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Abstract

WEIGHTED NORM INEQUALITIES

FOR AVERAGING OPERATORS
OF MONOTONE FUNCTIONS

C .J . NEUGEBAUER

We prove weighted norm inequalities for the averaging operator Af(x) =

l fs

J

	

f of monotone functions .
x

o

1 . Introduction

This paper is concerned with weighted Hardy type inequalities of the form

f°°(1 fx f)Pw(x)dx <
c J oo

f(x)Pv(x)dx .
o x o

	

0

Muckenhoupt [6] has given necessary and sufficient conditions for (*) to hold
for arbitrary f.

In their paper [1] Ariño and Muckenhoupt studied the problem when the
Hardy-Littlewood maximal operator is bounded on Lorentz spaces and observed
that this leads to the study of (*) for non-increasing f . There are more weights
in this case than for general f [1] . They solved the problem for w = v by the

00 r P

	

r
condition BP , Le ., w E BP if and only if

	

-) w(x)dx <_ cf w(x)dx,
fr x

	

o
r > 0. The proof is rather lengthy and first establishes that BP implies BP_E
(Lemma 2.1 of [1]) .
The purpose of this paper is
(i) to give a much shorter proof of a somewhat more general version of (*)

without BP implies BP_E ,
(ii) to prove then BP implies BP_E using an iterated version of (*),

(iii) to investigate the reverse inequalities
00

	

00 1 x
f (x)Pw(x)dx < cf

	

(-1 f f)Pv(x)dx,
o

	

o x o

(iv) to study the same questions for non-decreasing functions, and finally
(v) to present some properties of BPweights suggested by the analogous

properties of Ap-weights as, e.g . the A1

	

A1-P factorization of an AP
weight [3] .
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We point out that the double weight inequality (*) has been characterized in
a recent paper by E . Sawyer [7] for non-increasing functions with the q-norm
of the averaging operator on the left and the p-norm on the right . It is also
possible to prove some of our results by the methods developed in the paper
by D.W. Boyd [2] .
Throughout the paper we shall use the following notation . The symbol f T

(f f,) means f : R+ --> R+ non-decreasing (non-increasing) . For f J, we define
f-1 (t) = inf{T : f(T) <_ t} with an analogous statement for f T. In proving
(*) for monotone functions we may restrict ourselves to homeomorphisms since
a general monotone function can be approximated by homeomorphisms. For
0 < r < oo, let x,(x) = x[0,r](x) and x''(x) = x[T, .)(x). By a weight w we
mean any measurable w : R+ -> R+ .

2. Non-increasing functions

x
For the norm inequalities for the averaging operator Af(x) = 1

	

f we
x o

need the following lemma .

Lemma 2.1 . Let cp J, and let W be a weight . Then

XWW(x)W (x)dx dy =

	

0

	

cp-1 (x)W (x)dx
00

	

00

0 0

P~

	

~xw(Y) (x)

	

I

P(y)

	

W(x)dx dy
0 o

	

x

_
f"o

	

-
J x

cp -1 (u)d(J) - cp-1(x) )W(x)dx.
{ o

Proof. (i) We interchange the order of integration and get

00 w-1(x)

	

o0

W(x)dy dx = f

	

cp-1 (x)W(x)dx.
0 0

	

0

(ii) The left side is, after interchanging the order of integration,

and the inner integral in y is

low

	

wf_, (x) W(P ) (~P(y)) Pdy dx

f
00

	

p

(;o(y))Pdy = f
x

~p-1 (t 1/P)dt - xPCp-1(x)
w 7(x)

	

o
x

= j cp-1 (u)d(uP) - xPCp-1(x) .
0
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This can be seen by comparing areas of the regions under the curve t = (cw(y))P
or y = cp-I(tl/P) .

Definition. For 1 <_ p < oo and n a positive integer we write (w, v) E B(p, n)
if and only if there is 0 < c < oo such that for every choice 0 < rI, r2, , r�, <
oo,

n

	

l

lo

	

(xrj(X)
+

Xrj
(x)
(!
x
)') }w(x)dx

nn l

c~ {~Xr
;(x))v(x)dx.

o I1

Remark. (i) In case w = v, we simply write w E B(p, n) .
r oo P

	

r
(ii) If n = 1, then (w, v) E B(p,1) means

	

w+~

	

(
i,
-) w(x)dx <_ c

	

v,
lo r x

	

fo
r > 0. Hence, if v = w, we get the equivalent condition

introduced in [1] as BP.

00

r P

	

r
-~ w(x)dx < c

o
w

r x

(iii) The smallest c in the above expressions will be referred to as the BP(w)-
constant of w or the B(p, n)-constant of (w, v) .

(iv) If we let r,, -> oo we see that B(p, n) C B(p,n - 1) .

Theorem 2.2 .

	

Let 1 < p < oo and let fi 1, j ='1, - - - , n .

	

Then

~x
f; I P }w(x)dx <

cJ , {

j
~ f;(J

	

)v(x)dx
1

	

=l

if and only if (w, v) E B(p, n) with c equal to the B(p, n)-constant of (w, v) .

Proof.. If fj

	

= Xr;, j = 1, - - - , n, then the norm inequality easily gives
(w, v) E B(p, n) . We do the converse for n = 2 ; the general case is obtained by
repeating the argument .

Let cpj J,, j = 1, 2, and let rj = cpj (yj ), where 0 < YI, y2 < oo .

	

We next
integrate the condition B(p, n) over {(YI, y2) : yl, y2 > 0} and obtain

L -~~ ~~ ~~ 01 (X, yI) 2(x, y2)w(x)dxdyI dy2
0 0 0

<
00 00 00

c
fo

	

fo

	

0

	

Xw1(Y1)(x)Xw2(Y1)(x) v(x) dxdyl dy2 = R,
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where Oj (x, yj) = X;,; (yj) (x) +
Xws (yj) (x ) ( E~~

	

. By Lemma 2.1,
)

f'f'wl 1(x)Xwz(Yz) (x)v(x)dx dy2

=100 w1 1 (x)w2 1 (x)v(x)dx.

The inner 2 integrals of L can be written as

wl (Y1)
2(x, y2)w(x)dx dy 1

+f

	

02(x,y2)C
w1(y1) ¡ Pw(x)dxdyl=I1+I2.

f0 00 P (Y1)

	

x

By (i) of Lemma 2.1 with W = zk2w, I1 = f~cpl1 (x)02(x, y2)w(x)dx.
0

Similarly, by (ii) of Lemma 2 .1,

I2 = f{ P f

x

~1 1 (u)d(u P) - 1
1
(x)}02(x,y2)w(x)dx .

00 1 x
Hence I1+I2 =

	

x

	

cpi1 (u)d(uP)}1Ú2(x ;y2)w(x)dx . We integraethis
expression in y2 and repeat the argument to get

L = f~~XP fxw11(76)d(1I,P)}{~ fx ~P2 1 (u)d(uP)}w(x)dx .

We thus obtain

f

	

~xfxW11(u)d(uP) }{x fxcp21(u)d(uP)}w(x)dx

cf

w

W1 1 (x)W2 1 (x)v(x)dx.
0

We remark here that the constant c is the same as the c in B(p, 2) .

)

P-1
We'now let cp

i
1 (u) = fj (u)

	

1 f

	

fi

	

, j = 1, 2, and observe thatu o

x

	

x u P-1

x f ~G;1 (u)d(uP) =px
f

fj (u)
(f fjl

	

du



if and only if (w, v) E B(1, n) .

WEIGHTED NORM INEQUALITIES

	

433

This completes the proof of Theorem 2.2 .
Remark. It may be of interest to point out that there is an easy condition

for equality in Theorem 2.2 . Let

(i) f

	

Afpw =
f

	

fAfp-,v,
0

	

0

(ii) v(t) = Pe- 1 f
W

w(x) dx .t xP
If (i) holds for f J., then (ü) follows . Simply let f = Xt and differentiate the

t

	

¡t

	

¡ t P
resulting equation % v =

J

	

w+ J

	

w(x)dx . Conversely, if (ii) holds,
0 o t x

then (i) is valid for any f : IFB+ - IEB + . This can be seen by replacing v in (i)
by (ii) and then integrating by parts .
We state the special case p = 1 of Theorem 2.2 as

Corollary 2 .3 .

	

If fj 1, j = 1, * * * , n, then

1,

	

n

	

Ixfj/

}W(X)dX
<
cf

	

fi(X) }v(x)dx

The case w = v of Theorem 2.2 yields as a special case the Ariño-
Muckenhoupt weighted norm inequality for non-increasing functions [1] .

Corollary 2.4 . Let 1 < p < oo and fj f., j = 1, - - - , n.

	

Then

j
)
p }w(x)dx < C

J

	

~~~ j x) p }w(x)dx

if and only if w E B(p,n) .

Proof. The necessity follows from fj = x,,, and for the sufilciency we
Theorem 2.2 and use Hñlder's inequality to obtain

fj~
~CxJxfj)P-1w(x)dx

j=1 j=1

fw

	

PW}IMP

l

F

~jll Cx

fx fj \ P} w } 1~P .

Divide by the last factor to obtain the norm inequality .

apply

Remark . (i) For a single weight the conditions B(p, n) and Bp are equiv-
alent, Le ., w E B(p, n) iff w E Bp.

	

Since the implication B(p, n) C BP was
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already observed in (iv) of the previous remark, we only need to show that
BP C B(p, n) . It is clear that if u 1 and w E BP , then uw E B.. Let now f9 1.,
j = 1, 2, and let w E B.. Then Af2(x)Pw(x) E B., and hence

1000
AfiAf2w < cfm fiAf2w .

0

Since fiw E BP , we can continue this inequality < clw fif2w, Le ., w E
o

B(p, 2) .
(ii) Results related to the above Corollaries can also be found in [2] .
We will now show that an iterated version of Corollary 2.4 provides a short

proof ofBP implies BP_E , the basic Lemma in [1] . Similar ideas for the Hardy-
Littlewood maximal operator and the "AP implies AP_E " case can be found in
[4],[5] .

Theorem 2.5 . Let 1 <_ p < oo and let w E B(p, l) .

	

Then there is e > 0
such that w E B(p - e, l)

Proof. Fix r > 0 and let f = X, IfAnf(x) is the n-times iterated averaging
x

operator, Le ., Aof(x) = f(x), Al f(x) = -1 f

	

f,

	

, then for n >_ 1,
0

1, 0<x<r

Anf(x) _

	

r
1: 1 logi

	

x
x j! (rj=o

Since w E B(p, l) we have from Corollary 2.4,

For x > r,

in our norm inequality and get

J

	

Anf(x)Pw(x)dx _< cn f

	

f(x)Pw(x)dx
f0

	

0

= c~

	

pr
w(x)dx .

J0

Anf\x)P=
(x)PC~j~1°~

(x»Pr

(
x
r)p

C

	

j~
log~

(x»
>_

(xr)p(n

	

logra-1

where the next to the last inequality follows since > 1 . We substitute this

~~ (r)
P

(n
1 l)

!
logra-1

	

r

	

w(x)dx < cn
Ir

w(x)dx.
r



Let s > c. Then

or

jw

x

P
(r)

Le. w E BCp-
s,1)

.
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~ ~
lo

-g-!'

	

n-I

w(x)dx < C Ir w(x)dx
(n-1)! s

	

o

~ (r)P-lls

	

r

w(x)dx < C~ w(x)dx,
r

3. The case n = 1 and reverse inequalities

We begin by asking for which averaging operator is (w, v) E B(p, 1) a neces-
sary and sufficient condition for a weighted norm ineqúality. The case p = 1 is

x

handled by Corollary 2.3 with Af(x) = 1

	

f. For 1 < p < oo we define
x -fo

if and only if (w, v) E B(p,1) .

holds for f 1.

AJ(x) _ {

	

fx f(u)Pd(uP ) }

1/P

0

Theorem 3 .1 . If f 1 and 1 < p< oo, then

0f

	

APf(x)Pw(x)dx < c
f

	

f(x)Pv(x)dx
0

Proof.. The necessity follows by taking f = x,

For the sufficiency simply let cp-1 (u) =f(u)P in the proof of Theorem 2.2 .

We will now characterize the weights (w, v) for which the reverse inequality

.f

	

f(x)Pw(x)dx < c
J

	( 1
J
x

f Pv(x)dx
0

	

o x o

Theorem 3 .2 . Let f 1 and 1 < p < oo . Then

o00
f(x)Pw(x)dx <

cf

~
(1 J

x
f)Pv(x)dx

0

	

o x o
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Ir

	

T

	

00
%. P

if and only if

	

w<_ c(I v+

	

(-) v(x)dx), r > 0, with the same c.
o T x

Proof. The necessity follows with f = XT . For the sufficiency, let ep J, and let
r = W(y) . Then as in the proof of Theorem 2.2,

and

w(Y)

w
F00 0

(x)dxdy = f

	

cp-1 (x)w(x

f

	)dx

00

	

W(Y)
v(x)dx dy +fl' w(

p
) (,p(y))pdx dy

o o

	

o w(Y) x

_ f00cp-1(x)v(x)dx+f1f'w-1(u)d(uP)v(x)dx
o

	

o xP
0-0

f-

	

p
-1 (x)v(x)dx =fx f.~w-1(u)d(uP)v(x)dx.

u P-1
We let now w-1(u) = f(u)

	

1

	

f

	

and obtain
u f0()

1 P-1

	

1 x p
f(x) ~-

	

f
l

	

w(x)dx < c

	

~-

	

f

	

v(x)dx .
o

	

x o/

	

o x o

We complete the proof by noting that -1 f f > f(x) since f J, .
0

We will now characterize the single weights, Le ., w = v, for which the above
reverse inequality holds for a given 0 < c < 1 .

Theorem 3.3 .

	

The following statements are equivalent for f J,, 0 < c < 1,
1 < p < oc, and w E L¡,(R+) .

(1) ~~ fpw < cf

	

AfPw
0

	

0

(2) BP'My
1-p

)) < 1 c c .

Proof.. (1) ~ (2) . If f = XT we get

We let x = y'-P' and get

fr

	

T

	

00
%. p

	

\
w<c(f w+~

	

(x) w(x)dxI .

T

	

pp

10
w(x)dx = (p - 1) f1-p w(y1-P) yP ,

1-p
rP f

'
w(x) dx = (p - 1)rP

f

T

	

w(y1-P )dy.
T xP

	

o



Hence

Let y = x1-P. Then, again

P
We add 1 c c f w to both sides and get

0

Apply now Theorem 3.2 .

¡r
if and only if

J

	

(
2
-)

P
w(x)dx < c

r
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00

	

rl- n
(1 - c) (P1 - 1) Irl-p

w(yI-P ) yP ~ c(p - 1)rP ~

	

w(y1-P )dy .

If we set p = rI-P, then rP = pr, and (2) follows .

(2) - (1) . We have

~~ (y) P
w(y

i-P
)dy

C 1 c c Jor
w(y1-P )dy.

f (y) P
w(yi-P

)dy =
rP (p - 1) frl-p w(x)dx

r

f
r
w(y1-P )dy = (p - 1) f

	

w(x) dx .
0

	

r1 P, xP

Thus, with p = rl-P we get

w(x)dx < 1 c c

	

(x)pw(x)dx .
o

	

fp

fPw< c (f P
w + f

	

(

	

) P w(x)dx) .

Remark . . (2) of Theorem 3.3 reminds one of the duality w E AP iff wl-P E
AP, .

4. Non-decreasing functions

We will not dwell on the straightforward results of f T that one gets from

our previous results via the change of variables x -+ 1. In particular we have
x

Theorem 4.1 . If f T and 1 < p < oo, then
00

(x
f' f(u) d2)Pw(x)dx <

cf
f(x)Pw(x)dx

o x u

	

o

w(x)dx, r > 0 .

¡x
In order to see what type of results one has for the averaging operator 1

x

	

oJ
f

for f 1 we need a lemma similar to Lemma 2.1 .
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as

Lemma 4.2 . Let cp T with W(0) = 0, and let W be a weight . Then

f00 fw x9(Y)
(x)W (x)dx dy =lw cp-1 (x)W (x)dx

0 0

	

0

f00lwxw(Y) (x)
(x

- W(Y) )PW(x)dx dy
0 o

	

x

=f' {- fx cp-1 (x - u)d(uP)}W(x)dx.
1JJ

Proof. For (i) we simply interchange the order of integration . The left side

J ~

l.9-1(x)
of (ü) is

	

J

	

W(x
) (x - cp(y))pdy dx and the inner integral is the same

lo o

xP
cp-1(x - t1IP)dt = fx cp-1 (x - u)d(uP),

Jo0

	

0

as can be seen by interpreting the integral as area under t = (x - cP(y))P.

Definition. Let n be a positive integer and 1 <_ p < oc ., We say that
(w, v) E C(p, n) if and only if there is 0 < c < oo such that for every choice
0 < rl, r2, ' . . , r, < oo,

n l

	

n

f000

	

xTi (x) }w(x)dx < C~~

	

xri (x)
(x x r-T

v(x)dx .
j=1

	

j=1

Theorem 4 .3 .

	

Let fj T, j = 1, - - - , n .

	

Then

lo
~

	

fj(x)~w(x)dx <_
c1,

	

fxfJ/
}V(X)dX

if and only if (w, v) E C(1, n) .

Proof.. The necessity follows by taking fj =xri . As in Theorem 2.2 we prove
the converse for n = 2 ; the general case is obtained by repeating the argument .
We let Wj 1, ;oj (0) = 0, and rj = Wj (yj), j = 1, 2, where 0 < y1, y2 < oo . We
next integrate the C(1, n) condition over all such (y1, y2) and obtain

L =_

fow fow fo0,>
x91(Y1)(x)xw2(Y2)(x)w(x)dxdyl dy2

V)1(x,yl)IP2(x,y2)v(x)dx dy1 dy2 = R,
0 0 0



where zp, (x, yj) = xwj (yj) (x)

	

x

	

Pj (ya)

	

. By (i) of Lemma 4.2,
)

and by (ii) with p = 1,

result by letting n -> oo .

if and only if (w, v) E C(1, n) .

HSlder's inequality

controls the averaging operator
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L =f

	

cp21(x),pi 1(x)w(x)dx,
0

R =

	

0
~ ~x

j`c pl~
__

	

1) Cx Jox
W2 1) v(x)dx.

FVom this we get the theorem by letting W_,-. 1 (t) = fi(t) if fj (0) = 0 . Oth-

erwise, let en(x) = nx, if 0 < x <_ 1, and en(x) = 1, x > 1 . If (P., ñ (t) _

en (t)fj(t), then we get the weighted norm inequality for Enfn and the final

Corollary 4.4 . Let f T and n a positive integer. Then

f

	

f(x)nw(x)dx <
cJ ,

C

1

	

px
f) nv(x)dx

0

	

o xJo

Proof.. If (w, v) E C(1, n), then the inequality follows from Theorem 4.3 by
n

letting f1 = f2 =

	

= fn . Conversely, let f =

	

X''. Then f = fn and by
I .

Ix

	

n

n <

	

Ix

xr
j
) _

	

xr' (x)

	

x
x
r7

Remark. We were unable to find a characterization of

f

	

f(x)Pw(x)dx < c
o
~~ (1

rx
f) Pv(x)dx

o

	

x Jo

for f T and p not a positive integer . However, as we shall see, (w, v) E C(p,1)

x

A,f(x) = xj f(x - u)d(uP).

We observe that, when p is a positive integer, then

	

ox
f(x - u)d(uP) is, apart

J0
from a multiplicative constant, the p-times iterated integral of f .
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Theorem 4.5 . Let f T and 1 < p < oo . Then
ao

	

P
(i) f

	

Apf(x)w(x)dx <_ c

	

f(x)v(x)dx if and only if f

	

(x
-r) w(x)

0

	

o

	

r x
dx < c

J
	v(x)dx, r> 0.

r
¡

	

ao
(ii) ff(x)w(x)dx < c

J
	A pf(x)v(x)dx if and only if

	

w(x)dx <
¡00 0

	

- 0

	

r

	

-x
x

r)p
)Pv(x)dx, r > 0, i.e ., (w, v) E C(p, l) .

r

Proof. (i) For the necessity let f = Xr . To prove the sufhciency, let cW T,
cp(0) = 0, and r = cp(y), 0 < y < oo . Then

L -

	

ce

	

00 w(P) (x_

	

-w(y))pdx dy <
cJ

00

	

~ v(x)dxdy =R.
f(y)

	

x

	

o

	

w(Y)

By Lemma 4.2, R = fw cp-1 (x)v(x)dx and
0

L

	

P f ~ cp-1(x - u)d(uP))w(x)dx .

The proof can be completed by letting cp-1 (x) = f(x) if f (0) = 0; otherwise
let cp-1 (x) = e� (x) f(x) as in the proof of Theorem 4.3 .
The proof of (ii) is the same as the one for (i) .

5 . More properties of weights

We begin with a "change of variables" result for Bp-weights .

Theorem 5.1 . . If 1 < q < p < oo and w E Bq, then w (x') E Bp.

fProof. We set Ir =

	

w(r)pw (x~) dx and let u = xa, a= p

	

i . Then
r

	

q -
~

I

	

T P i
ar = cf

	

(i/«) w(u)U

	

a
du

r. u

We observe that (p + a - 1)/a = q and so

ir
=
1,)

~

	

v,

	

q
w(u)du . TP-aq.

(



since a > 1 .

WEIGHTED NORM INEQUALITIES

	

441

Since w E B9 and p - e q = q - p < 0, we see that
q-1

Ir <_ cr~

	

rr°
w(u)du = cr1-`Y

pr
w(xa)xa-ldx

J

	

0Jo

< c
J

r w(xa)dx . "
0

The case q = 1 yields a slightly stronger result which we state as

Theorem 5.2 . If w E BI and ce > 1, then w(xa) E BI with BI(w) _
Bl(w(x")) .

Proof.. If Ir = f~ (r) w(x« )dx and u = xa, then
r x

00

	

1-~ ~ a
ir =

a

	

(u~a ) w(u)ul
/_

-l du =
r
a

	

~~

	

) w(u)du
ra

	

r

< crl-a

	

pr
w(x")x"-I dx < c

pr
w(xa)dx,J

	

0J0

The next result reminds one of the important A,-property, Le., w E Ap -~
wT E Ap for some T > 1 .

Theorem 5.3 . If w E Bp , then there is E > 0 such that x'w(x1+`) E Bp .

Proof.. Choose E > 0 so that w EBpIl+E (Theorem 2.5), and note that

p_r p x, w(xi+E)dx =

	

1

	

'

	

pll+E
w(u)du

x

	

1 + E

	

r1+ E UP/ 1+1

00 I+E PII+E

	

1+e

Cr

	

w(u)du <

	

c
+ E f00.

	

u

	

1 + E 0

~, 1+ e

Corollary 5 .4 . If w E Bp , then there is E > 0 such that w(xI+E) E Bp .

We are now ready to present a factorization theorem for B,-weights similar
to the factorization of w E Ap as w = uvI-p , u, v E Al .
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Theorem 5 .5 . The following statements are equivalent for 1 < p < oo .
(1)weBp

(2) w(x) = u(x) - xP-1 with u(xl/P) E B1 .

I/P
Proof. (1) --, (2) . All we need to show is that w(~/P,) - u(x1/P ) is in B1,

and this follows from

/p

	

lar
= c

	

~

	

rl
)
P w(t)dt <_ c

pr

	

w(t)dt = c

	

,"r
w(tl/P)/tl/Pdt .~

r lI p (

	

t

	

J0

	

J0

"restricted" .

r 1(1(x1/P) = cl-

	

r

	

_w(t) tp-ldt
r

(x) x1/P

	

r l/ p (tp) tP/w

This is simply

r)Pu(x)xv-1dx = 1 f00 ( r ) P u(tl/P)dt
r x

	

p rp tl/p
P

	

n

u(tl/P)dt <
p

, "r
u(tl/P)dt =

p
rp

( t

cJ

apr
u(x)xP-1dx .

Remark. By Theorem 5.2, if u(xl/P) E B l, then u(x) E B1 . Thus (2) can

C
1\

1-p
be written as w = u ~

	

x

	

, with u E B1 . It is also clear that 1
~ E B1 .

6. Weak type weights

We say that w E Rp iff w{AX, > y} < c
ir

w, r > 0, and we say that_
yp Jo

00

w E Wp iff for f J,, w{Af > y} <
c f fPw .

	

The "R" in Rp stands foryp

We will study relationships among RP , Wp, and Bp, and give a characteriza-
tion ofBp .

Theorem 6 .1 . w E Rp iff there is 0 < c < oo so that for 0 < r < s < oo,

1
0

	

P 0

a 1 r

w<cr f w.
P



Proof: First assume that w E R..

	

The set {AXr > y} = (0, xo), where
rly

	

r
T
= y, 0 < y < 1 . Hence

	

w <_ ~

	

wfrom which
xo

	

o

	

yp o

Proof- From Theorem 6.1, for s > r,

Hence
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1 s C r
w< c

	

w, s=
T
->r.

s P 0

	

rP 0

	

y

Conversely, for 0 < y < 1, with the same notation as above,
x°

	

1 ( T p

	

x°
w{AXr > y} =

	

w =
o

	

yp xo 0
C r

< w.- yp 0

The next result shows how RP and B9 are related .

Theorem 6.2 . If w E Rp , then w E Bq for q > p.

(r) Pfs w <_ c

	

w.
0 fo

r/t

	

r
Let t =

r . Then tP f

	

w <_ c f w, or, if 0 < e < 1,
s

	

o

	

0

r/t

	

r
tp-E

	

w < ct-E

	

w,
0

fo

We interchange the order of integration and see that

0<t<1.

I r/t

	

r
L =- 1 tP-E ~

	

w(x)dxdt < cE

	

w.
lo

¡
L >

	

0

	

pr/x
w(x)tP-Edtdx =

e J 00
w(x)( r-)P+I-Edx .

- r Jo

	

r

	

x

Thus w EBq , q = p + 1 - e .

Example. Let w(x) = x . Then w E R2 but not in W2 and thus not in

B2 .

	

For let f(x) = x l
g z

. X1(x) .

	

Then w{Af > y} = oo, but

	

f2w =

I/e dx

fo

	

x log2 1 < oo .
x

We will now show that the condition of Theorem 6.1 which characterizes Rp
will, if slightly modified, characterize Bp . We begin with
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Lemma 6.3 . Assume there exists 1 < a < oo and 0 < c = ca < 1 such thatfax

	

fx
w<c-

	

w,x>0. ThenwcBP .(ax)P 0 _ xP

Proo£ For 0 < N < oo, let WN = WXN . Then WN satisfies the same hypoth-
esis as w with a constant c = max(ca , l/aP) < 1 .

We have then aPxP+1 f
ax
WN <

	

P+1 f
x
WN . Hence for 0 < r < oo fixed,

o

	

- XP+1

or

L - - f
'
xP+l fax WN (t)dtdx _< cf-

	

1

	

f x WN (t)dtdx - R.
r

	

o

	

r

	

o
We interchange the order of integration and see that

L >_

	

f

	

,~

	

wN(t)
xP+1 dt = 1 f

	

w
t(t) dt ~ar t~a

	

p ar
~r °°

	

dx

	

°° ¡°°

	

dxR _
- c{Jo ,~

	

WN(t) xP+1 dt + f

	

J

	

wN (t) xP+1 dt}

= c{
1 fr wN(t) + 1 f°° WN(t) dt}

.

p o rP

	

pJr

	

tP

The last integral
f

	

wtP(t) dt =
(fa,

+
f,) wtP(t) dt <

rP
far

wN(t)dt+f0o
WN (t) dt . Hence R <_ c{ 1f

ar
WN (t )

dt + 1 f oo
WN (t) dt} .

ar tP

	

p 0

	

rP

	

p r tP
From this we obtain,

1 (1 - c) f

	

ww(t) dt < ~ farWN(t)dt
p

	

ar tP

	

prP o

.~~

	

t)Pw,(t)dt< 1P
-

.
C
p forWN(t)dt .

We complete the proof by letting N --+ oo .

Theorem 6.4 . Assume that w E L¡jR+) .

	

Then w E BP iff 0 < e < 1
implies the existente of a, > 1 such that for x > 0,

ax

	

x

axP f

	

wGE2 f w,

	

a > a,.
0

	

0
Proo£ By Lemma 6.3 we only need to prove the necessity . By Theorem 2.5,

there is il > 0 such that w E BP_ .o . Thus for a > 1,
1 ax

	

1 ¡'ax
a 17pxp

	

_f0 w _ ax JO w 1

fow

	

xP
l nnfow . Ca)

Since w E BP_n C RP_,7, by Theorem 6.1 the first factor <_ c and the proof is
complete .
As an application of Theorem 6. 4 we will prove



xp ~ar
w<Ew=CW(x),0<x<(

ar
)p fo

x

and

and so W E Bp+1.
For the general case, since
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Theorem 6.5 . Let w E Bp and W(x) =

	

ox
w.

	

Then for 0 < a < oo,J0
Wa E B«p+1.

Proof. We do a = 1 first . Let 0 < e <
p
+ 1 . Then for a > a E > 1 we have

1 fax
=W«_lw

ap«

r . Thus

r xp lar

	

fr
L -- 1 (

	

)

	

w< e

	

W(x)dx,ar p

p+1
L

	

(p+ 1) (ar)PW(ar) = (p+ 1)
ap

1 (ar)W(ar)

>

	

1

	

1

	

¡ar
Wp + 1 ap+1 Jo

¡x
W«(x) = a

J
W«-1w,

0

we only need to vi erify that W«-1w E B«p . For some 0 < c < 1 and a > 1 we
have

a
a,p«W«(ax) < ~cW«(x)

W«-1w.

7 . The equality WP = Bp

In this final section we will prove that Wp ='B, for 1 < p < oo, a situation
quite analogous to the Ap-case . I am indebted to Richard Bagby for the original
proof of this property. We will present a somewhat simplified version based on
some of our previous results . For the definitions of Rp , Wp see,the beginning
of section 6 .

Lemma 7.1 . Let w E Rp, 0 < a < oo, and 1 < s < oo . Then

J

.as

	

W(u)du < c(1 + log s)
a
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Proo£ We know that by Theorem 6.1,

1
Hence L -

	

tp+11
gration and get

Hence

since w E Rp.

If y = 1 + log s , we get
S

by Lemma 7.1 . Thus

1
sp

1
tp f

ota

C .J . NEUGEBAUER

w<c
J

a
w, t>1.

0

	

0

w <_ c log s
,/ a

w. We interchange the order of inte-
0

	

0

pas ps

	

dt

	

1 fa.

	

a p - 1
L >

	

w(u) tP+i du =

	

w(u)

	

(u)

	

Sp

	

du.
a

	

p a

1 as
w(u) (a)p du < c log .

J

¡°'

	

1 1

	

as
-~

	

w+--~ w
p a

	

u

	

0

	

PSp a
¡ a ¡a

< c log S J

	

w + cJ

	

w,
0

	

0

Theorem 7.2 . Wp = Bp for 1 < p < oo .

Proo£ The inclusion Bp c Wp is obvious, and for the reverse inclusion we
consider for s > 1 the function f(x) = 1, 0 < x < a ; = a/x, a < x < sa ; and

1+logS
= 0, x > sa . Then Af(as) =

	

s

	

. Since w E Wp we have that

1 + log s

	

p

	

as

	

¡a

	

as

	

a

	

p

	

¡a

s

	

) ~

	

w<c(J

	

w+~

	

(a) w(u)du) <c(1+logS) J

	

w

Sa
w < c(1 + log s)1-p

	

a
w.

0

	

0

We choose s so large that c(1 + log s)1-p < 1 and apply Theorem 6.4 .
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