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ABSTRACT. Generalizations of the classical conjugation operator can be de-

fined on a general uniform algebra. In this paper the L2 weighted problems for

the conjugation operators are considered and it is shown that the weights have

forms similar to the classical case. The results in this paper have applications

to concrete uniform algebras, for example, a polydisc algebra and a uniform

algebra which consists of rational functions.

1. Introduction. Let X be a compact Hausdorff space, let C(X) be the alge-

bra of complex-valued continuous functions on X, and let A be a uniform algebra

on X. Fix a nonzero complex homomorphism r on A and let m be the represent-

ing measure for r on X. Put A0 = {/ G A;r(f) = 0} and G0 = {/ G C(X);

fx f dm = 0}. A uniformly closed subspace is called A-invariant if it is invariant

under multiplications by the functions in A. Suppose / is a closed invariant sub-

space in Gr> For example, Aq is such a subspace. It is clear that there exists a

largest subspace Kq contained in such a closed invariant subspaces, and, in fact,

K0 = {/ G C0; fx fg dm-0 for all g G A}.
The abstract Hardy space Hp = Hv(m), 1 < p < oo, determined by A is defined

to be the closure of A in Lp = Lp(m) when p is finite and to be the weak*-closure

of A in L°° = L°°(m) when p = oo. Let v be a real function in L°°; v denotes

the conjugate function, that is, v + iv is in H1 and fx v dm = 0. Of course, it is

possible that v need not have the conjugate function v.

In this paper, we are interested in the nonnegative weight functions w for which

there is a positive constant G such that

(1) [ \f\2wdm<C [ \f + g\2wdm
Jx Jx

for all / in A and all g in /. In the case A is the disc algebra and m is the normalized

Lebesgue measure, such weight functions w are well known when I = Aq (cf. [4,

6]). It is difficult to give a characterization analogous to the disc algebra setting

even if in the case of an annulus algebra. However, in previous papers [7, §3; 8, §4;

and 9, §7], we determined weight functions w when w satisfies a stronger weighted

norm inequality than (1), if I — Kq, for a general uniform algebra. That is,

(2) there exists a constant p in [0,1) and a function k in Kq f~l Ll such that

\w — k\< pw.
When A is the disc algebra, the Helson-Szegö theorem, which was proved in [1,

Proposition 2], shows that w satisfies (2) if and only if w = eu+v, where u and v are
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in L°° and || ||oo < t/2. The main result in this paper shows this condition persists

for a polydisc algebra and a uniform algebra which consists of rational functions.

2. Weighted norm inequalities. Let Pv be the orthogonal projection from

L2 to vH2 where v is in S?, the set of all measurable positive functions on X which

are both bounded and bounded away from zero. Fix / a closed invariant subspace

in Go- &1 denotes Pv restricted to vA + v~lI. The following theorem is known

in the case when I = A0 or I = K0 [9, Theorems 14 and 14']. For a general /

we can show a lifting theorem on A x / as in the proof of [9, Theorem 2]. Then

the following theorem follows as in the proof of [9, Theorem 14]. However, we will

sketch of a direct proof, not using a lifting theorem. We need the following lemma

which is probably known.

LEMMA 1.   Let M be a subspace of L1. If for any h in M

/   hw dm  < C j   \h\w dm,
Jx Jx

For the

then there exists a function k in M1 n L1 such that \w — k\ < Cw.

The proof is due to the Hahn-Banach theorem, that is, (L1)* = 1

proof, m be any probability measure.

THEOREM 1. Let w be a nonnegative function in Ll. Then, ¿Pf is uniformly

bounded in L2(w) with respect to v in Sf if and only if there exists a constant p in

[0,1) and a function k in Ix D L1 such that \w — k\< pw.

PROOF. It is easy to see that \\^f\\ < C for all v G Sf if and only if

/  fgw dm    <(1-G-1)/  \vf\2w dm      \v~lg\2w dm
Jx Jx Jx

for all / G A, all g G I, and all v G 2?■  Hence the proof of the "if" part in the

theorem is easy.

We shall prove the "only if" part. Let h G I. Put En = {x G X;0 < \h(x)\ <

1/n}, Fq = {x G X; h(x) = 0}, and Fn = {x G X; \h(x)\ > 1/n}. Define vn by

1,

1/n,

\h(x)\1'2.

xG En,

XG F0,

x G Fn.

Then vn G ¿z? and

\Lhw dm < (1-G ~l) I   \vn\2w dm       \vn 1h\2w dm.
Jx Jx

Since limn fx\vn\2w dm = fx\h\wdm and lim„ fx\vn1\2w dm < fx\h\wdm for

any h G I,

Jx
w dm < (1-C~ Í \h\

Jx
w dm.

This proof is similar to that of the calculation of a norm of a Hankel operator in

[7, Theorem 1]. Now the lemma above implies the "only if" part.
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Let NT denote the set of representing measures for r on X. If NT is finite

dimensional and m is a core point of NT, in Theorem 1 we can use ê? instead

of SC, where % is a finite subgroup of J? (cf. [7, Proposition 5, 9, Theorem 14]).

Moreover, if m is a unique logomodular measure we can show that if £P¡ is bounded

for each v in <£, then ¿Pj is uniformly bounded with respect to i> (cf. [7, Theorem

6; 9, Theorem 15]). If A is the disc algebra and m is the normalized Lebesgue

measure, then ¿f consists of nonzero positive constants and hence the Helson-Szegö

theorem follows if I — Ao.

It is interesting to point out that Theorem 1 is completely general. However,

we wish to find the weight functions w for which ¿Pj = &} is bounded (only when

v — 1). For this purpose we introduce a constant 70 which was first used in [8,

§1]. Denoting the coset of an / in (L00)"1 in (L00)"1/^00)"1 by (/), define

||(/)|| = infíJMUlíTMloo; g G (/)} and l0 = sup{||(/)||; (/) G (L»)-1/^00)"1}.
If A is the disc algebra then 70 = 1 and if H°° is the algebra of bounded analytic

functions on a multiply connected domain, then 70 is finite [8, §2]. The following

theorem is known in the case of I — Aq or I = Ko (see [8, Corollary 1; 9, Theorem

16]). The proof is almost the same if we use Theorem 1.

THEOREM 2. Let w be a nonnegative function in L1. If &i is bounded in L2(w)

and if \\¿Pi\\ = G, then there exists a function k in Ia- (~l L1 such that \w — k\ < pw

and p = Ton/G2 - 1/G. Hence if C < 7o/\Ayo ~~ 1> ̂ en p < 1.

3. Characterizations of weights. By Theorems 1 and 2 we are interested in

the weights w which satisfy (2). Kq n L1 coincides usually with H1 and then (2)

is the following:

(I) There exists a constant p in [0,1) and a function k in H1 such that \w — k\ <

pw.

We will consider the equivalence of (I) and the following:

(II) w = eu+v, where u and v are in L°° and ||v||oo < 7r/2-

For many examples, (I) is equivalent to (II) (see §4).

LEMMA 2. Let w be a nonnegative function and k a function in L1. For a

constant p in [0,1), \w — k\ < pw if and only ifw — eu\k\, where | arg fc(2:)| < n/2 — e

if k(x) / 0 and e > 0, and u is in L°°.

PROOF, (see [l, Proposition 2] for the disc algebra). Suppose \w -k\< pw and

put

( (w(x) - k(x))/pw(x)    if w(x) > 0,
^x) = 1   1 r    í ^     n(.1 if w(x) = 0;

then \n(x)\ < 1, k(x) = pw(x)(l/p - n(x)) if w(x) > 0, and k(x) — 0 if w(x) = 0.

Since 1/p > 1, Re £(2:) > 0 and |argA;(i)| < 7r/2 — e for some e > 0 if k(x) ^ 0.

Put
f   — logp|l/p — i7(x)|    ifw(z)>0,

u(x) = <
K  '      1 0 ifw(x) =0;

then w = eu[k\, and this implies the part of "only if." Conversely suppose w =

eu\k\ and |argfc| < 7r/2 — e. We may assume eu > 1. Hence if w(x) > 0, then

|l-e_uA:(2:)/|fc(2;)|| < p2 < 1 for some p2 G [0,1) because |l-fc(a:)/|fc(a;)| | < pi < 1.

Thus the "if" part follows.
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Let L = L(m) be the set of measurable functions /, such that log+ |/| is inte-

grable. We define a metric in L by setting

d(f, g) = inf [t + m({x G X; \f(x) - g(x)\ > t})}

+ f | log+ l/l -log+M | dm.
Jx

With the metric d, L becomes a complete metric space. The Hardy algebra H =

H(m) is the closure of A in L(m). H contains each of Hp, 0 < p < oo. In many

examples (see §4), H n Lp = Hp and the following is valid:

(3) If / is a function in H1 such that Re / > 0, then 1// belongs to H.

LEMMA 3. Suppose H1 has the property (3). If f is a function in H1 and

Re/ > 0, then Log/ belongs to H f] L1, where Log 2 is the principal branch of the

logarithm.

PROOF, (see [2, Theorem 12 and 10, Proposition 5] for NT = {m}). By property

(3), l/(/ + e) G H n L°° and Re(l// + e) > 0 for any e > 0. Using a Taylor series

expansion,

Log(l// + e) = log |1// + e\ + i arg(l// + e)

belongs to H n L°°. Now, for every x, Log(l//(x) + e) —> Log(l//(x)) as e —► 0.

Further |arg(l//(2;) + e\ < tt/2 and as e -* 0, log|l//(x) + e\ -> log|l//(x)[.

log|l//(2;) +e\ G L1 and, by property (3), log|l//(x)| G L1.   Given e0 > 0 for

0 < e < eo, we have

| log \l/f(x) + e\<\ log |l//(x)| | + | log \l/f(x) + e0\ \.

Applying Lebesgue's dominated convergence theorem we see that Log(l// + e) —+

Log(l//) in L1 as e —► 0 and hence Log(l//) is in H (~l L1.

THEOREM 3. Suppose H n L1 = H1. Let w be a nonnegative function in L ;

then the following are valid.

(i) If w satisfies (II), then w satisfies (I).

(II) Suppose H1 has the property (3). If w satisfies (I), then w satisfies (II).

PROOF, (i) Since v in (II) is in L°°, v—iv G H1, and there exist vn—ivn G A such

that vn -> v in L1 and vn -* vn a.e. By Lemma 2.4 in [3, p. 123], ep~iv G H n L1.

Set k = ec~lv; then by the hypothesis A; G H1, w = eu\k\ and |argfc| < 7r/2 - e for

some e > 0. Now Lemma 2 implies (I).

(ii) By Lemma 2, w = eu|fc|, where | arg fc(a;)| < 7r/2 — e if k(x) ^ 0 and e > 0,

and u is in L°°. By Lemma 3, Logfc = v — iv G H1, v(x) = argfc(2:) and so |fc| = ev.

This implies (II).

4. The finite-dimensional case. Suppose NT is finite dimensional and m is a

core point of NT. Let N°° be the real annihilator of A in L% and N™ = N^+iN00

(cf. [3, p. 109]). Suppose N°° C C(X). Then K0 = Aq + N™ and hence K^nL1 =

H1 by [3, p. 106].

THEOREM 4. Let w be a nonnegative function in L1. Then ¿Pf is uniformly

bounded in L2(w) with respect to v in I? = exp N°° if and only if w = eu+v, where

u and v are in L°° and ||u||oo < 7r/2-

PROOF. By [3, V, Theorem 4.2], i/nL1 =H1. By the argument of A. Devinatz

in [2] H1 has property (3). For if / G H1 and Re/ > 0, then, by [3, V, Lemma
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2.4], etf G HflL00 = H°° for t < 0. By the proof of [2, Lemma 4], l/(f + e) G H°°

for any e > 0. By the proof of [2, Theorem 12], we can show that log |/| G L1 and

oo < log   / / dm = sup / log l/l dp,
\J  ' vesJves.

where S is the set of logmodular measures in NT. By [3, V, Theorem 5.2], /-1

belongs to H. By Theorem 3, (I) and (II) are equivalent. Now Theorem 2 and the

remark above implies the theorem.

If dim NT = 0, Theorem 4 is due to Y. Ohno [10], A. Devinatz [2], and 1.1. Hirsch-

man, Jr. and R. Rochberg [5].

5. Concrete examples in which (I) and (II) are equivalent. In the disc

algebra, Kq C\ L1 = Hl, (I) and (II) are equivalent. We shall give examples in

which these are valid.

(i) Let F be a compact subset of the plane whose complement has a finite number

of components and let R(Y) be the uniform closure of the rational functions in

C(Y). Let A be the restriction of R(Y) to its Shilov boundary X; then Ma = Y.

If r G Ma is in the interior of Y (we assume it is nonempty) and m is harmonic

measure, then m is a unique logmodular measure of NT and dim NT = n < oo [3,

p. 116]. Then N°° C C(X). Theorem 4 applies to this situation.

(ii) Let A be a subalgebra of the disc algebra which contains the constants and

which has finite codimension. If r(/) = /(0) for / in A and m is the normalized

Lebesgue measure on the unit circle T, then NT is finite dimensional, m is a core

point of NT, N°° C C(X). Theorem 4 applies to this situation.

(iii) The unit polydisc Un and the torus Tn are cartesian products of n copies

of the unit disc U and of the unit circle T, respectively. A(Un) is the class of all

continuous complex functions on the closure U of Un with holomorphic restriction

to Un is holomorphic there. Let A = A(Un)\X and X = Tn. This is the so-called

polydisc algebra. For simplicity we assume n — 2. Let m be the normalized

Lebesgue measure; then m is a representing measure for r on T2 where r(f) = /(0)

and 0 G U2. Then K0 = {/ G C(T2); f(n,m) = 0 for (-n, -m) in Z%} where Z\

denotes the set of all pairs (n, m) of nonnegative integers n and m. Kq C\Ll — Hl

and H1 has property (3). For if / is a function in H1 such that Re/ > 0, then by

[11, Theorems 4.4.6 and 4.4.9], / is outer; that is, log |/(0)| = fT2 log |/| dm. Then

1// is analytic on U" and 1// belongs to H (see [11, Theorems 3.3.5 and 3.3.6]).

I am very grateful to the referee who improved the exposition in the first draft

of this paper.
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