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WEIGHTED NORM INEQUALITIES
FOR AVERAGING OPERATORS
OF MONOTONE FUNCTIONS

C.J. NEUGEBAUER

Abstract

We prove weighted notm inequalities for the averaging operator Af(z) =

A

i .

— / f of monotone functions.

x
o

1. Introduction

This paper is concerned with weighted Hardy type inequalities of the form

(+) f@ m(% /0 " PPw(a)dz < c /G ” f(z)Pu(z)dz.

Muckenhoupt [6] has given necessary and sufficient conditions for {*} to hold
for arbitrary f.

In their paper [1] Arifioc and Muckenhoupt studied the problem when the
Hardy-Littlewood maximal operator is bounded on Lorentz spaces and observed
that this leads to the study of (*} for non-increasing f. There are more weights

in this case than for general f [1]. They solved the problem for w = v by the
oo P

condition By, ie., w € By if and only if / % w{zjdr < c/ﬂ wz)dz,
r > 0. The proof is rather lengthy and ﬁrstrestablishes that B, implies By
(Lemma 2.1 of [1]}. :

The purpose of this paper is

(i} to give a much shorter proof of a somewhat more general version of (+)
without By implies B,
{ii) to prove then B, implies B,_ using an iterated version of (x},
(iil) to investigate the reverse inequalities '

fo " f(2)Puwln)ds < ¢ ﬁ m(% /D * APuln)ds,

(iv) to study the same questions for non-decreasing functions, and finally

{(v) to present some properties of B,-weights suggested by the analogous
properties of A,-weights as, e.g. the A; - Ai_” factorization of an'Ap—
weight [3].
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We point out that the double weight inequality {+) has been characterized in
a recent paper by E. Sawyer [7] for non-increasing functions with the g-norm
of the averaging operator on the left and the p-norm on the right. It is also
possible to prove some of our results by the methods developed in the paper
by D.W. Boyd [2].

Throughout the paper we shall use the following notation. The symbol f T
(f 1) means f: Ry — Ry non-decreasing {non-increasing). For f | we define
FHE) = inf{r : f(7) < £} with an analogous statement for f 1. In proving
{*) for monotone functions we rnay restrict ourselves to hormeomorphisms since
a general monotone function can be approximated by homeomorphisms. For
0 <7 < oo, let xr(x) = Xp,r(x) and X {T) = Xjro0)(T)- By a weight w we
mean any measurable w: Ry — Ry,

2. Non-increasing functions

1 T
For the norm inequalities for the averaging operator Af(z) = o / F we
0

need the following lemma.

Lemma 2.1. Let ¢ | and let W be o weight. Then

o) ]0 ” £ " oty @)W (@)dzdy = ]0 o @)W (z)da

[ [ @22 wisdsay
- [T{2 [ otwdn - o W

TP

(i)

Proof: (i} We interchange the order of integration and get

o qo_lﬁz) o0
/ / Wiz)dydr = / o Yz )W(z)dz.
o Jo 0
{ii) The left side is, after interchanging the order of integration,

[ B2 wwras
o w1z}

x

and the inner integral in y is

-1

[ twtora= [ @ - oo
v {z) 0
- [[o ) - 2767,
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This can be seen by comparing areas of the regions under the curve ¢ = (w{y))?
ory = (V7). &

Definition. For [ € p < oo and n a positive integer we write (w, v} € B{p,n)
if and only if there is 0 < ¢ < oo such that for every choice 0 < ry, 79,4+ ,rn <

o0,
/0‘” { ]_T_[ (Xr,- (z)+ x" (=) (%)p) }w(x)dx
< ‘3]:0 { Ijlxr,- (x)}v(a:)dx.

Remark. (i) In case w = v, we simply write w € B{p,n).

T o0 P r
(ii) If n. = 1, then {w, v} € B{p, 1) means/ w+/ (g—) w(z)dr < c/ v,
0 " Q

r > 0. Hence, if v = w, we get the equivalent condition
« S F f‘
/ (—) w(z)dr < c/ w
r T 0
introduced in [1} as B,.

(iii) The smallest ¢ in the above expressions will be referred to as the By{w)-
constant of w or the B(p, n)-constant of {w, v).

(iv) If we let r, — oo we see that B{p,n) C B(p,n - 1),
Theorem 2.2, Let 1l <p<ocandlet f; |, j=1,--+ ,n. Then
o jid (1 z P ( 00 ﬁ 1 /= p—1 ( )
- f-) }wa:)dxﬁcf { f-(—/ f-) }v:cdx
jo{l;[ﬂ?/nj (}ai:ljxo'T

if and only if {(w,v) € B{p,n) with ¢ equal to the B(p,n)-constant of (w,v).

Proof: If f; = Xr;, 3 = 1,++,n, then the norm inequality easily gives
(w,v) € B(p,n). We do the converse for n = 2; the general case is obtained by
repeating the argument.

Let w; |, 7 = 1,2, and let r; = w;{y;}, where D < 31,42 < oo0. We next
integrate the condition B(p,n) over {{¥1,¥2) : ¥1,¥2 > 0} and obtain

p= [ [ [ vt v()ds du d
0

< c[) [] /0 Xy [yﬂ(x)x‘pz[‘yz) (:c}'u(z)dx dyl dyz = R,
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. 3y = @5 tys) ei{y\’
where ¥;{z,y;) = Xw(w}(z) + x¥1Wii () - By Lemma 2.1,

R= /’00 /°° (pl_l(z)xw(m)(z}v(g;)dz dyo
0 0
= /G oy Hz)ps Hz)v(z)dz.

The inner 2 integrals of L can be written as

oo peilyn)
/ / ha(, y2)w(z)dz dyn
o Jo

+‘[0w ]:) 1&2(%9‘2)(_‘9%2)”1”(3;)@ dyy =1 + I.

1{mn)

By (i) of Lemma 2.1 with W = ypw, I) = f o1 Nz z, v )wiz)dr.
0
Similarly, by (ii) of Lemma 2.1,

TP

n= [ {& [ o' wawn - (p;l(x)}%(z,w)w@)dz,

1

oo = .
Hence h+ 1 = / {; / cpl_l (u}d(up}}zbg(z, y2Yu{z)dz. We integrate this
0 [

expression in y» and repeat the argument to get

= [ [ et {5 [ o fuees

We thus obtain

fom { I—l,, fo ’ oy H(u)d(u?) } { x—lp /0 ’ @y H{w)d{uP) } w{z)dz

<c [ i@ @hlad.

We remark here that the constant ¢ is the same as the ¢ in B(p, 2).

_ 1/ N\
We now let (pj'-'l(u) = fﬂu)(;/ f_?-) +7 =1,2, and observe that
0

» : o7 (w)dtu?) = ps /:fj-(u)(]:fj)”“ldu

[
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This completes the proof of Theorem 2.2. B

Remark. It may be of interest to point out that there is an easy condition
for equality in Theorem 2.2, Let

G [ aru= [ fars,
0 0
(if) v{t) = ptP~? % dz.
t
If (i) holds for f |, then (ii) follows. Simply let f = ¥, and differentiate the

i £ oo P
i
resulting equation] 02/ w+/ (—) w{z}dz. Conversely, if (ii} holds,
0 h) ¢ T

then (i} is valid for any f : Ry — Ry. This can be seen by replacing v in (i)
by (ii) and then integrating by parts.
We state the special casc p = 1 of Theorem 2.2 as

Corollary 2.3. Iff; |, =1, ,n, then

[)oo { I*:I (%/: fj) }w(Z)dx < c./om{jljlfj(x)}v(z)dx

if and only if (w,v) € B{l,n).

The case w = v of Theorern 2.2 vields as a special case the Arifio-
Muckenhoupt weighted norm inequality for non-increasing functions [1].

Corollary 24, Letl<p<coand f; |, 7=1,---,n. Then
[+a] i 1 A r oo ' T
/ { H (—/ fj) }w(:c)dx < c/ { Hfj(z)r’}w(z)dz
o L;5\EJo o L
if and only if w e Blp,n).

Proof: The necessity follows from f; = x,,, and for the sufficiency we apply
Theorem 2.2 and use Hélder's inequality to obtain

[ {Ef;} }jl(é/e fj)p_lw(z)dz

{fAmaf s} G )3

3=1
Divide by the last factor to obtain the norm ineguality. B

Remark. (i) For a single weight the conditions B{p,n) and B, are equiv-
alent, ie, w € B{p,n) iff w € B,. Since the implication B{p,n} C B, was
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aiready observed in (iv) of the previous remark, we only need to show that
B, C B(p,n). It is clear that if u | and w € By, then uw € Bp. Let now f; |,
7=1,2, and let w € B,. Then Afa(x)Pw{z) € By, and hence

[ AfPAfPw < c ] FPAfLw.
i} 0

oo
Since ffw € By, we can continue this inequality < c/ T fw, ie, w €
0
B(p,2).
{ii) Results related to the above Corollaries can also be found in {2].

We will now show that an iterated version of Corollary 2.4 provides a short
proof of B, implies Bp_., the basic Lemma in [1]. Similar ideas for the Hardy-
Littlewood maximal operator and the “A, implies A, " case can be found in

(4],[5].

Theorem 2.5. Let 1 < p < oo and lei w € B(p,1). Then therc s ¢ > 0
such that w € B{p —¢,1}.

Proof: Fixr > 0and let f = x,. If A, f {z) is the n-times iterated averaging

operator, i.e., Agf{z} = f(x), Auf(z) = [ , then for n > 1,
e
1, O0<z<r
Anflz) ={ T
- —1 .
p JZO og’ z>T

Since w € B(p, 1} we have from Corollary 2.4,

fm Anf(zYPwiz)dr < c° fm fxYPw(z)dz
o 0

=" /or wizidz.

wrer- (3 (e 2))
> (& (S50 ()2 () o (B)

n—1
where the next to the last inequality follows since Z > 1. We substitute this
=0

Forz >,

in our norm ineguality and get

O Ry -
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Let s > c. Then

[0 5t (52) e [

frm (%)p_ugw(z)dx < C‘/ﬂrw(z)dz,

1
ie. wEB(p—g,l). ]

or

3. The case n = 1 and reverse inequalities

We begin by asking for which averaging operator is (w,v) € B(p, 1) a neces-
sary and sufficient condition for a weighted norm inequality. The case p=1is

xr
handled by Corollary 2.3 with Af{x) = 1 / f. For 1 < p < oo we define
T Jg

1 % 1/p
A =4 - Pd(uP .
@ ={% [ saraw]
Theorem 3.1. If f | and 1 < p < o0, then
/m A f(z)YPwlx)dr < cfm flz)Fu(z)dz
o 0

if and only if (w,v) € B(p, 1).

Proof: The necessity follows by taking f = x-.

For the sufficiency simply let ¢~ '{u} = f(u)? in the proof of Theorem 2.2.
We will now characterize the weights (w,v) for which the reverse inequality

/Ooo flz)Pwlz)dr < CLOO (—i- [: f) pv(z)d:c

holds for f |. ®

Theorem 3.2, Let f | end 1 < p < vo. Then

/Ooo FflzYPw(z)de < c/:o (-i; foz f) pu(x)dx
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r T oo F
iof and only t‘f/ w < c(f v+/ (g) v(r)dx), v > 0, with the same c.
¢} ¢ T

Proof: The necessity follows with f = x. For the sufficiency, let ¢ | and let
r = {y). Then as in the proof of Theorem 2.2,

/Ow ﬁw(y) w{z)dz dy = fom o~ (@ )w(z)dz

/:o /:w} oo dy + /:‘ L:)%((P(y))mdy

= /om o Mz vlz)dr + /:o I—lp _/: o Mu)d(wP)v(z)dz
—/0 t,o"1(.&:)1;(9:)(;{3:=‘[O 3:_];’/0 o™ Hu)d(wPw(z)dz.

and

U

1 Pt
We let now ¢~ Hu) = f(u}(a / f) and obtain
0

[Cr@(t 1) wewse [T (2 ) oema

} T
We complete the proof by noting that pm / fzflrysince f|. N
0

We will now characterize the single weights, i.e., w = v, for which the above
reverse inequality holds foragiven 80 < e < L.

Theorem 3.3. The following statements are equivalent for f |, 0 < ¢ < 1,
I<p<oo, endwe LY (Ry).

« B QOA P
(I}/O ffw < cfo fPw
’ [
(2) By{wy' 7)) < 1T
Proof: {1} — (2). If f = x, we get
r r te +] T P
./o wSc(fO w+/r (E) w(z)d:r),
We let z = y'~7 and get
T Lo a) R d
J e =60 [ we

1-p

?‘”/ ——wx(:)dx ={p ~ 1)1”1“‘/0 w(yl"”)dy.
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Hence
i-p

(-0 -1 [ e E <o -7 [ w7

1
If we set p=r1"P, then P = 7 and (2) follows.

(2} — (1), We have
] 'P’ T
/ (E) w(y' )y < —— [ w(y' ")y
T Y Q

“1-¢

Let y = z17P. Then, again

©(r\" 1-¢f — P (1 " T
/ (5) W' )y = -1 [ wlod
f wiy' = )dy = (p— 1) f ﬁjf)dz.

o ri-s I

Thus, with p = r1™% we get

_/: wiz)dr < l_iE -/:D (g)pw(x)d:c.

g3
We add —1c—c ] w to both sides and get
—CJo
4 I ad v
/ wﬁc(/ w+/ (E) w{z)dz).
] 0 P Z
Apply now Theorem 3.2. K

Remark.. (2} of Theorem 3.3 reminds one of the duality w € A, iff wl_.”’ €
Apr.

4. Non-decreasing functions

We will not dwell on the straightforward resulis of f 1 that one gets from

. . 1 .
our previous results via the change of variables ¥ — —. In particular we have
oz

Theorem 4.1. If f T and 1 < p < 00, then

[ [ reG) e <e [ soruas

r p Oy
if and only if/ <E> wl(z)dz < c/ wizidz, r > 0.
a e

r

1 X
In order to see what type of results one has for the averaging operator — f f
T Jo

for f T we need a lemma similar to Lemma 2.1,
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Lemma 4.2, Let ¢ | with ¢(0) =0, and let W be a weight. Then

(1) /0 - fo - x? )W (x)dz dy = /0 - o~ Y)W (z)dz

/:) /:o $* @ (x) (qu—)) pW(I)dx dy

L e

Proof: For (i) we simply interchange the order of integration. The left side

oo e Ma) Wiz)
of {ii} is / / ?(:c — p(y})dy dz and the inner integral is the same
¢ Jo

(i)

i “Ux — Py dt = xvlm—u L
fotp( £/7)de /Oso{ (),

as can be seen by interpreting the integral as area under t = {x — p{y})”. B

Definition. Let n be a positive integer and 1 £ p < oc.. We say that
(w,v) € C{p,n) i and only if there is 0 < ¢ < oo such that for every choice
0<ri,ra,--- ,Th <00,

fom {}jlxr’(x)}w(x)dz < Cfem{:];_[lxr’(-’f)(x;rj)pv(z)dm

Theorem 4.3. Let f; 1, i=1,--- ,n» Then

[ {12 5) o

if and only if (w, v} € C(1,n).

Proof: The necessity follows by taking f; = x™. As in Theorem 2.2 we prove
the converse for n = 2; the general case is obtained by repeating the argument.
We let w; 1, 9;(0) =0, and r; = ;(y;}, J = 1,2, where 0 < 41,32 < 00. We
next integrate the C(1,n) conditien over all such {(y;,¥:) and obtain

LE[ / f x# ) (2Y)yw2 v Vw (i )da dy; dys
0o Jo Jo

< c/g /9 /(; D1 (z, Y1 Ynlz, yo )u(z)dz dyy dys = R,
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where ¥;(7,3;) = x» ¥ (z) (u;’(—yjl) By (i) of Lemma 4.2,

L= /0 ” e @er @ w(a)dz,

and by (ii} with p=1,

o0 1 = 1 T
r= | (_f —1)(_/ 'l)vzdx.
o = Jo 1 z Jo P2 (z)
From this we get the theorem by letting tpj_l(t) = f;() if £;(0) = 0. Oth-

T

erwise, let €,{x) = nz, f0 < z < %, and ex{z) = 1, x > l If (p;'l(t) =
L

en(t) f;(t), then we get the weighted norm inequality for ¢ f3, and the final

result by letting n — co. A

Corollary 4.4. Let f T and n a positive integer. Then

/ow Fle)Y w(z)dz < c/ﬂm (é /DI f)nv(z:)da:

if and only if (w,v) € C(1,n).
Proof: If (w,v) € C(1,n), then the inequality follows from Theorem 4.3 by
n
letting fi = fz = -+ = fa. Conversely, let f = Hx"’. Then f = f* and by
1.

Hélder’s inequality
&L <TI(E [ ) =Tv@(25%) =
T Jo T H\ZJo i x '

Remark. We were unable to find 2 characterization of

]0 ” FayPwlz)ds < L ” G /; ) f)pv(:.c)d:c

for f T and p not a positive integer. However, as we shall see, (w,v) € C{p, 1)
controls the averaging operator

tofle) = % [ 1o i)

T

We observe that, when p is a positive integer, then / flz — w)d(x¥) is, apart

0
from a multiplicative constant, the p-times iterated integral of f.
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Theorem 4.5. Let fT and 1 < p < oo. Then
. o o0 ’ . ] o0 - —
(i)} /0 ApF(zyw(r)dr < c/o Flzyv{z)dz if and only zf/r (

dr < c/ v{zydz, r > 0.

) wie)

{ii) /:o Flzdwlz)dz < cf:o Apflzyv{z)idz if ond only if /m w{z}dr <

=] T 7 P )
cf (T) v{z)dz, r > 0, i.e, (w,v} € C(p,1).

Proof: {i) For the necessity let f = x™. To prove the sufficiency, let ¢ T,
@{0) =0, and r =y}, 0 < y < co. Then

=[S

By Lemma 4.2, R = ] ¢ Hz)v(z)dz and
0

L= /om {% /: o Nz — u)d(u")}w(x}dx.

The proof can be completed by letting ¢~ '(z) = f(z) if f{0) = 0; otherwise
let Yz} = () f(z) as in the proof of Theorem 4.3.
The proof of (ii} is the same as the one for {i). &

oo

{z —p(y)Pdrdy < c v{zidrdy = R.
r
T o Jelw

5. More properties of weights

We begin with a “change of variables” result for B,-weights.
Theorem 5.1, . If 1< ¢<p< oo andw e By, thenw (x%}) € B,.

Proof: We set L—=[rm (—;:)pw (ze 1)dxand let u= 2% aup;l Then

L= [T (s) wiwa

=Cj,:a JGrai/a wiu)du

We observe that (p+a - 1}/a=¢and so

oo o q
I,,=/ (;) wlu)du - rP79,
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Since w € B, andp—-aq:%<0, we see that

I.< crH/ wiu)du = crl_"/ w{z ™™ 1dz
0 0

< cfrw(z"‘)dx. | |
0

The case g = 1 yields a slightly stronger result which we state as

Theorem 5.2, If w € By and o > 1, then w(z®) € By with Bj{uw) =

B {w{x™)}.

Proof. If I, = f (%) w{z®)dzr and © = z%, then

B l oo - l/a"l _ rl—a foo (f_)
I / ( )w(u)u du=" | {5 wlds

o ul/a
ta T

< crl_"f w{z®)z® tdz < c/ w(z*)dz,
0 0

sincea =~ 1. A
The next result reminds one of the important A,-property, ie, w € 4, —

w” € A for some T > L.

Theorem 5.3. If w & B,, then there is € > 0 such that zfw(zitey ¢ By.

Proof: Choose € > 0 so that w € B,,/14. (Theorem 2.5), and note that

Ty £ 1+« 1 * r¥
- = &

1 w0 g l4e PIIFe e
B 1+e /r'l-l—c ( U )

.,
r
= cf sw(zit)dz. B
0

c
<
w{uldu TTe /, wlu)du

Corollary 5.4. If w € B,, then there is € > 0 such that w(z’*¢) € B,

We are now ready to present a factorization theorem for B,-weights similar

to the factorization of w € A, as w= uv!™P u, v € A
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Theorem 5.5. The foliowing statements are equivalent for 1 < p < oo.
(1}we B,
(2} wiz) = u(z) - 2P~ with u(z'/?) € By.

w(zlfp)

W = 'U.(Illp) is in Bl‘

Proof: (1} — {2). All we need to show is that
and this follows from

® w1 ey wlt)
/, (E) i C/‘_”, (t_p) tP/P’t dt
oo s lfp\P ri/®
= c/ (—w-) w{t)dt < c/
.r.lfp t Ie]

{2) — {1). This is simply

/rm(g)pu(z)zp'ld:c - }—IJOO (B%)pu(t””)dt

1 o P 1/ C/rp if
== — tu(tVP)de < = u{t*/P)dt =
ol () wemas <2 [ e

c/ u{z)z" 'dz. W
0

w(t)dt = ¢ f w(E/?) /117 dt.
1]

Remark. By Theorem 5.2, if u{x!/?) € By, then u{z) € B;. Thus (2) can

1-p
1 1
be written as w = u - (-x—) , with u € B;. It is also clear that o € Bi.

6. Weak type weights

c r
We say that w € R, ff w{dy, > y} < y_P/ w, r > 0, and we say that
0

we W, iff for f |, w{Af > y} < yipf fPw. The “R" in R, stands for
0 -
“restricted”.

We will study relationships among R,, W), and B,, and give a characteriza-
tion of By,

Theorem 6.1. we R, iff there is0 < c < oo so that for 0 < r < s < 00,

1 # 1 v
3% Jo e Jg
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Proof: First assume that w € R,. The set {Ax, > y} = (0,z0), where

r iy ¢ r
—=y,0<y<1.Hence[ ws—/wfromwhich
To 0 ¥ Jo

1 f° ¢ {7 r
— wE — W, 8§=-—>T
sP i} (x4 [}

Conversely, for 0 < y < 1, with the same notation as above,

T 1 r P En
w{Ax,>y}=/ w=—p(—) / w
0 ¥ \Zo 0

c T
< — w, B
Y7 Jg

The next result shows how R, and By are related.
Theorem 6.2. If w € R,, then w € By for ¢ > p.

Proof: From Theorem 6.1, for s > r,
] -3 I
(1) f w < c/ .
§ 0 0

r it ¥
Le’ct=—.Thent?’/ wgc/ w,or, if0<e< 1,
s 0 0

it r
tp“/ wsct—‘/ w, 0<t<l.
0 0

1 r/t r
LE/ tp-ff w(r)drdtgct/ w.
L] 1] o

We interchange the order of integration and see that

Hence

oo prfz oo
L> / / w(z)tPdtde = ¢ w(z)(%)”l_‘dx.
L 0 r

Thuswe By, g=p+1~¢c R
Example. Let w(z) = #. Then w € R; but not in W; and thus not in

Bz, For let f(z) = —%—l - x1{z). Then w{Af > y} = 00, but /fgw =

zlog
1fe dx
< 00.
/o zlog? L

We will now show that the condition of Theorem 6.1 which characterizes B,
will, if slightly modified, characterize B,. We begin with
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Lemma 6.3. Assur;ze there exisis l <a< oo andC < c=1c, < 1 such that
1 oz 1
f wSc—/ w, £ > 0. Then w € B,.
(az}? Jo z® Jy

Proof: For 0 < N < 00, let wy == wxyn. Then wy satisfies the same hypoth-
esis as w with a constant ¢ = max{c,, 1/a?) < 1.

1 ar c x
We have then W/o Wy < pres) A wy. Hence for 0 < r < oo fixed,

1~ 1 azr o - _
= E;‘/r zp—}—l‘/ol wN(t)dtd-TSC-[r ;CP+1A WN(t)dtdI:R

We interchange the order of integration and see that

L>—/ / w ()2 St = /w w’:p(” o,
“c{/ / wy{t)— e, dt+f / wy{t)—7 p+1 dt}
e f wN(t) / w;\r(t) i),
The last integralf wN—(t) dt = (/r +f ) wN—(t) dt < rlP/r” wy (tidt+

/:0 wn (t) dt. Hence R < ¢f{- fﬂr wN(t) éfw wN(t) dt}.

(14 tP

)f wN(t)dt<_/' wn(t

L (%) wn{t)de < & - f/ﬂ wi(t)dt.

We complete the proof by letting N — co. B

From this we obtain,

or

Theorem 6.4. Assume that w € L} (Ry). Thenw € B, if0 < ¢ < 1
implies the ezistence of a. > 1 such that for z > 0,

1 ax 1 T
W g— w, a2 a.
¥
afxP 0 bt 0

Proof: By Lemma 6.3 we only need to prove the necessity. By Theorem 2.5,
there is 7 > G such that w € Bp_,r Thus for a > I,

i

afzP 0 F‘_ﬂ;_”f@ . (_)‘?.

ﬁ fo :P""I f(} a

Since w € By, C R,_,, by Theorem 6.1 the first factor < ¢ and the proof is
complete.

As an application of Theorem 6.4 we will prove
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x
Theorem 6.5. Let w € By and Wi(x) = / w. Then for 0 < o < oo,
0
W= e Bo(p+1.

1
Proof: Wedoa=11first. Let 0 < ¢ < m Then for @ > a, > 1 we have

P ar =
—/ wgffw:eW(x),0<xSr.Thus
0

(ar)P
A (ar)?f w<ef W(z)dz,

1 el
"+ 1) (ar)?

ar
ST Ry
p+1la?f 0

andso W € By 1.
For the general case, since

and

Wi{ar) = ——(er}W(ar)

1 L
b+ D

W*(z} = a/ Wy
0

we only need to verify that W 'w € B,,. Forsome 0 < ¢ < 1landa > | we
have
1 axT

— Woly =
aP* Jqg xaP>

ZC/ wely. m
I

7. The equality W, = B,

W*(az) < —cW“(:c)

In this final section we will prove that W, = B, for 1 < p < oo, a situation
quite analogous to the A,-case. I am indebted to- Rlchard Bagby for the original
proof of this properiy. We will present a somewhat simplified version based on
some of our previous results. For the definitions of R,, W, see.the beginning
of section 6.

Lemma 7.1. Letw € Ay, 0 < a < co, and 1 < 5§ < 0o. Then

/us (E)Tj wluwdu < ¢l + log s) /a W
a u 0
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Proof: We know that by Theorem 6.1,
ta

a
— wSc/ w, t>1
i Jo 0

L 1 ta a2 ] .
Hence L = / prny f w < clogs f w. We interchange the order of inte-
1 0 o

gration and get
a

L> /:s Aiﬂw(u)%du = %f:s wiu) [(;)p - ;} du.

Hence

as a p [+3 11
wn) [ =} du < clo s/ w4+ —— w

_/a ()(u) & G rsPJ,

L1 £+
gclogs/ w+c/ w,
a i

1
B

sincew e R,. il
Theorem 7.2. Wy, = By for 1 < p < o0.
Proof: The inclusion B, C W, is cbvious, and for the reverse inclusion we

consider for s > 1 the function fiz) =1, 0< z < o;=a/fzr, o < r < se; and

141
=0, z > sa. Then Af(as) = %. Since w € W, we have that

I R
wlAf@) > <= [ u.

Ify271+iogs,weg€t
F pras a ond “
(1+Iogs) f wgc(/ w+/ (E)pw(u)du) 5c(1+logs)/ w
s o 0 a MU 0

by Lemma 7.1. Thus

L]
s w<e(l+log s)i_”/ 1w,
§ )] 4]

We choose s so large that ¢{1 + log 5)1™? < 1 and apply Theorem 6.4. B



WEIGHTED NORM INEQUALITIES 447

References

M. ARINO AND B. MUCKENHGUPT, Maximal functions on classical
Lorentz spaces and Hardy’s inequality with weights for non-increasing
functions, Trens. Amer. Math. Soc. 320 (1990), 727-735.

D.W. Bovp, The Hilbert transform on rearrangement-invariant spaces,
Can. Journal Math. 19 (1967), 589-6186.

J. GArcia-CUERVA AND J.L. RuBIC DE FrANCIA, “Weighted norm in-
equalities and related topics,” North Holland Math Studies 116, North
Holland.

M.A. LECKBAND AND C.J. NEUGEBAUER, A general maximal operator
and the A,-condition, Trans. Amer. Math. Soc. 275 (1982}, 821-831.
M.A. LECKLAND AND C.J. NEUGEBAUER, Weighted iterates and variants
of the Hardy-Littlewood maximal operator, Trans. Amer. Math. Soc. 279
(1982), 51-61.

B. MUCKENHOUPT, Hardy’s inequality with weights, Studia Math 44
(1972), 31-38.

E. SAWYER, Boundedness of Classical Operators on Classical Lorentz
spaces, preprint.

Department of Mathematics
Purdne University

West Lafayette IN 47907
USA.

Primera versié rebuda el 9 d'Octubre de 1939,
darrera versié rebuda el 21 de Maig de 1990



