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O. Introduction 

A result by Plancherel--Polya [12] (cf. Boas [2], p. 101) says that if  fERr, i.e. 
if its Fourier Transform is supported b y  {4: [41 = (~2 + . . .  + ~2)1/,_<_ r}, and if  fE L p 
for some p > 0  then 

ZkeZ-If(k)lP <- c f lf(x)l pdx. (0.1) 

It has been recently remarked (cf. e.g. [1]) that a proof of this and other classical 
inequalities can be based on the ideas of Fefferman--Stein [6]. In fact, let us put 

nrzf(x) = sup If(x-y)[/(l +r [yl) x. 
y ~ R  n 

In [8] we proved (under the said conditions on f )  that 

n,~ fE L p (0.2) 

provided 2 >n/p. It is clear that (0.2) implies (0.1). 
The purpose of the present paper is to extend the result (0.2) in the respect that 

we replace the Lebesgue measure by a general positive measure/~ on Rn. That is, 
assuming JEEr c~LP(dp) we want to prove 

nrx fE  L p (dp). (0.2") 

It turns out that the relevant condition on # is that 

f C,u(QR(a)) (0.3) 
du(x) 

(l+rlx_al),s(l+~) = 

for all ~>0 and a~R ~. Here QR(a) denotes the cube with center a and side R, 
and 2>ns/p, R~l/r. (For the precise s tatementsee Main Theorem in Sec. 1.) 
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In a forthcoming publication we intend to use the present results in connection 
with Besov spaces (cf. [10]). 

Finally I would like to express my gratitude to Prof. Peetre for his advice 
and interest. 

1. The main result 

The problem considered in this paper is to determine positive measures/~ such 
that, for some fixed r a n d p  with O<r,  p <  co: 

(i) There is a function fCE, c~LP(d#), f~O. 
(ii) I f  f E E  r then ][nr~fllzp(a~)<=Cllf[lLP(a~) for 2>ns/p, where s is a given 

positive number. 

Definition 1.1. Ms(r,p) denotes all positive measures U on R" satisfying (i) 
and (ii) above. 

Let Ial and #(Q) denote the Lebesgue and the #-measure respectively of a cube 
Q on R". We shall prove that M~(r, p) can be described by the following family of 
measures: 

Definition 1.2. A~(R), s>0 ,  

for some constant 
side of E equals R. 

c=c(~) 

denotes all positive measures # on R" satisfying 

I~(O) < C l a l  ~ 
g(E) -- 

and all pairs of  cubes E, Q such that E c  Q and the 

Now the main result reads 

Main Theorem. Let 0 < r , p < ~  be given. Then there exist positive constants 
R0 and R1 such that 

As+,(Ro) c Ms(r, p) c A,+~(RI) 
for every s>0 .  

In applications we need a similar result which is independent of  r. We therefore 
introduce another family of measures: 

Definition 1.3. B s, s>0 ,  denotes all positive measures # on R" satisfying 

#(E) - ~  

for some constant C-- C(#) and all pairs of cubes E, Q such that Ec  Q. 
The subsequent proof of the main theorem also gives with minor modifications 

the following 
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Corollary. Let It be a positive measure on R". The following two 
are equivalent: 

(1) 
(2) 

conditions 

ltEBs+~ for each ~>0.  
For  each r a n d p  with 0 < r , p - < o o  

(i) There is a function fCErc~LP(dla), f~O. 
(ii) f f  fEE~ there is a constant C, independent of  r, such that I[n,,afl4L,{nu)<= 

Cl[filLp<au) for all 2>ns/p. 

2. Preliminaries 

Later it will be convenient to have another characterization of As+e(R) (Bs+~ 
can be described in a similar way): It satisfies As+~(R) for each c > 0  if and only if 
there is a constant Ca such that 

f (  d~(x) 1 + Ix-aWR) ns(l+e) ~ Celt(E) (2.1) 

for any cube E with center a and side R. 
Let us also compare As and B, with two other conditions: 
I f  dlt(x)=w(x)dx and w(x) is a temperate weight function of order N in the 

sense of  H6rmander  (cf. [7], p. 34), then ~EAI+NI,,(R) for each R > 0 .  
I f  dl.t(x)=w(x)dx and w satisfies the so called d=-condition, appearing in 

connection with for example weighted inequalities for the Hardy--Li t t lewood 
maximal operator and singular integrals (eL [4], [9]), then ltEB, for some s > 0 .  
The converse is not true: I t  is easy to see that PEBs for some s > 0  if and only if 
there is a constant C =  C(#) such that 

p(2O) <= Cp(Q) (2.2) 

for any cube Q. (Here 2Q is the cube with the same center as Q but with sides twice 
as long.) That  (2.2) is not equivalent to A= was shown in [5]. 

We also need the following fact. Let 

re,f (x) = sup 1/lt(Q(x)) f o(x ) If ldlt 
O(x) 

where the supremum is taken over all cubes Q(x) with center x. From [3] we have 

Hardy--Littlewood maximal theorem. Let p be a positive measure on R". 
Then there is a constant C =  C(n, p) such that 

Ilrn~f [lLp(au) <= Cll f llLP(a~) 
for every p > l. 
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3. Proof  of  the main theorem 

Let us first prove that there exists some R0>0  such that 

As +, (R0) c M s (r, p) 

for every ~ >0.  The inclusion will be an easy consequence of two lemmata based on 
ideas in [11]. 

Lemma3.1. Suppose t h a t f i s  a C 1 function on R" and that pCAs+,(Ro) for 
each ~ >0.  Then there is a constant C =  C(~, 2, n) such that 

nr,~f <= C {r-~(m~ [fl")l/"+ Ronr~(Vf)} 
if Ro<= 1/r and a=(1  +e)ns/2. 

Proof: By the mean value theorem 

r l  1 ~lla I 
If(x--y)l <= Cl[-fi-(-~fQIfladlz ) +RoSUQp ]Vf] 

) 

<= C~(P(Q*) I'~l/a +Ro(l+r(Ro+[Y[))Zn,x(Vf)( x)} t t  t~(Q) m"lfl"(x), 

where Q=QRo(x-y) and Q*=QRo+Zlyl(x). Since pEAs+,(Ro) and if Ro<=l/r 
we get 

I f (x-y)  l <= C {r-X(rn~ If I"(x))V"+ Ron,~(Vf)(x)} "(1 + r ]yl) ~. 

This clearly gives the desired inequality. 

Lemma 3.2. Let f~E , .  Then 

n~(Oif) <= Crn,~f 
where C=C(2. n). 

Proof." Choose vESawith t) equal to 1 on ]4]<=1. Then f = v , . f  and Oif= 
r(Oiv),* f with vr(x)=-r"v(rx ). Hence 

IO,f(x--y)t <= r"+~ f lo, v(rz)l(l +rly+ zl)Zdzn,~f(x) <= 
<= r f lO~v(z)r(1 + Ozl)~dz(1 +rlyl)~n,~f(x) 

where we have used the inequality 

(l+u+v) <=(l+u)(l+v), u,v>=O. 

With C = m a x i f  IO~v(z)l (1 + Izl)~dz o u r  assertion follows. 

Using (2.1) we see that any function f ~ E ~ 5  e, f ~ 0 ,  fulfils the first requirement 
of Ms(r, p). 
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When proving the second we may assume 2<=2ns/p. Suppose n,~f< ~o. Then 
by Lemma 3.1 and 3.2 

n,af(x)  <= C(mu[fia(x)) 1/a. 

Therefore, with ~ >0  so small that p/a > 1, the Hardy--Littlewood maximal theorem 
(Sec. 2) gives 

]l nr ~ f ll L~(au) <= C ll f ll L~fau). 

This is at least true if nr~f< ~. Since fEEt  does not grow faster than Ixi q as 
Ixl-~ ~ for some q, the general case follows if we study f(x)/-/~=l(sin rxJrxY  for 
l a rge jand  let ~-~0. 

We shall also prove that 
M~(r, p) = A,+,(Rx) 

for  each e>0.  A simple lemma will be needed: 

Lemma3.3. If/~ belongs tO M~(r,p) then (l+[x--hl)-JEL~(d#) for j > n s  
and for any hER". 

Proof." Let f denote the function given 
<=(1 +r [hl)%,af(x) we can assume that f (h )=  1. 
the estimates 

f d~(x) (1 + r ] x -  hl) zp <= lln,a f ils <= C JI f lls < ~ .  

To prove the inclusion, fix two cubes E, Q with E =  Q and IE[=R~ and let 
e > 0  be given. Setting 

s ,x ,  = m :. { } " ' 

where a is the center o f E  and j  is an integer, we know that fEE, .  Now, using M, (r, p), 

f" <= lln,a fllf~,(a,) <= C[Ifllb(n,). 
dlz(x) 

( l + r l x - a l )  ap 

Hence, with 2p=(l+e)ns  and j ~ 2 2 ,  

(l +r[x_al)o+~).~ <- C cEdlt(x)+ r <= 

(1 +rlx-al)O+~) "~ 

if we choose E (i.e. Rx) large enough. By Lemma 3.3 both sides are finite. Thus 

f d# (x) -< c ~  (E). 
(1 + rlx-- al)( ~ + ~"~ = 

This completes the proof of the theorem. 

by M~(r,p). As I f ( x - h ) ] ~  
The lemma is a consequence of 
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