
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 336, Number 2, April 1993

WEIGHTED NORM INEQUALITIES
FOR HOMOGENEOUS SINGULAR INTEGRALS

JAVIER DUOANDIKOETXEA

Abstract. We prove weighted norm inequalities for homogeneous singular in-
tegrals when only a size condition is assumed on the restriction of the kernel to
the unit sphere. The same results hold for the operator obtained by modifying
the centered Hardy-Littlewood maximal operator over balls with a degree zero
homogeneous function and also for the maximal singular integral.

1. Introduction

Given a function Í2 over the unit sphere S"~x of R" , we will consider a
singular integral operator Tq given by

Taf(x) = lim f      Ç^lf(X-y)dy
E->°J\y\>£ \y\

and a related maximal operator

Maf(x) = sup 1 /    \a(y')f(x -y)\dy,
r>0  I     J\y\<r

where y' = y\y\~x ■ The Calderón-Zygmund method of rotations [CZ] proves
that if Q £ LX(S"-X), then Ma is bounded in LP{R"), 1 < p < oc, and the
same is true for Ta if Í2 is odd. If Q is even, then Tq is bounded in L^R"),
1 <p < oo, when Q e Llog+L(Sn-x) (i.e., |Q|max(0, log|fl|) £ LX(S"-X))
and /s„_,i2 = o.

In this paper we are interested in weighted norm inequalities for Tq and
Mçi ; that is, we look for locally integrable nonnegative functions w in R"
such that for some C independent of /

(1) j\Taf\pw<C j\f\pw,

and the same for Ma. We denote by L"(w) the LP space with respect to
the measure w(x)dx in R" so that ( 1 ) is equivalent to saying that Tq is a
bounded operator in Lp(w). The class of weights w for which (1) holds for
Tq (resp. Mq) will be denoted by Wp(Tq) (resp. Wp(Mq)). Also, given q , the

Received by the editors November 13, 1989 and, in revised form, April 17, 1990 and January
23, 1991.

1980 Mathematics Subject Classification (1985 Revision). Primary 42B20, 42B25.
The author was supported in part by DGICYT no. PB 86-108.

© 1993 American Mathematical Society
0002-9947/93 $ 1.00 + $.25 per page

869

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



870 JAVIER DUOANDIKOETXEA

class of weights w for which (1) holds simultaneously for all Tq (resp. Ma),
Çl£L*(Sn-x) is denoted by Wp(Tq) (resp. Wp(Mq)).

Weighted inequalities like (1) for w(x) = \x\a are in [MW]. More general
weights were studied in [KW1] but only assuming a Dini-type condition on
£2. In this paper we show that the operator Ta is bounded in Lp(w) for the
weights w considered in [KW1] and without assuming a Dini-type condition
on Q. Also, we show that the same is true for Mn . The technique we use is
based on the alternative approach to the unweighted case presented in [DR1],
where weighted inequalities for bounded Q were also obtained. These results
are proved in §3, after some technical lemmas given in §2. In §4 we study radial
weights which include, for both Ta and Ma, the weights of power type of
[MW] for Ta . In §5 some weights depending on Q are also determined. In §6
we consider the maximal singular integral associated to Ta in order to deduce
the almost everywhere convergence of the truncated integrals defining Ta for
functions in Lp(w). In §7 we extend the results to other singular integrals.

We recall that Ap (p > 1) is the class of weights w for which the Hardy-
Littlewood maximal function (corresponding to Q = 1 and denoted throughout
this paper by M) is bounded in LP(w) and was characterized by Muckenhoupt
as those locally integrable nonnegative functions such that for some finite con-
stant C and any cube Q in R"

{miw){Hw"""'f,<-c-
A\ is the class of weights w for which M satisfies a weak-type estimate in
Lx(w) and is characterized by Mw(x) < Cw(x) a.e. For most of the results
related to weighted norm inequalities we will refer to the monograph [GR] rather
than to the original papers.

Notice finally that the inequality
(2) Maf(x) < C(Mr'(x))xl"'       (l/q + l/q' = 1)
holds as a consequence of Holder's inequality.

After this manuscript was ready the author learned that some of the results
of this paper had been obtained independently by D. Watson (see [W]).

The author would like to thank the referee for his suggestions on improving
the writing of the paper.

2. Some technical lemmas
Given Q £ L«(S"-X), q > 1, we define

Ejf(x) = 2-J" j \Çl(y')\f(x-y)dy
JV<\y\<V+*

and if, moreover, /s„_, Q = 0, we also define

Tjfix)= I Ç^f(x-y)dy.
J2i<\y\<2¡+'     \y\

Then Maf{x) ~ sup; Ej(\f\)(x) (i.e., their quotient is bounded above and
below by positive finite constants);

oo

\Tjf(x)\<CEj(\f\)(x)   and   Taf(x)=  £  Tjf(x)
j=—oo
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for / 6 ^(R"). We also define

871

1/2

ga(f)(x)=     £ WM
U=-oo

and denote by Wp(ga) the LP-weights for ga .
Following [DR1] we make a new decomposition of Tq . Choose a real func-

tion y/ £ <g"x>{Rn), supported in \ < \Ç\ < 2, and such that

CO

£  \¥(2kQ\2=l   Vi#0.
k=—oo

Define Sk as (Skf)~(i) = y/(2kZ)f(t) so that £fcSt2 - Id.   Let  fkf =
2Z%-ooTjS2+kf;then Ta = ¿Zkfk.

In [DR1] we proved that given 1 < p < oo, there exists an a = a(p) > 0
such that

(3) \\Tkf\\p<C2-°W
For p = 2 this inequality is given by a Fourier transform estimate. In [DR1]
it was shown that for any po ¥" 2, (3) holds with a constant independent of
k. Given p, take po such that p is between po and 2 and interpolate to get
(3). Alternatively, one could prove that the Hx - Lx constant of Tk grows as
C(l + \k\) and apply interpolation again.

Lemma 1. Let w£Ap.Ifthe vector-valued inequality

(4)

1/2

E\£jfj\ <c
I*(ttl)

1/2

Ewi
LP(w)

holds, then we e Wp{Ta) for 0 < 6 < 1. Also, (4) holds if w £ Wp(Ma) and
P<2.
Proof. Decompose Ta as before. Then we have the following chain of inequal-
ities:

\Tkf\ LP(w)

1/2

<c\\[J2\TjSj+kf\

<c
1/2

Dwi <   CH/lliPfu,).
V(w)

where the first and third inequalities are deduced from the weighted Littlewood-
Paley theory with w £ Ap (see [K]), and the second inequality is a consequence
of \Tjf | < Ej(\f |) and the hypothesis (4). Using Stein and Weiss' interpolation
theorem with change of measure (see [BL, p. 115]) we interpolate with (3) and
summing in k we get the first part of the lemma.
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872 JAVIER DUOANDIKOETXEA

If w £ Wp(Ma), then the inequality

i/p

£l^/;l <c
Wtw)

1/P

Ewi

is trivial. Moreover, since Ma is a positive operator,

LP(w)

sup\Mafj(x)\ < Ma ( sup|/}| I (x)

pointwise and therefore also in the Lp(w)-norm. If p < 2, one can interpolate
(see [GR, p. 481] for the vector-valued interpolation) to get (4) with Ma instead
of Ej which is enough.   D

Lemma 2. If w £ Wp.(Ta), then wx'p £ Wp(Ta).

The lemma is easily proved by duality since Ta is (essentially) selfadjoint.
Given Q, we define Çlo(u) = |ü(w)| - tlQHi/IS"-1!. Then f2n is in the same

Lq class as Q and has mean value zero. The pointwise inequality

Ej\f\(x)<CTf\f\(x) + CMf(x)
holds, where Tj is defined as 7) but with n0 instead of Í2. Then

Mafix) < CgaQ(\f\)(x) + CMf(x),

which proves the following lemma.

Lemma 3. If w £ Apn Wp(ga0), then w £ Wp(Mq) ■

We obtain weighted inequalities for the square function ga by considering
the linear operators Te af = S, ejTjf, where e = {e;} is a sequence with e, =
+ 1 or -1. If T£ a is bounded in Lp(w) with a constant independent of e,
then the usual argument with Rademacher functions [S] gives the boundedness
of ga in L"(w). In practice, Te a is decomposed as Ta and (3) still holds.

Lemma 4. Let q < 2 and p > 2. If Ma2-, is bounded in /Jz>/2)'(wi/(i-z>/2)) _
then the vector-valued inequality (4) in Lemma 1 holds for p.
Proof. Applying the Cauchy-Schwarz inequality we get

\Ejfj(x)\2 < C2-J" f \ai(x~y)')Mfj{y)\2dy,
J2J<\x-y\<2i+]

and, if p > 2, there exists u with unit norm in L(p/2)''(w) such that

1/2

5>/-/)i = / J2\Ejfj(x)\2u(x)w(x)dx.
Lp(w)
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WEIGHTED NORM INEQUALITIES 873

Majorizing \Ejf(x)\2 by the above bound and integrating first in x we have
i21/2

Ei^-i <C JYJ\fjiy)\2Ma^iuw)(y)dy

<C

U>(w)

1/2

Ei/vi2 !\MQ1-q(uw)\(pl2)'w(p/2)',.,l/(l-p/2)
l/(p/2)'

W(w)

and it suffices to apply the hypothesis of the lemma to see that the last term is
bounded.   D

3. Weights in Muckenhoupt classes

Theorem 5. (i) Ap/q, C Wp(Mq) n Wp(Tq) if q' <p<oo;
(ii) wx~p £ Wp(Mq) n Wp(Tq) if we Ap,/q, and 1 < p < q.

Proof. From (2) and the weighted inequalities for the Hardy-Littlewood maxi-
mal function one gets Ap/qi c Wp(Mq) if q' < p < oo. Since Ma is bounded
in Lp(w) \/w e A\ for p > q', and in Lp for p < q', interpolation with
change of measure (see [BL, p. 119]) gives Ax c Wq<(Mq). Here and in the
sequel we use the basic fact that

(5) w eAB w l+£ £ Ap   for some e > 0,

which implies {we/w £ Ap, 0 < 0 < 1} = ,4P .
Let q > 2. Applying Lemma 1 we deduce Ap/ql C Wp(Tq) in q' < p < 2

and for p > 2 we can use the extrapolation theorem of Rubio de Francia [R,
Theorem 3, p. 539]. In this case, the part of (ii) corresponding to Wp(Tq)
follows from (i) and Lemma 2. To get (ii) for Wp(Mq) we apply Lemma 3. In
fact, the weighted inequalities for Tq are also valid for Te a » and duality can
be used for these operators as in Lemma 2.

Assume now that f < q < 2. Then, if Q, £ L"(S"~X), we have Q2<? £
X,?/(2-?)(5'n-i) an(j 2 < q/(2 - q) so that we can apply the preceding results
to Q2-q. Due to the fact that (q/(2 - q))' = q'/2, when p > q' we have
wi/(i~p/2) e W{p/2y(Ma2-<,) if w £ Ap/ql, according to (ii). Then Lemma 4
applies together with Lemma 1 and (5) to give Ap/q> c Wp(Tq). Reasoning as
above, Lemmas 2 and 3 provide (ii).

Next we consider the values of q in the range f < q < \ for which | <
q/(2 - q) < 2. The results just proved are then valid for Q2_i and the same
reasoning works. A bootstrapping argument is then applied to get the theorem
for any q > 1.   D

We do not know whether the analogue of (5) is true for Wp(Ma), i.e.,

w £ Wp(Ma) ^wx+E£ Wp(Ma)   for some e > 0

(analogously for Wp(Mq)). Also a duality result like Lemma 2,

w £ Wp,(Mq) =► wx~p £ Wp(MtUli
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874 JAVIER DUOANDIKOETXEA

would have avoided the use of the bootstrapping argument.  Both properties
together would give Wp(Tq) = Wp(Mq).

More weights can be obtained by interpolating those in (i) and (ii).

4. Radial weights

Theorem 6. Ma and Ta are bounded in Lp(\x\a) if

max \-n, -1 - (n - 1)^) < a < min (n(p - I), p - I + (n - 1)^

Proof. Assume a < 0. When p > q', the range —n < a < 0 is given by
Theorem 5 since those weights are in Ai{R") ; but they can also be obtained
with the method of rotations. Take then p < q'. Denoting by Mu the Hardy-
Littlewood maximal function in the direction u £ S"~x and applying Holder's
inequality we have

Maf(x)<   f    \Çi(u)\Muf(x)do(u)
JS"~l

< IIOHJ^.,) (J     \Ci(u)Hx-«/p>\Muf(x)\pdo(u)
i/p

Then
/ \Maf(x)\pw(x)dx

Jw

<C f     \a{u)\V-">'''» [ \Muf(x)\"w(x)dxdo(u)

<C f     \a(u)\U-9'p')p [ \f(x)\pMuw(x)dxdo(u)

(see [GR, p. 150] for the last inequality) so that w £ Wp(Ma) whenever

/     \Çï(u)\{X-q/p')pMuw(x)dcj(u)<Cw(x)   a.e.

Applying Holder's inequality again with exponents q/(l - q/p')p = 1/(1 -
p/q') and its conjugate q'/p , it is enough to prove

(6) (f     \Muw(x)\q'lpdo(u)\       <Cw(x)   a.e.

Take w(x) = \x\a with a < 0. Since w is radial, the left-hand side of (6)
is also radial and we can assume x = (\x\, 0, ... , 0). It is easy to compute
Muw(x) because the restriction of w to the line through x with direction u
is symmetric and decreasing with respect to the projection of the origin on this
line. So, if 6 is the angle of u with the X\ axis, we get

Muw(x) ~ C|jc|q   when |sin0| > |cos#| or - 1 < a < 0;
~C|x|a|sinö|1+a   when|sin0| < |cos0| and a < -1;

~ C\x\a log T-.—j-   when I sin6\ < I cos 01 and a = -1,
|sin0|

and (6) holds whenever
fTt/4

(sin0)(1+a)<?'/í'(sin0)n-2úf0 < +00,
/o/"Jo
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WEIGHTED NORM INEQUALITIES 875

which is true if -1 - (n - l)p/q' < a, as the hypothesis of the theorem states.
For Ta, the values —n < a < 0 for p > q' are still given by Theorem 5,

and Lemma 1 applies when 1 < p < min(2, q'). If 2 < q', then one applies
interpolation to fill the gap 2 < p < q'. The result for a > 0 is given by
duality (Lemma 2). To apply the duality to Ma we pass through Lemma 3 as
above.   D

Theorem 6 was proved for Ta by Muckenhoupt and Wheeden [MW] in a
different way and they also showed that the range is optimal. Their method also
works for Ma ■ Our approach is based on the method of rotations and shows
that any operator given as •*

(7) /     Ü(u)Ruf(x)do(u),

where Ru denotes the directional operator defined from some one-dimensional
operator R bounded in Lp(v, R) for all v £ A\{R), is bounded in Lp(w)
for all w satisfying (6) with (Muws)x/S (any s > 1) instead of Muw . This
modification comes from the fact that one has to use the inequality

f\Ruf(x)\pw(x)dx<C ¡\f(x)\p(Muws(x))xlsdx

with 5 > 1 (since (Muws)xls is an yli-weight) instead of the one used in the
proof of the theorem with 5=1, which is false in general (for example if R is
the Hubert transform).

Recalling that \x\a £ Ap(Ytn) if and only if -n < a < n(p - 1), one can
verify that there are more power weights in Theorem 6 than in Theorem 5.

Theorem 7. Let w(x) = t>i(|.r|)v2~p(|x|), where either v¡ £ A[(R+)  and is
decreasing or vf £ A\{R+),   i = 1,2.   Then Ma and Ta are bounded in
Lp(w).  This result is valid for Ma when Q £ Lx(Sn~x), and also for Ta if
moreover Q is odd.
Proof. For a radial function v such that v(x) = vo(\x\) it is shown in [CHS]
that

Muv(x) < C(Mv2+ó(\x\))x'{2+S)   Vri > 0

and, if v is decreasing,

Muv(x) < CMv0(\x\),

where M is the Hardy-Littlewood maximal function on R+ . With the as-
sumptions of the theorem, w,(|x|), i = 1,2, satisfies the A\ condition for
Mu uniformly in u so that w(x) = V[(\x\)v2x~p(\x\) satisfies the Ap condition
uniformly. Then

(8) / \Muf(x)\pw(x) dx<C f \f(x)\pw(x) dx

with C independent of u .
The theorem is now immediate for Ma since

\\Maf\\is(w) < [     |Í2(M)| \\Muf\\U(w) do(u).
JS"-'
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876 JAVIER DUOANDIKOETXEA

Applying (8) with the Hubert transform instead of M we get the theorem
for Ta when Q is odd. When Q is even, the usual modification of the method
of rotations (see [CZ]) does the job.   D

According to P. Jones' factorization theorem [GR, p.436] the weights w(x) =
wq{\x\) such that w^ e AP(R+) are included in the above statement. For power
weights |;c|Q this theorem only gives -1 < a < p - 1 which is the best possible
result for Q £ LX(S"~X) (not included in Theorem 6).

Again the result can be generalized to all operators represented as in (7)
provided R is bounded in Lp(v , R) for all v £ AP(R).

Proceeding as in Theorem 7 one can generalize the results of [DR2]:
Theorem 8. Let {Rj}"=l be the n Riesz transforms in R", and w a radial
weight of those appearing in Theorem 1. Then, for 1 < p < oo, there exists a
constant C depending only on w0 and p and not on n such that

1/2

<qi/ik,(
D>(w)

An analogous theorem exists for higher order Riesz transforms. All one needs
is to implement into the proofs of [DR2] the weighted inequality (8) (with the
Hubert transform) and realize that the constant in it is independent of n .

Let us finally indicate that some radial weights are also obtained for singular
integrals with variable kernel:

Tf(x) = p.v. jj^lf{x-y)dy,
where supx ||ß(x, ')IIl«(S"-i) < +00 ■ Theorem 7 holds with p > q' and Theo-
rem 6 holds with -n < a < 0 and p > q' (a better range appears in [MW]).
The details are left to the reader.

5. Weights depending on Q

The spirit of the extrapolation theorem is that the weighted L2-inequalities,
for example, contain all the information about the weighted Lp -inequalities. A
weaker (and much easier) statement would be that the weighted L2-inequalities
contain the unweighted ¿^-inequalities. Assuming p > 2, for instance, for
some u £ L'Jl2)'{R") of unit norm we have

\\Taf\\2p = J TafYu
and one only needs w £ W2(Tq) such that u < w a.e. and ||uz||(p/2)' <
C||m||(p/2)' in order to deduce the Lp boundedness of Ta in a standard way.
When Q e Lq(S"-x) and q>2, Theorem 5 assures that Ax C W2{Ta) and
w = (Mus)xls for any 5 between 1 and (p/2)' does the job. But if q < 2, none
of the above theorems provides enough weights to deduce the Lp-inequalities.
However, we know that Ta is bounded in Lp , 1 < p < oo. The restriction
on the amount of weights comes from the fact that we have been producing
weights valid for all Çl£ Lq , rather than for a particular one, and the purpose
of the following theorem is to show how to construct weights in W2(Tq) such
that the Lp-inequalities follow.
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Theorem 9. Let Q € Lq(S"-x), q<2,  I <s<r <oc, u £U(Rn), and A be
the norm of the operator Mai-<,M in Lr/S(R"). Then

\ i/i
w ¿Z

<n=0

1
(2A)n (Ma2-,M)nus\     £W2(Ta),

where (Ma2-9M)n stands for the composition n times of Ma2-gM.
Proof. We claim that inequality (4) in Lemma 1 holds when p = 2 for any
function w satisfying Mqi-,w < Cw a.e. In fact, proceeding as in Lemma 4
(with p = 2, so that u= I),

JY,\EJfj\2w<cj'£\fj\2Ma2-,w.
j j

The series in the statement of the theorem converges in the norm of Lr/S(R")
and since M and A/e.2-, are positive operators with v < min(Afcj, Mai-tv)
we have

ma\(Mws, Mo.2-qws) < Ma2-qMws < Y\ 7^77-{M&-*M)n+Xus < 2Aws
n=0 {2A)"

so that ws  is an ^-weight (hence Af), which satisfies Ma2-<iWs < 2Aws.
By applying Lemma 1 with ws  in the inequality (4) we deduce that w £
W2{Ta).   ü

The construction of w in the theorem follows from the algorithm of Rubio
de Francia in [R]. It is clear that it satisfies u < w a.e. (just taking n = 0 in
the series) and ||iü||r < C||«||r, the conditions required above to deduce the
LP -inequalities with p > 2.

6. The maximal singular integral

Tn
We define the following maximal operator associated to the singular integral

Taf(x) = sup |r7(*)l = sup
e-»0 e-»0 /J\v

Q(y')fix - y) dy
l\y\>e    \y\"

It is well known that the boundedness of 7£ in Lp(w) implies the almost
everywhere existence of lim£^o Tef(x), the principal value integral defining
Ta for / £ LP(w). We apply again the method of [DR1] or the method of
rotations in order to get weighted norm inequalities for T£ .

Theorem 10. (i) Let Q £ Lq(Sn~x), q > 1, let 1 < p < oo, and let w be as in
Theorem 5, 6, or 1. Then Ta is bounded in Lp(w).

(ii) Let Q € Lx(Sn~x) be odd. Then Ta is bounded in Lp(w) for w as in
Theorem 7.
Proof, (i) Assume 2k < e < 2k+x. Then

\rf(x)\<CMaf(x) + \T2kf(x)\,
so that it is enough to take dyadic values of e . On the other hand,

i?*7(*)i =
i=k

<CM(Taf) + CMf + (ô-®k)*Y,Tjf
j=k
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is the inequality proved in [DR 1] with ô the Dirac delta and <&k = 2~kn<S>(2~k-),
where <D is in the Schwartz class Z7(R"), 0(0) = 1, and suppO c 5(0, 1).
Therefore, it is enough to consider the last term, which in turn is bounded by

sup
k

(a-**)*E^/ <Esupk5-**)* wï
7=0   k

Each term in the sum is bounded by supj. |(<5 + |<P|fc) * Maf\ so that all the
weights obtained for Ma are valid for it. Moreover, in any unweighted LPo-
norm it has an exponential decay (use the Fourier transform in p0 = 2 and
interpolate for other values).

(ii) When Q is odd we have

Tef(x)<7i[     \Cl(u)\\H*J(x)\do(u),
JS"->

where H* is the maximal Hubert transform. The right-hand side of the in-
equality is an operator of the form (7) so that the proof of Theorem 7 applies
toit.

When Q is even and belongs to Lq(S"~x), q > 1 , the method of rotations
can be applied by using several operators of the type (7) because Ta has to
be written as a combination of Riesz transforms applied to operators with odd
kernels (see [CZ] for the details). The method used in (ii) is then applicable to
these operators and we get the weights in Theorems 6 and 7.   D

7. Some extensions and remarks

(a) Theorems 5 and 9 can be extended to the case where the kernel of the
singular integral contains a radial bounded function h , i.e.,

_,,  .     ..     /      h(\y\)Sl(y') f.Tf(x) = hm / ,',,„      f(x -y)dy.
e^°J\y\>e \y\

These operators were studied by Fefferman in [F] by using interpolation of
an analytic family of operators, but it was shown in [DR1] that the method
sketched in §2 of this paper also works. Again this method gives Theorems 5
and 9 and the corresponding part of Theorem 10. However, since the method
of rotations is not applicable here, we do not have the analogues of Theorems
6 and 7.

(b) Another modification concerns the use of a pseudonorm associated to a
nonisotropic group of dilations in R" instead of the euclidean norm, i.e.,

e^QJ\\y\\>£    \\y\\

where || • || denotes the pseudonorm, a is the homogeneous dimension of R"
with respect to this group, h £ L°°(0, oo), and Q. £ Lq(S"-x), q > 1 . The
definition of the ^-class of weights must be modified according to the present
structure of R" in the standard way. Here, even if h = 1 , the method of
rotations cannot be applied because the directional operators would correspond
to maximal functions and Hubert transforms along homogeneous curves, for
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which the appropriate weighted inequalities are still unknown. So, we again get
Theorems 5 and 9 and part of Theorem 10, and miss Theorems 6 and 7.

(c) Multiple singular integrals in product spaces and strong maximal operators
can also be treated by the methods in this paper. By using products of two
spaces, R" x Rm , in order to simplify notations, the operators are

Tafixx, x2) =   lim    / ySjL fixi ~y\,x2- y2) dyx dy2
«! ,b2—0 Jl>-il>=i   |Vi["|y2|m

|y2l>£2

and

Maf{x\, x2) =  sup  —— /       My[,y'2)\\fixi-yi,x2-y2)\dyldy2.
r¡,r2>0r\r2   J]Z\<r'

Muckenhoupt's definition of Ap in § 1 is now modified by taking averages over
products of cubes (one gets the weights for the strong maximal function, see
[GR]). Looking at [D], where the unweighted inequalities were obtained, the
reader will easily find the way to modify Lemmas 1 and 4 and Theorems 5 and
9. As in the unweighted case we are not able to handle the maximal singular
integral.

Theorems 6 and 7 are extended to Ma for any intregrable Q and to Ta for
Q odd in both variables by using the method of rotations and biradial weights,
i.e., w(x) = \x\\ai\x2\a2 with a\ and a2 in the appropriate range in Theorem 6
and w(x) = Wi(\x\\)w2(\x2\) with W\, w2 as in Theorem 7. For these weights
Tq is also bounded. When Q is not odd in both variables, the method of
rotations seems difficult to apply even in the unweighted case.

(d) If we define W\(Ma) as

W\(Ma) = {w/Maw < Cw a.e.},

then any weight w £ Wp(Mn) such that wx~p' £ Wp,(Ma) (in particular, all
those appearing in our theorems) can be factorized as w = wow\~p , wç,, W\ £
W\(Ma) (see [R]). If we were able to prove the duality property mentioned in
§3, namely

w £ Wp(Ma) «■ wx~p' £ Wp,(Ma),
then any weight in Wp(Mq) could be factorized as before.

(e) Weak-type (1,1) weighted inequalities have been studied for Tq in
[KW1, KW2] and for Ta in [CS], in both cases by assuming a Dini-type con-
dition on Q,. The situation is much more complicated when we merely assume
a size condition on £2, as is shown by the fact that even the unweighted weak-
type estimate was obtained only thirty years after the LP one was proved (see
[C, CR, HI]). One could conjecture that the inequality

(9) w({x:\Taf(x)\>X})<jJ\f\w
is satisfied when either w(x) = \x\a with -1 - (n - l)/q' < a < 0 (from
Theorem 6), or when w(x) = w0(\x\) and either w0 £ Ai(R+) and is decreasing
or w2, £ A\(R+) (from Theorem 7). Also, a similar conjecture could be made
for Ma ■ In the case of power weights and zz = 2, this result was proved
by Hofmann [H2].   The conjecture from Theorem 5 is that (9) holds when
Wq' 6^i(R").
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(f) When Q e Llog+L(S"-x), Tn is bounded in Lp(w) for w(x) = \x\a ,
-1 < a < p - 1, and also for w as in Theorem 7 by using the method of
rotations. Also Ta is bounded in L2(w) for w as in Theorem 9 with q = 1.
In this case, one can extrapolate from the result for q > 1 since the constant
has a size of the order ||Q||9(? - 1)_1.
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