
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 192, 1974

WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRALS
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ABSTRACT. The principal problem considered is the determination of all nonnegative
functions, V(x), such that ||7;/(jc)K(a:)||, < C||/(x)K(x)||, where the functions are defined
on R", 0 < y < n, 1 < p < n/y, \/q = \/p — y/n, C is a constant independent of / and
Tyf(x) = ff(x - yïiW'dy. The main result is that V(x) is such a function if and only if

(Híírwp*r(aiirwr*rsjr
where Q is any n dimensional cube, |ß| denotes the measure of Q, p' = p/(p — 1) and K
is a constant independent of Q. Substitute results for the cases p = 1 and 9=00 and a
weighted version of the Sobolev imbedding theorem are also proved.

1. Introduction. The first norm inequality for fractional integrals was the one
proved by Hardy and Littlewood in [6] for the one dimensional case with
V(x) = 1; they also proved a result for V(x) = \x\". The result in n dimensions
with V(x) = 1 was obtained by Sobolev in [8] and with V(x) = |x|a by Stein and
G. Weiss in [10]. T. Walsh in [12] obtained a result for other weight functions and
with a more general operator but did not characterize all such V 's.

A slightly stronger result is obtained here than stated in the abstract. It is
shown that

(u)        (¿/G [rwr*)v,(jèï £ w*Y < k
implies the norm inequality for fractional integrals, but the necessity of (1.1) is
shown with only the assumption of a weak type estimate on the fractional
integrals.

The proof that (1.1) implies the norm inequality consists of two main parts.
The first is the proof of a norm inequality between Tyf and a suitable maximal
function,/*, defined in §2. This norm inequality is obtained in §2. We would like
to acknowledge that the proof in §2 is an adaptation of certain proofs by
Coif man and Fefferman in [1], and would like to thank them for showing us these
proofs. In [1] Coif man and Fefferman greatly simplified the proofs in [5] and [7]
to prove the principal result in [5].
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262 BENJAMIN MUCKENHOUPT AND R. L. WHEEDEN

The rest of the proof that (1.1) implies the norm inequality for fractional
integrals consists of proving a norm inequality for /*; this is done in §3. In §4
these results are combined to prove the asserted inequality and the necessity of
(1.1) for the weak type inequality.

The cases p = 1 and q = oo are also considered here. In the casej? = 1, (1.1)
should be interpreted to mean

(12)        (a¿IFWr*r(rB»TO)^*
this is necessary and sufficient for a weak type inequality. This is also proved in
§§2-4. For q = oo the proper interpretation of (1.1) is shown in §5 to imply that
Tyf has a property resembling bounded mean oscillation; this generalizes the
unweighted result contained in [11, Theorem 2(a), p. 341]. The necessity of (1.1)
for this property is proved in §6. Finally, in §7 a weighted version of the Sobolev
imbedding theorem is proved as an application of the main theorem.

Throughout this paper it is assumed that a fixed positive integer, n, has been
taken as the dimension of the space and that functions are real-valued measura-
ble functions on R". The letter C will denote a constant not necessarily the same
at each occurrence, 0- oo will be taken as 0, |£| will denote the Lebesgue
measure of E, mw(E) = fE W(x)dx and given a cube Q, mQ will denote the
cube with the same center as Q and with sides parallel to those of Q and m times
as long.

2. Comparison of ZJ/to/*. In [1] norm inequalities for the conjugate function
were obtained by comparing it to the Hardy-Littlewood maximal function. The
same general procedure will be used here; the fractional integral of a function
will be compared to a maximal function called JÇ*.

Two definitions will be needed. First, given a real-valued function f(x) on R"
and y satisfying 0 < y < n, define

/;(*) = supler1^" i\f(y)\dy
Q JQ

where the sup is taken over all cubes Q with center at x. Second, a nonnegative
function W(x) will be said to satisfy the condition Ax if given c > 0 there exists
a 8 > 0 such that if Q is a cube, E is a subset of Q and |£| < 5|el, then
Se W(x)dx < £$q W(x)dx. The main result of this section is the following.

Theorem 1. If W(x) satisfies the condition AK, 0 < q < oo and 0 < y < «, then
there is a C, independent off, such that

fR.\Trf(x)\"W(x)dx < cfRAfy*(x)]"rV(x)dx
and

suPfl?ir^  W(x)dx <C sup a<f      W(x)dx.
a>0       ■'l'r/l>« a>0       J/'>a
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WEIGHTED NORM INEQUALITIES 263

Theorem 1 will be proved by first establishing the following lemma.

Lemma 1. 7/0 < y < n, there exist constants B and K, depending only on y and
n such that if a > 0, d > 0, b > B,f(x) is nonnegative, Q is a cube in R" such that
Tyf(x) < a at some point of Q and E is the subset of Q where both Tyf(x) > ab and
f*(x) < ad, then \E\ < K\Q\[d/b]n/i"-^.

To prove Lemma 1 let g(x) = f(x) on 2Q and 0 elsewhere; let h(x)
= f(x) — g(x). Assume that there is a t in Q such that/*(r) < ad; otherwise the
conclusion is trivial. By [9, Theorem 1, p. 119], there is a constant C, depending
only on n and y, such that for any positive a and b

(2.1) \{Tyg(x) > ab/2}\ < c[^/R„ g(x)dxj "*.

Let P be the cube with center t and sides parallel to and three times as long as
those of Q. Then since 2Q c P,

jR,g(x)dx <fpf(x)dx <f*y(t)\P\("-^" < ad\3Q\^/".

Using this in (2.1) shows that

(2.2) \{Tyg(x) > ab/2}\ < C3"\Q\[d/bY^\
Now let s be a point of Q such that Tyf(s) < a. There is a constant L,

depending only on n and greater than 1, such that if x is in Q and v is not in 2Q,
then \s — y\ < L\x - y\. Therefore, for x in Q,

Y jR"\x-y\ jR'\s-y\

< LnTyf(s) < Lna.

Let B = 2L". Then if b > B, Tyh(x) < ab/2 for all x in Q and E is a subset of
the set where Tyg(x) > ab/2. The conclusion of Lemma 1 then follows from
(2.2).

In the proof of Theorem 1 it may be assumed that f\x) is nonnegative since
replacing f(x) by \f(x)\ only increases the left sides of the conclusions and does
not affect the right sides. It can also be assumed that f(x) is locally integrable
since if it is not the conclusions are trivial. Local integrability of W(x) can also
be assumed; otherwise the right sides of the conclusions are infinite unless/(*) is
0 almost everywhere.

Now assume that f(x) has compact support. Given a > 0, decompose the set
where Tyf(x) > a into cubes {Qj} with disjoint interiors such that, for every j,
Tyf(x) < a at some point of 4(2,; this is possible by [9, Theorem 1, p. 167]. Let
B and K be as in Lemma 1 and let b — max(l, B). Let 5 correspond to c = \b~q
in the definition of Ax for W(x). Choose D so that 8 = K4,[D/b]"/l*~'). Let d
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264 BENJAMIN MUCKENHOUPT AND R. L. WHEEDEN

satisfy 0 < d < D and let E} be the subset of Qj where Tyf(x) > ab and
f*(x) < ad.

By Lemma 1, \Ej\ < K\AQJ\[d/b]''(^) < 6\Qj\ so by the definition of S,
mw{Ej) < \b~qmw(Qj). Summing on/ shows that

mw({Tyf> ab and/,* < ad}) < \b~"mw({Tyf > a}).

This implies that

(2.3) mw({Tyf > ab)) < mw({f*y > ad)) + \b-"mw({Tyf > a})

for any d satisfying 0 < d < D.
Now let e be a cube such that/(x) = 0 for x outside Q. Given x outside 3e

let u be the point in Q closest to x and let P be the smallest cube with center at
x and sides parallel to Q that contains Q. Then there is a constant, L, depending
only on n and greater than 1 such that \P\ < L\x — u\". Furthermore,

Tyf(x) <\x- urnfQf(y)dy <  ^ m[-t/t(*) ̂  AW-

Now define d = min(Z), 1/L); it follows immediately that

(2.4) {Tyf >a}n (3Q)C C {/* > ad)

where (3g)c denotes the complement of 3e. From (2.3) and (2.4) it follows that

(2.5) mw({Tyf > ab}) < 2mfV({f% > ad}) + \b-«mw({Tyf > a) D 3Q).

Next, multiply both sides of (2.5) by a*-1 and integrate a from 0 to some
positive #. After a change of variables the left side becomes

(2-6) b~" ¡J" a«-x mw({Tyf > a}) da.

Similarly, with a change of variables for the first integral on the right, the right
side becomes

rUd r N
(2.7) 2d-"fo   a^-xmw({f;>a})da+xîb^fo   a"-xmw({Tyf> a} n 3Q)da.

Since W has been assumed to be locally integrable, the second term in (2.7) is
finite; it is also bounded by half of (2.6) since b > 1. Therefore,

(2.8) \b-"¡""ai-xmw({Tyf> a})da < 2d~" j"'a^mw({fy(x) > a})da.

Now let N approach oo ; (2.8) then reduces to

(2.9) Ç j^ \Tyf(x)\"W(x)dx < ^-jR, [fy(x)]"W(x)dx.
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WEIGHTED NORM INEQUALITIES 265

To prove (2.9) for &nf(x) that does not have compact support, letfm(x) equal
f(x) for |jc| < m and equal 0 for |x| > m. Then (2.9) can be applied tofm; taking
the limit as m -* oo and using the monotone convergence theorem then gives
(2.9) for general X*)- This completes the proof of the first part of Theorem 1.

To prove the second part of Theorem 1, multiply both sides of (2.5) by a1.
Given N > 0, take the sup of both sides for 0 < a < N and use the fact that
sup(« + v) < sup u + sup v. This shows that

(2.10) sup  a<mw({Tyf > ab})
' 0<a<N

is bounded by

(2.11) sup  2a"mw({f* > ad}) +  sup  \a"b~'mw({Tyf > a} D 3(2).
0<a<N 0<o<AT

Now (2.10) and (2.11) are equal respectively to

(2.12) sup   b-"a"mw({Tyf>a})
0<a<bN

and

(2.13) sup   2aqd-"mw({f* > a}) +   sup ¡^b'"mw({Tyf > a} n 3ß).
0<a<Nd 0<a<N

The second term in (2.13) is finite and bounded by half of (2.12); therefore,

(2.14) Kb-«     sup     a9mw,({Pv/>a})<2i-«     sup    á"mw({f*>a}).
0<a<bN 7 0<a<Nd r

Letting N approach oo in (2.14) shows that

(2.15) sup a" [       W(x)dx < Wd^sup a" f      W(x)dx
a>0       JTyf>a a>0       JJ\>a

for an/(*) with compact support. For general./{*) \etfm(x) equal f\x) for |x| < m
and equal 0 for |x| > m. Then (2.15) can be applied to fm; taking the limit as
m -* oo gives (2.15) for general/. This completes the proof of Theorem 1.

3. Norm inequalities for/*. This section consists of the proofs for the following
two theorems.

Theorem 2. /f 0 < y < «, 1 <p< n/y, \/q = 1/p - y/n, a > 0, E„ is the set
where f*(x) > a, and V(x) is a nonnegative function on R" such that, for every cube
Q, (1.1) holds with K independent ofQ, then there is a C, independent off, such that

O.I)     (¿ [K(*)N*y/? < §(/,. \f(x)v(x)\pdxyp.

Theorem 3. // 0 < y < «, 1 < p < n/y, \/q = 1/p - y/n and V(x) is a
nonnegative function on R" such that, for every cube Q, (1.1) holds with K
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266 BENJAMIN MUCKENHOUPT AND R. L. WHEEDEN

independent of Q, then there is a C, independent off, such that

(3.2) (/ä„ Uy(x)V(x)Ydxy9 < c(/ä. \f(x)V(x)\pdxyP.

To prove Theorem 2 fix M > 0 and let EaU be the intersection of Ea and the
sphere about the origin of radius M. For each x in EaU there is a cube Q centered
at x such that

(3.3) ier,+i'/-/ßi/widx>c7.
Using [2, Corollary 1.7, p. 304] pick a sequence {e*} of these cubes such that
Ea,M c U Qk (note that the opposite conclusion stated in conclusion a of this
corollary is a misprint) and no point of R" is in more than C of these cubes where
C depends only on n. Then

(3.4) (/^ [V(x)Ydx)P/q < (? 4 [n*)]^)'*,

and since p/q < 1, the right side of (3.4) is bounded by

(3.5) z(fQk[V{xWdxy\

Since the Qk are cubes that satisfy (3.3), (3.5) is bounded by

? {SQWx)\qdx)P\a-x\Qk\-x^SQk \f(x)\dx)P.

Using Holder's inequality on the last integral shows that this is bounded by

2 (4 [V(x)Ydxy/,a-p\Qk\x-p->"<(fQk \f(x)V(x)\pdx)(SQk [V(x)]-pldxyP'.

Using the fact that V satisfies (1.1) shows that this is bounded by

(3.6) Ca-p^{   \f(x)V(x)\pdx,
k -"¿k

and since no point of R" is contained in more than a fixed number of e*'s> (3.6)
is bounded by

(3.7) Ca-»fRn \f(x)V(x)\>dx.

Therefore, the left side of (3.4) is bounded by (3.7), and since the C in (3.7) does
not depend on M, (3.1) follows from the monotone convergence theorem.

To prove Theorem 3, define W(x) = [V(x)Y and note that (1.1) is equivalent
to
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WEIGHTED NORM INEQUALITIES 267

(3.8)    (¿j jr »w*XhX "r»*^*rá c
where r = 1 + ^/p'. Therefore, by the definition [7,p. 214], W satisfies the
condition Ar By Lemma 5 of [7] (extended to n dimensions on pp. 222-223 of
[7]), there is an s satisfying 1 < s < r such that W is in As. Then there are
numbers px and qx such that \/qx = \/px — y/n, 1 < px < p and s = 1 + Çj/pi '.
By Theorem 2 there is a C such that

(3-9) (Je. "'W^ ^ Ca~*/«» I/WI" »W*«**-
Now define a sublinear operator P by Tg(x) = (g(x)[W(x)]y/n)*y. Then with
f(x) = g(x)[IF(x)]1'/n, (3.9) can be written in the form

(3.10) fTg>a W(x)dx < Ca-"(/Ä„ \g(x)\" W(x)dxy/Pi.

Similarly, there is a p2 satisfying p < p2 < n/y. Then with ft defined by
l/?2 = I/ft _ y/n it is immediate from Holder's inequality that W satisfies A,
with t = 1 + <72/p2 since r > r. Then Theorem 2 shows that (3.9) is true with px
and qx replaced byp2 and q2. The procedure used to derive (3.10) then shows that

(3.11) fTg>a W(x)dx < Ca-<>(fRn \g(x)\P2W(x)dxyIPl

where T is the same operator as in (3.10). The Marcinkiewicz interpolation
theorem, [13, Vol. II, p. 112], shows that

(3.12) (/„ [Tg(x)YW(x)dxy < c(/ä„ \g(x)\pW(x)dXyP.

Then letting g(x) = f(x)[W(x)]^'n and W(x) = [V(x)]q transforms (3.12) into
(3.2). This completes the proof of Theorem 3.

4. The principal theorems. This section consists of the proof of the main result
stated in the abstract and the substitute forp = 1. The theorems to be proved
are as follows.

Theorem 4. Assume that 0<y<«, l<p< n/y, \/q = 1/p — y/n, p"
= p/(p - 1) and V(x) is a nonnegative function on R" such that, for every cube Q,
(1.1) holds with K independent of Q. Then there is a C, independent off, such that

(4.1) (/„ \Tyf(x)V(x)\"dxY < c(¿, \MV(x)\'dxj¡'.
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268 BENJAMIN MUCKENHOUPT AND R. L. WHEEDEN

Theorem 5. Assume that 0 < y < n, q = n/(n — y), a > 0, Ea is the set where
l^/WI > a and V(x) is a nonnegative function on R" such that, for every cube Q,
(l.2)holds with K independent of Q. Then there is a C independent of fand a such
that

(4.2) ¡Ea [V(x)]"dx < Ca-<[fRn \f(x)\V(x)dx]\

Theorem 6. Assume that 0 < y < n, 1 < p < n/y, \/q = \/p — y/n, pf
— p/(p — 1) and let V(x) be a nonnegative function on R" such that for a > 0

<4-3)       (L>a tn*)r«&f < %jR. \f(x)v(x)\pdxf
where C is independent of a and f. Then, for every cube Q, (1.1) holds with  K
independent of Q.

Since (4.1) implies (4.3) by Tchebycheffs inequality, this is a stronger result for
1 < p < n/y than just showing that (4.1) implies (1.1).

To prove Theorems 4 and 5 observe that if V(x) satisfies (1.1), then, by the
definition [7, p. 214], [V(x)]q satisfies the condition A, with r = 1 + q/p'. If V(x)
satisfies (1.2), [K(x)]' satisfies Ax. In either case by (3.19) of [7] (extended to «
dimensions [7, pp. 222-223]), there is an s > 1 and a C, both independent of
Q, such that

(4.4) fQ [v(X)rdx < cier-j(/ß [n*)r¿*y
for every cube Q. If £ is a subset of Q, then by (4.4) and Holder's inequality

fE[V(x)]"dx < \Er(fE[V(x)rdxY = C(\E\/\Q\rjQ[V(x)Ydx.

Therefore, [K(x)]' satisfies AM and Theorems 1, 2 and 3 can be applied to prove
Theorems 4 and 5.

To prove Theorem 6 for/? > 1 fix a cube, Q, in R" and let A = fQ [V(x)]~jfdx.
If A = 0, there is nothing to prove because of the convention 0 • oo = 0. If
A = oo, then l/V is not in Lf" on Q so there is a nonnegative function, g, in Lp
on e such that So.g(x)/V(x)dx = oo. Let f(x) = g(x)/V(x) on Q and 0
elsewhere. Then Tyf = oo and since f(x)V(x) < g(x)

fQ{f(x)V(x)Ydx<fQ[g(x)]pdx.
By (4.3), Sq [V(x)]qdx < Co.-" for all a > 0. Therefore, fQ [V(x)]"dx = 0; this
completes the proof if A = oo.
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If 0 < A < oo, let f(x) = [V(x)]'p' on ß and 0 elsewhere. On Q, Tyf
> /l|ß|-1+1'/'" so using this as a in (4.3) shows that

jQ[V(x)]"dx < C[A\Q\-x^r9[fQ([V(x)]-pV(x))pdxY-

This reduces easily to (1.1).
If p = 1, fix a cube, Q, in R" and let A = ess inf^gg V(y). If A = oo, (1.1) is

true. Otherwise, given e > 0 there is a subset, E, of ß with positive measure such
that V(x) < A + c for all x in P. Define /(x) = 1 on E and 0 elsewhere. Then
for x in ß, 2,/to > |P| lßl~1+r/" and (4.3) with a - |P| Ißl"'-^" shows that

(4.5) (/ß [F(x)]Vx)1/? < C|P|-'|ßr fE V(x)dx.

Using the fact that fE V(x)dx < \E\(A + e) in (4.5) shows that

(iQ[V(x)Ydxy9 <C\Q\x-^(A+c).

Since e is arbitrary, this completes the proof of (1.1).

5. A sufficiency result for q = oo.

Theorem 7. Assume that 0 < y < n, p = n/y, p' = n/(n — y) and V(x) is a
nonnegative function on R" such that for every cube Q

(5.1) (ess^sup r(*))(7¿r/e [V(x)]^axj" < K

where K is independent of Q. Tlienfor every cube Q

(5.2) (ess^sup r(*))j¿í/e \Tyf(x) - (Tyf)Q\dx < c(¿ \f(x)V(x)\"dx^"

where C is independent of Q and (Tyf)Q = (l/|ß|) Sq Tyf(x)dx.

This generalizes [11, Theorem 2(a), p. 341]; in [11], however, the conclusion
contains the L(p, oo) norm of / instead of the Lp norm. Theorem 7 can be
strengthened in this way; a sketch of how this could be done is given after the
proof of Theorem 7.

To prove Theorem 7 fix a cube, Q, and let S be the cube with the same center
and orientation as ß with sides twice as long. Let T be the complement of S.
Then Tyf(x) is the sum of
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270 BENJAMIN MUCKENHOUPT AND R. L. WHEEDEN

(5.3) fsf(y)\x-yrdy
and

(5.4) fTf(y)\x-y\y-ndy

and it is sufficient to prove (5.2) with Tyf replaced by (5.3) and (5.4).
Let E = ess supieß V(x). Then the left side of (5.2) with ZJ/replaced by (5.3)

is bounded by

leiJß LJ,\x-yrldx + ieiJeVielJe LA\t-yr\ )
This is bounded by

performing the inner integration shows that (5.5) is bounded by

(5.6) CE\Q\-^I" ¡s\f(y)\dy.
Holder's inequality shows that (5.6) is bounded by

(5.7) C£|e|-^ [ £ \f(x)V(x)\'dxJP [ JT [V^'dx]".

Condition (5.1) then shows that (5.7) is bounded above by the right side of (5.2)
as desired.

The left side of (5.2) with Tyf replaced by (5.4) can be written in the form

(5-8)   i§/« la £ [frf(Mx -yr - " ->^>4*h
Since x and t are in Q and y is in T,

ii*-jf - \t -yr\< c\q\^"\x -yr»-x.
Using this fact in (5.8) shows that (5.8) is bounded by

(59) ÇE ( V { \f(y)\\Q\Vdyl
13 } \Q\JoUt \x-yr>"l
Interchanging the order of integration and performing the inner integration
shows that (5.9) is bounded by

<5"» "1>SB&*
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where q is the center of Q. A use of Holder's inequality shows that (5.10) is
bounded by the product of the right side of (5.2) and

(5.11) E\Q\Vn(fT \q-y\("-^-p,)[v(y)]-<<dyy.

The proof of Theorem 7 can be completed by showing that (5.11) has a bound
independent of Q.

Let Qk be the cube with the same orientation and center as ß and sides 2*
times as long. Then T = Uf=2[ßt - Qk-X] and (5.11) is bounded by

(5.12) CE\Q\X'" 22 [fQk_Qki [2"\Q\n^x^[V(y)}-'dy)   .

The facts that \Qk\ - 2*"|ß| and n - y = n/p' show that (5.12) is bounded by

(5I3) CEjk*imkivi,X'*T-
The hypothesis (5.1) then shows that (5.13) is bounded.

The strengthened version of Theorem 7 consists of showing that the left side
of (5.2) is bounded by a constant times ||/(x)K(x)||ii00; for the definition of || \\M
see [4]. To do this the following lemma will be needed.

Lemma 2. If V(x) satisfies the hypothesis of Theorem 7, then for every cube Q

(5.14) IIXß(*)/n*)IUi < c(/ß [V(x)]-"dxy
where C is independent of Q and Xq denotes the characteristic function of Q.

To prove this let g(x) be the nonincreasing rearrangement of Xq(x)/V(x). By
[4, p. 258], the left side of (5.14) is bounded by a constant times

(5.15) /J01 g(x)x-Vpdx.
By the definition (3.8), \V(x)]~p' satisfies condition Ax. By [7, Lemma 6, p. 214],
there is an s >p' such that [F(x)]_I also satisfies condition^,. By Holder's
inequality (5.15) is bounded by

wo (Jfii«r*r(j." "**)"'■
Using the fact that s1 < p and the definition of g shows that (5.16) is bounded by

(5.17) c|ö|1/i(lßlX W^f^':
The fact that [I^x)]-1 satisfies Ax shows that (5.17) is bounded by

Clßl'^fess sup[V(x)y)~l/S

and this is clearly bounded by the right side of (5.14).
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The proof of the strengthened version of Theorem 7 is the same as that of the

original Theorem 7 except at two points. In passing from (5.6) to the appropriate
version of (5.7) the L(p, q) Holder inequality [4, p. 262], is used to show that (5.6)
is bounded by

CE\Q\-V' ||/(*)K(*)|U \\xs(x)/V(x)lA ;
the desired inequality for (5.3) then follows from Lemma 2.

Similarly the estimation of (5.4) is the same up through (5.10); (5.11) is
replaced by

(5.18) E\Q\nXT(y)/\q-yr^V(y)\\l,A.
Since these norms satisfy the triangle inequality [4, p. 259], (5.18) is bounded by

XQk-QkJy)CE\Q\* 2
k-2

and this is bounded by
[2k\Q\xl"f-i+»V(y)

xok(y)

p-,1

v(y) />M
CEy2i2-*\Qk\-x"

*=-2
The proof is then completed by using Lemma 2 and (5.1).
6. Necessity for q = oo.

Theorem 8. Assume that 0 < y < n, p = n/y, p' = n/(n - y) and V(x) is a
nonnegative function on R" such that (5.2) is true with C independent ofQandf.
Then (5.1) is true with K independent of Q.

To prove this it will first be shown that there is a k > 1 such that for every
cube, e> and every y in Q,

(M) fkQ \x-yrndx < Ç/fl \x-yrdx,
where kQ denotes the cube with the same orientation and center as Q and sides
k times as long. To prove the existence of k let S be the sphere with center y and
radius equal to the diameter of kQ. Then kQ C S and the radius of S is
knV2\Q\x,n. The left side of (6.1) is bounded by the integral over S of the same
integrand and a simple computation with polar coordinates shows that the left
side of (6.1) is bounded by (A/y)[knV2\Q\x/n]y where A is the "area" of the unit
sphere in R". Similarly the integral on the right side of (6.1) is bounded below by
2~" times the integral of \x -y|r~" over the sphere with center y and radius
ilel1/". This shows that the integral on the right side of (6.1) is bounded below
by (A/y)2~n[2-\Q\x/tt]y. The ratio of the integral on the left side of (6.1) to the one
on the right is then bounded by [2nll2k]y2n and for k sufficiently large this is
bounded by \k".

Now fix a cube, Q, letf(x) be a nonnegative function integrable on Q and 0 off
e and let & be a number for which (6.1) is true. Then (Tyf)Q - (Tyf)kQ equals

¿f£ U I* -?rf(y)dy] dx - g£ [fQ \x -yrf(y)dy) dx.
Fubini's theorem shows that this equals
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lß|/ß/w[/ß ^-yY-dx - k-»fkQ \x-yrdx] dy.
Then (6.1) shows that this is bounded below by

and this is just i(Tyf)Q. Therefore,

(6.2) (Tyf)Q < 2[(Tyf)Q - (Tyf)kQ).
By Minkowski's inequality the right side of (6.2) is bounded by

(6-3)     2(|^| f \(Tyf)Q - Tyf(x)\dx + ±Jq \Tyf(x) - (Tyf)kQ\dxy
Changing the range of integration in the second integral to kQ and then using
(5.2) on both integrals shows that (6.3) is bounded by

c[esssup F(x)]   (/ä, [f(x)V(x)]pdxJ".
Since / is 0 off ß this finally shows that

(6-4) (Tyf)Q < c[essjup K(x)] '(/ß [f(x)V(x)]p dxj".

Now if Jg [V(x)]~p'dx = 0, (5.1) is immediate because of the convention
0 • 00 = 0. If 0 < Sq [VWdx < 00, let f(x) = [V^)]-" on ß and 0 else-
where. From the fact that

it follows that

(6-5) IÖl",+r/"/ß \V{y)V4y < C(Tyf)Q.
Then combining (6.4) and (6.5) and replacing the / on the right side by its
definition leads immediately to (5.1).

If fß [V(x)]~1'dx = 00, then there is a nonnegative function, g(x), such that
[g(*)F is integrable on ß but g(x)/V(x) is not. Choose a positive integer, m, and
\etf\x) be the smaller of m and g(x)/V(x) on ß and 0 outside ß. Then the left
side of (6.4) approaches 00 as m approaches 00. Since the integral on the right
side of (6.4) is a bounded function of m, ess sup^gg V(x) = 0 and (5.1) is proved
in this case also.

7. A weighted version of the Sobolev imbedding theorem. The usual version of
Sobolev's theorem can be found, for example.on p.l24of [9].The theorem stated
below is a weighted version of part of Sobolev's theorem; more general results
could be proved as mentioned at the end of this section.

Theorem 9. //1< p < n, \/q = 1/p - I/n and V(x) satisfies(l.l), then

ll/WKWII, < c( \\f(x)V(x)l + É    ̂  r(x)\\ )
\ j-\ °Xj \\p/
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where C is independent of fand df(x)/dxj is taken in the sense of distributions.

Suppose/is infinitely differentiable with compact support. As shown on p. 125
of [91,

f(x)--Lf ( ^ry)Adym    <■>-># J*    **j    \y\"y
where <oB_i is the "area" of the unit sphere S"~x in R". Therefore, for such/,

i/c*)is¿Í¡ f.
Now multiplying both sides by V(x) and taking L? norms, it follows that

ii/Mn*)]i<¿É|K|^|Hl-
By Theorem 4

||/(*M*)lk<c¿
A weighted version of   Proposition   1, p. 122 of [9] then completes the proof.

An induction argument can be used to generalize Theorem 9 to functions /
with derivatives up to order k in weighted Lp spaces, k < n.
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