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WEIGHTED NORM INEQUALITIES FOR
HILBERT TRANSFORMS AND CONJUGATE

FUNCTIONS OF EVEN AND ODD FUNCTIONS1

KENNETH F. ANDERSEN

Abstract. It is well known that the Hilbert tranformation and the conju-

gate function operator restricted to even (odd) functions define bounded

linear operators on weighted If spaces under more general conditions than

is the case for the unrestricted operators. In analogy with recent results of

Hunt, Muckenhoupt and Wheeden for the Hilbert transform and the

conjugate function operator, we obtain necessary and sufficient conditions in

order that these restricted operators should satisfy weighted weak-type

inequalities and hence also necessary and sufficient conditions in order that

these operators should be bounded on weighted if spaces for 1 < p < oo.

1. Introduction.    Let H denote the Hilbert transformation given by the

Cauchy principal value integral

W«.?i£Ä* ^(-00,00),
If/is odd, then Hf is even and given by (Hf)(x) = (H0f)(\x\) where

(//o/)W = ^/0°°/^2^. (*>0),

and if /is even then Hf is odd and given for x > 0 by (Hf)(x) = (Hef)(x)

where

{Hj)ix) =2- r A*.K    eJ /X   ' 77 JO       t2  - X2

If PFis a nonnegative measurable function and 1 < p < oo, norm inequalities

of the form

(1.1) fQ \(Tf)(x)\"W(x)dx < Cpfa \f(x)\pW(x)dx

where Cp is a constant depending on p and W but independent of /,

fi = (-co, oo) if T = H, and Q = (0, oo) if T = H0 or He have been studied

by many authors, as have the weak type inequalities
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100 K. F. ANDERSEN

For the special case W(x) = 1, it is well known that (1.1) holds if and only if

1 < p < oo, while (1.2) holds for all /», 1 < /» < oo. For W of the form

W(x) = \x\"~X, and 1 < p < oo, Babenko [1] states that (1.1) holds for

T=HiiO<ia<Cp, whereas a result of Hardy and Littlewood [5] states that

(1.1) holds for T = He, if a satisfies -/» < a < /», and recently Rooney [8] has

shown that (1.1) is true for T = H0ii a satisfies 0 < a < 2/».

The problem of characterizing those W satisfying (1.1) for T = H has

attracted many authors, but only recently has the complete solution been

obtained. Hunt, Muckenhoupt and Wheeden [6] have shown that W satisfies

(1.1) for 1 < p < oo if and only if:

there is a constant K such that for every [a, b] E (— oo, oo),

(1.3) (j* W(x)dx\(f* W(xYX,(p-X)dxY     < K\b - a\p.

They also proved that (1.2) holds for T = H, 1 < p < oo, if and only if (1.3)

holds. Condition (1.3) is referred to as the Ap condition and it is to be

understood that 0 • oo is taken to be 0 while for /» = 1, the second factor on

the left of (1.3) is taken to be ess supxeraÄ] W(x)~l.

In §2 of this paper we obtain the corresponding characterization of those W

satisfying (1.1) or (1.2) when T is either H0 or He.

The problems corresponding to (1.1) and (1.2) when T is the periodic

analogue of H, the conjugate operator C, given by

(Cf)(9) = ¿£cot(*-2-?)/fo)di>

have also been widely studied with the complete solution again being given in

[6]. Here also, if / is odd (even), Cf is even (odd) and is given by Cf

= CJ(= CJ) where

1 n        sm<t>       „  ;:1

0   G   (0,77),

1 n        sine
^f^ = lfo  cos I     cos ¿M"*'

v  tJ JX '      77 Jo  cos <j> — cos 9       .

and norm inequalities for these operators have also been given by Hardy and

Littlewood [5], K. K. Chen [2], T. M. Flett [4], and Y.-M. Chen [3]. In §3 we
obtain a characterization of those W which satisfy (1.1) for 1 < /» < oo and

T = C0 = Ce (Q = (0,77)) and also of those which satisfy (1.2) for 1 < p

< 00 with T = C0(= Ce).

We adopt the usual practice that A, B, C, K denote absolute constants, not

necessarily the same at each occurrence.

2. Results for H0 and He.   We shall prove the following theorems:

Theorem 1.    Let W(x) be nonnegative and measurable on (0, 00). // 1 < /»

< 00, then (a), (b) and (c) are equivalent; if p = 1, then (a) and (b) are

equivalent where:
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WEIGHTED NORM INEQUALITIES FOR HILBERT TRANSFORMS 101

(a) There exists a constant Ap such that for every [a,b] G (0, oo),

(JT* W(x)dx)(^lb x^p-x^W(x)-x^p^y~l < Ap(^-)P.

(b) There is a constant Bp such that for all y > 0,

i>0:|(„o/)W|>,} W{X)CIX <  V-'f  l/WI^W^

(c) There is a constant CB such that

fo°° \(HJ)(x)\pW(x)dx < CpÇ \f(x)\"W(x)dx.

Theorem 2.    Let W(x) be nonnegative and measurable on (0, oo). // 1 < p

< oo, then (a), (b) ani/ (c) are equivalent; if p = 1 then (b) implies (a) w/iere:

(a) 77iere &x7j¿s a constant Ap such that for every [a,b] G (0, oo),

(b) 77¡ere- exists a constant B  such that for all y > 0,

h>o:wm>?iw{x)dx * V^X" ^?w^dx-

(c) There exists a constant Cn such that

/•oo roo

X    \(HJ)(x)\pW(x)dx < Cpjo    \f(x)\pW(x)dx.

For convenience we shall say that a W satisfying (a) of Theorem 1 satisfies

the A° condition; a W satisfying (a) of Theorem 2 satisfies the Ap condition.

Further, when/) = 1, the second factor on the left in (a) of Theorem 1 is of

course understood to be ess sup^r^ixlfXx:)- . Clearly W(x) satisfies A° if

and only if x~p W(x) satisfies Ap.

Note first that the Ap condition (restricted to intervals [a, b] G (0, oo))

implies both the Ap and Ap conditions; conversely if W satisfies both Ap and

A°, Holder's inequality shows that

(fab xpW(x)dx\(fab xpKp^W(x)-X,{p-x)dx\

>(/>*)'-(^)

p-\

3\P

and hence W satisfies the A condition on intervals [a, b] C (0, oo). Thus

Theorems 1 and 2 are consistent with the result of Hunt, Muckenhoupt and

Wheeden for H.

It may also be of interest to note here that if 1 < p < oo, then Holder's

inequality shows that a W satisfying A° satisfies A2p on intervals / C (0, oo).
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The proof of Theorem 1 requires

Lemma 1. Let W be a nonnegative measurable function defined on (0, oo) and

put w(x) = W/(\/|x|)/2-\/|x| for x ¥= 0. Then W satisfies condition A° if and

only if w satisfies condition A . Further, if Wsatisfies A° for somep, 1 < p < oo,

then W satisfies A° for all q > p — (.for sufficiently small t > 0.

Proof of Lemma 1. We give the proof for 1 < /» < oo, the case /» = 1

being entirely similar. Let [a,b] E (0, oo) or [a, b] G (-oo,0). Then

0*b \/ r° ut    w     \p~x

(21)     ■ (C ™^wM <w^v<y,r^Y-'

=2'(C-w*)(C","""K'w"",'"','&)'"'

and therefore if W satisfies the A° condition with constant K, the right side of

(2.1) is bounded by K\b - a\p, while for intervals [a,b] with a < 0 < b we

have

(fabw(x)dx)(fabw(x)-X«p-»dx)
p-\

(2.2)

<{2^w(x)dx)(2^w(x)-X'^dx)P

where [—c, c] is the interval containing [a, b] with at least one endpoint in

common, hence the right side of (2.2) is bounded by K2pcp < 2pK\b — a\p

and w satisfies the A condition with constant 2PK. The converse follows

immediately from (2.1).

Finally, if w satisfies A for some /» > 1, by [7, Lemma 5], w satisfies Ap_f

for sufficiently small e > 0 and, hence, by what we have just proved, if W

satisfies Ap for some p > 1, then W satisfies A°_t for sufficiently small € > 0,

and Holder's inequality shows that W satisfies A°, q > /», if W satisfies A°.

Proof of Theorem 1. The main part of the proof consists in showing the

equivalence of (a) and (b) for 1 < /» < oo, for if this has been proved and if

(b) holds for some/»0, 1 < p0 < oo, Lemma 1 shows that (b) must also hold

for/» > p0 — e, sufficiently small e > 0, and hence the Marcinkiewicz interpo-

lation theorem [9, Volume II, p. 112] shows that (c) holds for/» = p0, and since

(c) always implies (b), the proof will be complete.

We prove first that (a) implies (b). Let W satisfy (a), W and w be related as

in Lemma 1 and suppose / is given for which the right side of (b) is finite. If

we write g(x) — f(\/x) for x > 0 and g(x) = 0 otherwise, then

P  \g(x)\pw(x)dx = r \f(x)\pW(x)dx < oo.
J — co JO

By Lemma 1, w satisfies Ap and hence [6, Theorem 9] shows that Hg exists and
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WEIGHTED NORM INEQUALITIES FOR HILBERT TRANSFORMS 103

for all y > 0,

<2-3)      i:l(™>,} w{x)dx < Cy-pS« \f(*rw(x)dx.

Now, if x > 0,

and hence

J{x>0:\(Hof){x)\>y)       V   ' ■/{*><>: («JXV*»}

^ J{x:KÄyX*)l>^)   v ;

so it follows from (2.3) that (b) holds for some Bp.

Conversely, suppose (b) holds, and let / = [a, b] G (0, oo) and J = [b,2b

-a].

Consider first the case that 1 < p < oo. Let f(x) = xx/(p~x)W(x) x,(p ° if

x G I and/(x) = 0 otherwise, and put

A =X°° \f(x)\"W(x)dx = j¡xp^p~x^W(xyx/(p-x)dx.

\î A = 0, by convention the left side of (a) is taken to be zero, so (a) holds in

this case. If A = oo, there exists g G LP(I) such that fIg(x)xW(x)~'pdx

= oo and if h(x) = g(x)W(x)~x/p, then (H0h)(x) = oo for x G J so that (b)

implies

b w(x)dx < V"'X W^W* = V""// Istol'**

for all y > 0, and hence fy WOOáx = 0. But then W(x) = 0 on J, so
J} xp'^p~x'W(x)~ '^p~ 'dx = oo, and now reversing the roles of / and J we

obtain §¡ W(x) dx = 0, so again the left side of (a) is zero and, therefore, (a)

holds in this case also. Hence, we assume that 0 < .4 < oo. If x G J we have

2 f tpl{p-i)w(tYx/x[p~x)

l(//°/)WI « U     \(t - x)(t + x)\     dt > ^ - «><* - ^    A>

so (b) implies that

X W(x)dx < Bp[wQb - a)(b - a)]pA-p j¡ \f(x)\pW(x)dx
(2.4)

Bp[w(3b - a)(b - a)]pAx-p.

Now put g(x) = W(x)   '^p   ' for x G J and g(x) = 0 otherwise, and write

B = X \g(x)\pW(x)dx = X WW"^"^

If B = 0, then H7^) = oo on J which contradicts (2.4), and an argument
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104 K. F. ANDERSEN

similar to that given above for A, shows that B < oo unless W(x) = 0 on /,

i.e. unless A = oo, hence we have 0 < B < oo. For x G I we have

2 r   tW(A~x^p~x^
\(H0g)(x)\ - j/y |(yl^)(, + jc)|<fi > ¿W3ft - a)(b - a)TXB,

so again by (b) we have

f W(x)dx < ^[7/(36 - «)(6 - a)]pb-p [ \g(x)\pW(x)dx
(2 5)

= ^[77(36 - a)(/3 - a)]pb-pBx-p.

Now if (2.4) and (2.5) are multiplied together and the resulting inequality

multiplied by (AB)P~ , then noting that by Holder's inequality,

p-\
(¡j W(x)dx\(jj W(x)-X/{p~X)dxY     > \b - a\p,

we obtain

p-\
\b - a\p(j¡ W(x)dx\(j¡xp!(p-Vw(xTxl(p-x)dx

< C|(3¿ - a)(b - a)\2pb-p

which is easily seen to be equivalent to (a).

Finally we consider the case p = 1. If ess infxe/x_1 W(x) = oo, then (a)

holds by convention, otherwise, let € > 0 and choose E G I, E of positive

measure |£|, and x~x W(x) < e + ess inf;e/i_1 W(t) for all x E E. Let

/(/) = f~' on E,f(t) = 0 otherwise. Then for x E J

\(HJ)(x)\ - lfEv^-Y, > K& - a)(b - a)]-X\E\,
V JE\tL - X   \

and by (b),

f W(x)dx < fi,[77(3Z» - a)(b - a)}\E\~X ( t~x W(t)dt
JJ JE

< £,[77(36 - a)(b - a)](t + ess inf x~x W(x)\

and hence

(2.6) f W(x)dx < Bx{tt(3b - a)(b - a)]ess inf x~x W(x).
JJ x£I

Now let g(x) = ess supieJ W(t)~ for x E J, g(x) = 0 otherwise. If g(x)

= 0, then W(t) = oo a.e. on J, contradicting (2.6), while if g(x) = oo, then

ess infx eJ W(x) = 0, and an argument similar to that which leads to (2.6)

shows that f¡ W(x) dx = 0, so (a) holds in this case, and we may assume that

0 < g(x) < oo, x E J. Then if e > 0, there exists E E J, \E\ > 0 such that
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WEIGHTED NORM INEQUALITIES FOR HILBERT TRANSFORMS 105

W(x) < e + ess inf,ey W(t) for x G J, and if h(x) = 1 for x G E, h(x) = 0,

otherwise we have \(H0h)(x)\ > b[tr(3b - a)(b - a)]~x\E\ for x G I, so (b)

implies

X W(x)dx < 5,[t7(36 - a)(b - a)]b~x\E\~x f   W(x)dx

= .B,[7r(3Z> - a)(b - #Hie + ess inf W(t)J

so that

(2.7) f W(.x)¿x < Bx[<ir(3b - a)(b - a)]b~x ess inf W(t).
J l t(EJ

Finally, if (2.6) and (2.7) are multiplied together and the resulting inequality

multiplied by (ess supxeIxW(x)~ )(ess supjcey W(x)~~ ), then, noting that

(ess^sup ̂ W_1)(X W(x)dx} >\j\ = \b- a\,

we obtain

(b - a)(f W(x)dx\ess sup x\V(x)~x < C(3b - a)2(b - a)2b~x\

which clearly implies (a) and the proof is complete.

Proof of Theorem 2. The proof that (b) implies (a) for 1 < p < 00 is

similar to that of the corresponding statement in Theorem 1 and is therefore

omitted. Now let 1 < p < 00. As observed above, W(x) satisfies A° if and

only if x~p W(x) satisfies Ap, and since H0 and He are related by

(Heg)(x) = x(HJ)(x)    where g(t) - tf(t),

it follows immediately from Theorem 1 that (a) and (c) are equivalent. But

then if (b) is satisfied, (a) holds, so (c) holds and since (c) always implies (b),

the proof is complete.

Remark. Although our methods do not show it, we conjecture that in

Theorem 2, (a) implies (b) even in the case p = 1.

3. Results for C0, Ce.    Here we state the analogues of Theorems 1 and 2 for

the periodic case, and indicate briefly how they may be derived.

Theorem 3.    Let w(6) be nonnegative and measurable on (0, it). If 1 < p

< 00, (a), (b) and (c) are equivalent; if p = 1, (a) and (b) are equivalent where:

(a) There is a constant A  such that for every (a, b) G (0,77),

( (b w(6)de)( (b sinpHp-x) 9w(oyx/{p-x)de)
\Ja /\Ja )

■L.  '     .   P(b + a\ .   p(b-a\
< Vin  \^— )sm  \~~2~)•

(b) There is a constant Bp such that for all y > 0,
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106 K. F. ANDERSEN

Lc.W)\>A W{6)de < V-'/o' l/(*)IM*)*.

(c) There is a constant Cp such that

£ \(CJ)(9)\pw(9)d9 < Cp£ \f(<t,)\pw(<¡>)d<¡>.

Theorem 4. Let w(9) be nonnegative and measurable on (0, 77). If 1 < p

< 00, i/ie« (a), (b) and (c) are equivalent; if p = 1, (b) implies (a) where:

(a) There is a constant Ap such that for every (a, b) G (0,77),

(fab sinp9w(9)d9)(fab w(9)~Xl{p~x)doY

<^S1n^)S1n^).

(b) There is a constant B such that for all y > 0,

ímxm>* w{e)d9 K B"y'Pio l/(*)IM*)*.

(c) There is a constant C_ such that

£ \(CJ)(0)\pw(9)d9 < CpfJ \f(<¡>)\pw(<t>)d<t>.

The proof in Theorem 3 that (a) => (b) may be patterned after that of

Theorem 1 with Lemma 1 replaced by

Lemma 2. Let w(9) be nonnegative and measurable on (0,77). Let W(x) be

the function on (—00, 00) which is of period 2, even on (—1,1) and given by

W(x) = w(2 sin-1 y*)/(■*(! - x))x/2

when x G (0,1). If \ < p < 00, W satisfies the A condition if and only if w

satisfies condition (a) of Theorem 3, in particular if w satisfies that condition for

some /» > 1, then it also satisfies the condition for all q, q > p — e, sufficiently

small € > 0.

Proof of Lemma 2. For intervals (a, b) containing at most one integer, the

outline of the proof of Lemma 1 may be followed to obtain a constant K for

which the desired inequality for W holds, then the periodicity of W shows that

the constant 3PK will suffice for an arbitrary interval.

Proof of Theorem 3. The proof of Theorem 1 may be imitated with

obvious modifications, except that in the proof that (b) =» (a), the interval J

corresponding to / is now chosen so that J and / have exactly one endpoint in

common, have the same length, and are both contained in (0,77). This is

possible since, by periodicity, it is only necessary to consider intervals / of

length less that 77/4.

Proof of Theorem 4. Since (Ceg)(9) = sin 9(C0f)(9), where g(<i>)

= sin <¡>f((¡>), and w satisfies condition (a) of Theorem 4 if and only if
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WEIGHTED NORM INEQUALITIES FOR HILBERT TRANSFORMS 107

sinp9w(9) satisfies (a) of Theorem 3, Theorem 4 follows from Theorem 3 in the

same way that Theorem 2 followed from Theorem 1.

Remark. We conjecture that (a) => (b) in Theorem 4 for the case p = 1

also, although our methods do not show this.
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