Weighted norm inequalities for functions of exponential type

Björn Jawerth

0. Introduction

A result by Plancherel—Polya [12] (cf. Boas [2], p. 101) says that if $f \in R_r$, i.e. if its Fourier Transform is supported by $\{\xi: |\xi| = (\xi_1^2 + ... + \xi_n^2)^{1/2} \le r\}$, and if $f \in L^p$ for some p>0 then

$$\sum_{k \in \mathbb{Z}^n} |f(k)|^p \le C \int |f(x)|^p dx. \tag{0.1}$$

It has been recently remarked (cf. e.g. [1]) that a proof of this and other classical inequalities can be based on the ideas of Fefferman—Stein [6]. In fact, let us put

$$n_{r\lambda}f(x) = \sup_{y \in \mathbb{R}^n} |f(x-y)|/(1+r|y|)^{\lambda}.$$

In [8] we proved (under the said conditions on f) that

$$n_{r\lambda} f \in L^p \tag{0.2}$$

provided $\lambda > n/p$. It is clear that (0.2) implies (0.1).

The purpose of the present paper is to extend the result (0.2) in the respect that we replace the Lebesgue measure by a general positive measure μ on \mathbb{R}^n . That is, assuming $f \in \mathbb{E}_r \cap L^p(d\mu)$ we want to prove

$$n_{r\lambda} f \in L^p(d\mu). \tag{0.2'}$$

It turns out that the relevant condition on μ is that

$$\int \frac{d\mu(x)}{(1+r|x-a|)^{ns(1+\varepsilon)}} \le C\mu(Q_R(a)) \tag{0.3}$$

for all $\varepsilon > 0$ and $a \in \mathbb{R}^n$. Here $Q_R(a)$ denotes the cube with center a and side R, and $\lambda > ns/p$, $R \approx 1/r$. (For the precise statement see Main Theorem in Sec. 1.)

224 B. Jawerth

In a forthcoming publication we intend to use the present results in connection with Besov spaces (cf. [10]).

Finally I would like to express my gratitude to Prof. Peetre for his advice and interest.

1. The main result

The problem considered in this paper is to determine positive measures μ such that, for some fixed r and p with 0 < r, $p < \infty$:

- (i) There is a function $f \in \mathbb{E}_r \cap L^p(d\mu)$, $f \not\equiv 0$.
- (ii) If $f \in \mathbb{E}_r$ then $||n_{r\lambda}f||_{L^p(d\mu)} \le C||f||_{L^p(d\mu)}$ for $\lambda > ns/p$, where s is a given positive number.

Definition 1.1. $M_s(r, p)$ denotes all positive measures μ on \mathbb{R}^n satisfying (i) and (ii) above.

Let |Q| and $\mu(Q)$ denote the Lebesgue and the μ -measure respectively of a cube Q on \mathbb{R}^n . We shall prove that $M_s(r,p)$ can be described by the following family of measures:

Definition 1.2. $A_s(R)$, s>0, denotes all positive measures μ on \mathbb{R}^n satisfying

$$\frac{\mu(Q)}{\mu(E)} \le C|Q|^s$$

for some constant $C = C(\mu)$ and all pairs of cubes E, Q such that $E \subset Q$ and the side of E equals R.

Now the main result reads

Main Theorem. Let $0 < r, p < \infty$ be given. Then there exist positive constants R_0 and R_1 such that

$$A_{s+\varepsilon}(R_0) \subset M_s(r,p) \subset A_{s+\varepsilon}(R_1)$$

for every $\varepsilon > 0$.

In applications we need a similar result which is independent of r. We therefore introduce another family of measures:

Definition 1.3. B_s , s>0, denotes all positive measures μ on \mathbb{R}^n satisfying

$$\frac{\mu(Q)}{\mu(E)} \le C \left(\frac{|Q|}{|E|}\right)^s$$

for some constant $C=C(\mu)$ and all pairs of cubes E, Q such that $E\subset Q$.

The subsequent proof of the main theorem also gives with minor modifications the following

Corollary. Let μ be a positive measure on \mathbb{R}^n . The following two conditions are equivalent:

- (1) $\mu \in B_{s+\varepsilon}$ for each $\varepsilon > 0$.
- (2) For each r and p with $0 < r, p < \infty$
 - (i) There is a function $f \in \mathbf{E}_r \cap L^p(d\mu)$, $f \not\equiv 0$.
- (ii) If $f \in \mathbb{E}_r$ there is a constant C, independent of r, such that $||n_{n\lambda}f||_{L^p(d\mu)} \le C||f||_{L^p(d\mu)}$ for all $\lambda > ns/p$.

2. Preliminaries

Later it will be convenient to have another characterization of $A_{s+\epsilon}(R)$ ($B_{s+\epsilon}$ can be described in a similar way): μ satisfies $A_{s+\epsilon}(R)$ for each $\epsilon>0$ if and only if there is a constant C_{ϵ} such that

$$\int \frac{d\mu(x)}{(1+|x-a|/R)^{ns(1+\varepsilon)}} \le C_{\varepsilon}\mu(E) \tag{2.1}$$

for any cube E with center a and side R.

Let us also compare A_s and B_s with two other conditions:

If $d\mu(x)=w(x)dx$ and w(x) is a temperate weight function of order N in the sense of Hörmander (cf. [7], p. 34), then $\mu \in A_{1+N/n}(R)$ for each R>0.

If $d\mu(x)=w(x)dx$ and w satisfies the so called A_{∞} -condition, appearing in connection with for example weighted inequalities for the Hardy—Littlewood maximal operator and singular integrals (cf. [4], [9]), then $\mu \in B_s$ for some s>0. The converse is not true: It is easy to see that $\mu \in B_s$ for some s>0 if and only if there is a constant $C=C(\mu)$ such that

$$\mu(2Q) \le C\mu(Q) \tag{2.2}$$

for any cube Q. (Here 2Q is the cube with the same center as Q but with sides twice as long.) That (2.2) is not equivalent to A_{∞} was shown in [5].

We also need the following fact. Let

$$m_{\mu}f(x) = \sup_{\mathcal{Q}(x)} 1/\mu(\mathcal{Q}(x)) \int_{\mathcal{Q}(x)} |f| d\mu$$

where the supremum is taken over all cubes Q(x) with center x. From [3] we have

Hardy—Littlewood maximal theorem. Let μ be a positive measure on \mathbb{R}^n . Then there is a constant C = C(n, p) such that

$$||m_{\mu}f||_{L^{p}(d\mu)} \leq C||f||_{L^{p}(d\mu)}$$

for every p>1.

226 B. Jawerth.

3. Proof of the main theorem

Let us first prove that there exists some $R_0 > 0$ such that

$$A_{s+\varepsilon}(R_0) \subset M_s(r,p)$$

for every $\varepsilon > 0$. The inclusion will be an easy consequence of two lemmata based on ideas in [11].

Lemma 3.1. Suppose that f is a C^1 function on \mathbb{R}^n and that $\mu \in A_{s+\varepsilon}(R_0)$ for each $\varepsilon > 0$. Then there is a constant $C = C(\varepsilon, \lambda, n)$ such that

$$n_{r\lambda}f \leq C\left\{r^{-\lambda}(m_{\mu}|f|^a)^{1/a} + R_0 n_{r\lambda}(\nabla f)\right\}$$

if $R_0 \le 1/r$ and $a = (1+\varepsilon)ns/\lambda$.

Proof: By the mean value theorem

$$|f(x-y)| \leq C \left\{ \left(\frac{1}{\mu(Q)} \int_{Q} |f|^{a} d\mu \right)^{1/a} + R_{0} \sup_{Q} |\nabla f| \right\}$$

$$\leq C \left\{ \left(\frac{\mu(Q^{*})}{\mu(Q)} m_{\mu} |f|^{a}(x) \right)^{1/a} + R_{0} \left(1 + r(R_{0} + |y|) \right)^{\lambda} n_{r\lambda} (\nabla f)(x) \right\}$$

where $Q = Q_{R_0}(x-y)$ and $Q^* = Q_{R_0+2|y|}(x)$. Since $\mu \in A_{s+\epsilon}(R_0)$ and if $R_0 \le 1/r$ we get

$$|f(x-y)| \leq C \{r^{-\lambda} (m_u |f|^a(x))^{1/a} + R_0 n_{r\lambda} (\nabla f)(x)\} \cdot (1+r|y|)^{\lambda}.$$

This clearly gives the desired inequality.

Lemma 3.2. Let $f \in \mathbf{E}_r$. Then

$$n_{r\lambda}(\partial_i f) \leq Crn_{r\lambda} f$$

where $C = C(\lambda, n)$.

Proof: Choose $v \in \mathcal{S}$ with \hat{v} equal to 1 on $|\xi| \le 1$. Then $f = v_r * f$ and $\partial_i f = r(\partial_i v)_r * f$ with $v_r(x) = r^n v(rx)$. Hence

$$\begin{aligned} |\partial_{i}f(x-y)| &\leq r^{n+1} \int |\partial_{i}v(rz)| (1+r|y+z|)^{\lambda} dz \, n_{r\lambda} f(x) \leq \\ &\leq r \int |\partial_{i}v(z)| (1+|z|)^{\lambda} dz (1+r|y|)^{\lambda} n_{r\lambda} f(x) \end{aligned}$$

where we have used the inequality

$$(1+u+v) \le (1+u)(1+v), \quad u,v \ge 0.$$

With $C = \max_i \int |\partial_i v(z)| (1+|z|)^{\lambda} dz$ our assertion follows.

Using (2.1) we see that any function $f \in \mathbf{E}_r \cap \mathcal{S}$, $f \not\equiv 0$, fulfils the first requirement of $M_s(r, p)$.

When proving the second we may assume $\lambda \le 2ns/p$. Suppose $n_{r\lambda} f < \infty$. Then by Lemma 3.1 and 3.2

$$n_{r\lambda}f(x) \leq C(m_{\mu}|f|^{a}(x))^{1/a}.$$

Therefore, with $\varepsilon > 0$ so small that p/a > 1, the Hardy—Littlewood maximal theorem (Sec. 2) gives

$$||n_{r\lambda}f||_{L^{p}(du)} \leq C||f||_{L^{p}(du)}.$$

This is at least true if $n_{r\lambda} f < \infty$. Since $f \in \mathbb{E}_r$ does not grow faster than $|x|^q$ as $|x| \to \infty$ for some q, the general case follows if we study $f(x) \prod_{i=1}^n (\sin \gamma x_i / \gamma x_i)^j$ for large j and let $\gamma \to 0$.

We shall also prove that

$$M_s(r,p) \subset A_{s+\varepsilon}(R_1)$$

for each $\varepsilon > 0$. A simple lemma will be needed:

Lemma 3.3. If μ belongs to $M_s(r, p)$ then $(1+|x-h|)^{-j} \in L_1(d\mu)$ for j > ns and for any $h \in \mathbb{R}^n$.

Proof: Let f denote the function given by $M_s(r, p)$. As $|f(x-h)| \le (1+r|h|)^{\lambda} n_{r\lambda} f(x)$ we can assume that f(h)=1. The lemma is a consequence of the estimates

$$\int \frac{d\mu(x)}{(1+r|x-h|)^{\lambda p}} \leq ||n_{r\lambda}f||_{L^{p}(d\mu)}^{p} \leq C||f||_{L^{p}(d\mu)}^{p} < \infty.$$

To prove the inclusion, fix two cubes E, Q with $E \subset Q$ and $|E| = R_1^n$ and let $\varepsilon > 0$ be given. Setting

$$f(x) = \prod_{i=1}^{n} \left\{ \sin \frac{r}{j} (x_i - a_i) \middle| \frac{r}{j} (x_i - a_i) \right\}^{j}$$

where a is the center of E and j is an integer, we know that $f \in \mathbb{E}_r$. Now, using $M_s(r, p)$,

$$\int \frac{d\mu(x)}{(1+r|x-a|)^{\lambda p}} \leq \|n_{r\lambda} f\|_{L^{p}(d\mu)}^{p} \leq C\|f\|_{L^{p}(d\mu)}^{p}.$$

Hence, with $\lambda p = (1+\varepsilon)ns$ and $j \approx 2\lambda$,

$$\int \frac{d\mu(x)}{(1+r|x-a|)^{(1+\varepsilon)\,ns}} \le C \Big\{ \int_{x\in E} d\mu(x) + \int_{x\notin E} |f(x)|^p d\mu(x) \Big\} \le C \mu(E) + \frac{1}{2} \int \frac{d\mu(x)}{(1+r|x-a|)^{(1+\varepsilon)\,ns}}$$

if we choose E (i.e. R_1) large enough. By Lemma 3.3 both sides are finite. Thus

$$\int \frac{d\mu(x)}{(1+r|x-a|)^{(1+\varepsilon)\,ns}} \le C\mu(E).$$

This completes the proof of the theorem.

References

- 1. Bergh J. and Peetre J., On the spaces V_p (0< $p \le \infty$). Boll. Un. Mat. Ital. 3 (1970), 632—648.
- 2. Boas R. P., Entire functions. Academic Press, New York, 1954.
- 3 CAFFARELLI L. A. and CALDERÓN C. P., Weak type estimates for the Hardy—Littlewood maximal function. *Studia Math.* 49 (1973—74), 217—223.
- COIFMAN R. and FEFFERMAN C., Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51 (1974), 241—250.
- 5. Fefferman C. and Muckenhoupt B., Two nonequivalent conditions for weight functions. Proc. Amer. Math. Soc. 45 (1974), 99—104.
- 6. FEFFERMAN C. and STEIN E. M., H^P spaces of several variables. Acta Math. 129 (1972), 137—193.
- HÖRMANDER L., Linear partial differential operators. Springer-Verlag, Berlin—Heidelberg— New York, 1969.
- 8. JAWERTH B., Om hela funktioner av exponentialtyp. Technical report, Lund, 1974.
- 9. Muckenhoupt B., Weighted norm inequalities for classical operators. To appear.
- 10. Peetre J., New thoughts on Besov spaces. Duke University Press, Durham. To appear.
- 11. PEETRE J., On spaces of Triebel—Lizorkin type. Ark. Mat. 13 (1975), 123—130.
- 12. PLANCHEREL M. and POLYA G., Fonctions entières et intégrales de Fourier multiples. *Comment. Math. Helv.* 9 (1937), 224—248.

Received November 15, 1975 in revised form January 15, 1977

Björn Jawerth
Department of Mathematics
University of Lund
Box 725
220 07 Lund
Sweden