 were generated, Gaussian noise with three

different signal-to-noise ratios (SNRs), i.e., 10, 15, and 20 dB

were used to distort these two datasets.

In order to evaluate the performance of the CLSUn-

SAL, SUnSAL-TV, J-LASU, l1-l2 SUnSAL-TV, NLLRSU,

and proposed WNLTDSU methods qualitatively, the signal

to reconstruction error (SRE) and root mean square error

(RMSE) were used in the experiments, and are respectively
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TABLE I
PARAMETER SETTINGS

Fig. 5. SRE (dB) as a function of parameters λ, λTV , and λWT for DS1 with a 20 dB SNR level. (a) λ and λTV . (b) λ and λWT . (c) λTV and λWT .

defined as:

SRE(dB) =
E[||X||22]

E[||X− X̄ ||22]
(35)

RMSE =

√

1

r × c× l

∑r

i=1

∑c

j=1

∑l

k=1
(xi,j,k − x̄i,j,k)

2

(36)

where X represents the true abundance image and xi,j,k is the

element in X, X̄ denotes the reconstructed abundance image,

and x̄i,j,k is the element in X̄ . A high SRE value and low RMSE

value mean that the unmixing method shows good performance.

Table I shows the parameter settings of the six meth-

ods, CLSUnSAL, SUnSAL-TV, J-LASU, l1-l2 SUnSAL-TV,

NLLRSU, and WNLTDSU, utilized on DS1 and DS2. The

parameter for sparsity regularization for the six methods is

denoted by λ. The λTV represents the parameter for TV reg-

ularization for the SUnSAL-TV, J-LASU, l1-l2 SUnSAL-TV,

NLLRSU, and WNLTDSU methods. The local low-rank reg-

ularization parameter is λLA for J-LASU, and the nonlocal

low-rank regularization parameter is λNL for NLLRSU. For

WNLTDSU, λWT represents the parameter of the weighted

nonlocal low-rank tensor decomposition regularization. The

parameterµ is the Lagrangian penalty factor for the six methods.

The values of all the parameters for each method are adjusted

optimally.

Fig. 5 presents the SRE (dB) as a function with respect to λ,

λTV , and λWT under the condition of 20 dB SNR noise in DS1.

Because the SRE and three parameters are difficult to display in

a figure, we take into account the impact of λ, and λTV , λ and

λWT , λTV and λWT on the SRE results in sequence. It is evident

that the change in parameters has a great influence on the SRE
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TABLE II
SRE (dB) RESULTS (THE OPTIMAL RESULTS ARE SHOWN IN BOLD TYPE)

TABLE III
RMSE RESULTS (THE OPTIMAL RESULTS ARE SHOWN IN BOLD TYPE)

Fig. 6. Estimated fractional abundances of endmember 1 in DS1 with a 20 dB SNR level. (a) CLSUnSAL. (b) SUnSAL-TV. (c) J-LASU; (d) l1-l2 SUnSAL-TV.
(e) NLLRSU. (f) Our method.

results. In general, the smaller the parameter values, the higher

the SRE results, which means better unmixing performance.

Tables II and III show the SRE and RMSE results for DS1

and DS2 unmixed by the six methods, respectively. From these

tables, it can be seen that those methods considering both spec-

tral correlation and the spatial information, such as SUnSAL-TV,

J-LASU, l1-l2 SUnSAL-TV, NLLRSU, and our method, perform

better than the CLSUnSAL method which only considers the

spectral correlation. In addition, the results obtained by our

method are best. For example, in the case of DS1 with 20dB

SNR, the SRE result obtained by our method is 5.72dB higher

than NLLRSU, while the RMSE result is 0.0025 lower than

NLLRSU. Figs. 6–9 present abundance images estimated by

the six methods at the 20 dB SNR noise level. Here, we present

only the abundance images of the two randomly selected end-

members from DS1, and two endmembers from DS2, because

the other endmembers show similar unmixing results. From

these figures, it can be observed that the abundance image

estimated by CLSUnSAL is greatly affected by noise, while the

SUnSAL-TV method shows the smoothest unmixing results of

the six methods. Compared with the CLSUnSAL, SUnSAL-TV,

l1-l2 SUnSAL-TV methods, the J-LASU, NLLRSU, and our

method take into account the low-rank property of abundant

images so that they can better maintain the structure information

of the maps. Compared with these five methods, the abundance

images reconstructed by our method better maintain the structure
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Fig. 7. Estimated fractional abundances of endmember 5 in DS1 with a 20 dB SNR level. (a) CLSUnSAL. (b) SUnSAL-TV. (c) J-LASU. (d) l1-l2 SUnSAL-TV.
(e) NLLRSU. (f) Our method.

Fig. 8. Estimated fractional abundances of endmember 5 in DS2 with a 20 dB SNR level. (a) CLSUnSAL. (b) SUnSAL-TV. (c) J-LASU. (d) l1-l2 SUnSAL-TV.
(e) NLLRSU. (f) Our method.

information, for example, the image estimated by our method

is closer to the ground truth in the edge transition region. In a

word, the proposed method is not only better at noise suppression

but is also closest to the real abundance images among the six

methods.

B. Experiments With Real Datasets

In this experiment, the well-known AVIRIS Cuprite mineral

map dataset was used for real hyperspectral data experiments.

The dataset contains 224 spectral bands ranging from 400 to

2500 nm. Fig. 10 shows the mine distribution for this dataset.

The 50 spectral signatures are chosen from USGS library for un-

mixing the Cuprite mineral map dataset. A subset of this dataset,

containing 250 × 191 pixels, was used in the experiment. The

bands 1, 2, 105–115, 150–170, 223, and 224 were removed

because of the strong noise and water absorption effects. Thus,

the subset contained 188 bands.

Fig. 11 presents the abundance images estimated by the six un-

mixing methods. Three kinds of abundance images for minerals,

Alunite, Buddingtonite, and Chalcedony, are shown from left to

right, respectively. The first row is the actual distribution of the

three minerals and is treated as ground truth. It is important to

note that the actual distributions of the three minerals were gen-

erated by Tricorder 3.3 software in 1995, while the dataset used

in the experiments was released in 1997, so we used the mineral

map only for visual qualitative analysis. The next few rows are

the unmixing results obtained by CLSUnSAL, SUnSAL-TV,
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Fig. 9. Estimated fractional abundances of endmember 9 in DS2 with a 20 dB SNR level. (a) CLSUnSAL. (b) SUnSAL-TV. (c) J-LASU. (d) l1-l2 SUnSAL-TV.
(e) NLLRSU. (f) Our method.

Fig. 10. USGS mineral map of Cuprite in Nevada. The area shown in red rectangle is the dataset used in the experiment.



SUN et al.: WEIGHTED NONLOCAL LOW-RANK TENSOR DECOMPOSITION METHOD FOR SPARSE UNMIXING OF HYPERSPECTRAL IMAGES 1185

Fig. 11. Abundance images of USGS mineral map estimated by the six
unmixing methods. The first row shows the distribution maps of Alunite,
Buddingtonite, and Chalcedony (column 1–3) by Tricorder software. The second
to the seventh row shows the estimated abundances images of the three minerals
by CLSUnSAL, SUnSAL-TV, J-LASU, L1-L2 SUnSAL-TV, NLLRSU, and our
method, respectively.

Fig. 12. SRE and RMSE values as a function of the size and number of patches.

J-LASU, l1−l2 SUnSAL-TV, NLLRSU, and WNLTDSU, re-

spectively. From Fig. 11, it can be seen that CLSUnSAL has

poor noise suppression and poor unmixing performance, and

SUnSAL-TV causes over-smoothing in some regions, while

WNLTDSU suppresses the noise and maintains the structural

information best. The unmixing results of the WNLTDSU are

also closer to the real abundance images than the results of the

other methods, which reflects the superiority of the proposed

method.

C. Discussion

The execution time of the six methods used on the DS1 and

Cuprite dataset are summarized in Table IV. The six methods

were implemented in MATLAB R2018b on a desktop computer

with an Intel Core i7 (at 3.6 GHz) CPU and 8 GB of memory. Ten

experiments were performed for each method, and the average

time was taken as the running time of each method. It can be

clearly seen that the proposed method consumes the most time

among the six algorithms. The reason is that it takes much time

to calculate the singular value decomposition. However, the pro-

posed method, particularly at a strong noise level, suppresses the

noise and maintains the structural information of the abundance

images best. Moreover, for hyperspectral big data processing

or real-time application, distributed parallel computing can be

utilized to speed up the algorithm by dealing with the cubic

patches.

In addition, the size and number of patches also need to be

considered in experiments, as they affect the unmixing perfor-

mances. Fig. 12 presents the changes in SRE and RMSE with

the size and number of patches in DS1+. It explains that the

SRE and RMSE results are best when the size and number of

patches are both five. As the size and number of blocks increase,

the unmixing performance gradually decreases. After several

experiments, we found that using a 5× 5× 5 size for each patch

and five patches to form the patch group tensor for the low-rank

tensor decomposition achieves good results on most datasets.

Hence, we selected the 5× 5× 5 size for each patch and five

patches as the optimal parameters for all the data.
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TABLE IV
EXECUTION TIME OF THE SIX METHODS (SECONDS/ITERATION)

V. CONCLUSION

We proposed a hyperspectral sparse unmixing method based

on weighted nonlocal low-rank tensor decomposition regulariza-

tion, which takes into account the spatial and spectral informa-

tion, simultaneously. Based on the prior that the HSI has strong

nonlocal similarity, several patches were combined to form a

patch group tensor. The weighted nuclear norm was then applied

to this patch group tensor to obtain the estimated abundance

image. In addition, collaborative sparsity and TV regularization

were also introduced in the proposed model to consider the

spectral and spatial information of the abundance image. The

proposed method was tested on two simulated datasets and

a real hyperspectral dataset, and the results showed that the

proposed method was superior to the state-of-the-art methods.

In the future, we will consider implementing our algorithm on

the GPU or cloud platform [77]–[79], to reduce the runtime and

improve efficiency.
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