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Abstract. Let v, ω1, ω2 be weights and let 1 < p1, p2 < ∞. Suppose that 1/p =
1/p1 + 1/p2 and the couple of weights (ω1, ω2) satisfies the reverse Hölder’s condition. For
the multisublinear maximal operator M on martingale spaces, we characterize the weights for

which M is bounded from Lp1(ω1) × Lp2 (ω2) to Lp,∞(v) or Lp(v). If v = ω
p/p2
2 ω

p/p2
2 ,

we partially give the bilinear version of one-weight theory.

Introduction. Let Rn be the n-dimensional real Euclidean space and f a real valued
measurable function, the classical Hardy-Littlewood maximal operator M, the maximal geo-
metric mean operator G and the minimal operator m are defined by

Mf(x) = sup
x∈Q

1

|Q|
∫

Q

|f (y)|dy ,

G(f )(x) = sup
x∈Q

exp
1

|Q|
∫

Q

log |f (y)|dy

and

mf (x) = inf
x∈Q

1

|Q|
∫

Q

|f (y)|dy ,

where Q is a non-degenerate cube with its sides parallel to the coordinate axes and |Q| is the
Lebesgue measure of Q.

Let u, v be two weights, i.e., positive measurable functions. As is well known, for
p ≥ 1, Muckenhoupt [18] showed that the inequality

λp

∫
{Mf >λ}

u(x)dx ≤ C

∫
Rn

|f (x)|pv(x)dx , λ > 0 , f ∈ Lp(v)

holds if and only if (u, v) ∈ Ap, i.e., for any cube Q in Rn with sides parallel to the coordi-
nates (

1

|Q|
∫

Q

u(x)dx

)(
1

|Q|
∫

Q

v(x)
− 1

p−1 dx

)p−1

< C , p > 1 ;
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1

|Q|
∫

Q

u(x)dx ≤ C ess inf
Q

v(x) , p = 1 .

Suppose that u = v and p > 1, Muckenhoupt [18] also proved that∫
Rn

(
Mf(x)

)p
v(x)dx ≤ C

∫
Rn

|f (x)|pv(x)dx , ∀f ∈ Lp(v)

holds if and only if v satisfies

(1)

(
1

|Q|
∫

Q

v(x)dx

)(
1

|Q|
∫

Q

v(x)
− 1

p−1 dx

)p−1

< C , ∀Q.

The crucial step is to show that if v satisfies Ap, then there is an ε > 0 such that v also satisfies
Ap−ε. However, the problem of finding all u and v such that∫

Rn

(
Mf(x)

)p
u(x)dx ≤ C

∫
Rn

|f (x)|pv(x)dx , ∀f ∈ Lp(v)

is much hard and complicated. In order to solve the problem, Sawyer [22] established the
testing condition Sp,q, i.e., for any cube Q in Rn with sides parallel to the coordinates

( ∫
Q

(
M(χQv1−p′

)(x)
)q

u(x)dx

) 1
q

≤ C

( ∫
Q

v(x)1−p′
dx

) 1
p

, ∀Q

where 1 < p ≤ q < ∞. The condition Sp,q is a necessary and sufficient condition such that
the weighted inequality

( ∫
Rn

(
Mf (x)

)q
u(x)dx

) 1
q

≤ C

( ∫
Rn

|f (x)|pv(x)dx

) 1
p

, ∀f ∈ Lp(v)

holds. In this case, the method of proof is very interesting. Motivated by [18, 22], the theory
of weights developed so rapidly that it is difficult to give its history a full account here (see [6]
and [5] for more information). However, it is possible to give a story of weighted inequalities
for the different variants of Hardy-littlewood operator. Let p → ∞ in (1), it follows that

(2)

(
1

|Q|
∫

Q

v(x)dx

)
exp

(
1

|Q|
∫

Q

log

(
1

v(x)

)
dx

)
< C ,

which is an alternative definition of A∞ weight (see [10]). It is known that Sbordone and Wik
[23] used (2) to characterize the boundedness of G from L1(v) to L1(v). In the case of two
weights, Yin and Muckenhoupt [24] gave that(

1

|Q|
∫

Q

u(x)dx

)
exp

(
1

|Q|
∫

Q

log

(
1

v(x)

)
dx

)
< C , ∀Q ⇔ sup

‖f ‖Lp(v)=1
‖Gf ‖Lp,∞(u)<∞

and ∫
Q

G(v−1χQ)(x)u(x)dx ≤ C|Q| , ∀ Q ⇔ sup
‖f ‖Lp(v)=1

‖ Gf ‖Lp(u)< ∞ ,

which generalize the results of [11]. Recently, Cruz-Uribe [4] (see also the references therein)
also studied the minimal operator and reverse Hölder’s inequality. There are still other vari-
ants of Hardy-littlewood operator, for example, the generalized maximal operator and the
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strong maximal operator which were considered in [20, 21] and [14], respectively. Now, the
multisublinear maximal function

M(f1, . . . , fm)(x) = sup
x∈Q

m∏
i=1

1

|Q|
∫

Q

|fi(yi)|dyi

associated with cubes with sides parallel to the coordinate axes was studied in [15]. They
introduced the multilinear A−→p condition which is an analogue of the Ap weight for multiple
weights. The more general case was extensively discussed in [9, 8].

The above operators can be defined in martingale space, and the weighted inequalities
also have their martingale versions. In fact, all of them have been discussed in [26, 17, 1,
12, 3, 16] (see also the references therein), except the one for multisublinear maximal func-
tion. In this paper, with stopping times and a kind of reverse Hölder’s condition, we discuss
weighted inequalities for multisublinear maximal operator on martingale spaces. One of our
main results is the martingale-variant of A−→

p , and the other is the equivalence of S−→
p and

strong weighted inequality in martingale space. We also discuss the convergence of martin-
gale, which is partly a bilinear version of the results in [13].

The rest of this section consists of the preliminaries for our paper.
Let (Ω,F , μ) be a complete probability space and (Fn)n≥0 an increasing sequence of

sub-σ -fields of F with F = ∨
n≥0

Fn. A weight ω is a random variable with ω > 0 and

E(ω) < ∞. For any n ≥ 0 and f ∈ L1, we denote the conditional expectation with respect to
Fn by En(f ), E(f |Fn) or fn, then (fn)n≥0 is an uniformly integrable martingale. Suppose
that functions f, g are integrable, the maximal operator and multisublinear maximal operator
are defined by

Mf = sup
n≥0

|En(f )| and M(f, g) = sup
n≥0

|En(f )||En(g)| ,

respectively. For B ∈ F , we always denote
∫
Ω

χBdμ and
∫
Ω

χBωdμ by |B| and |B|ω,

respectively. For (Ω,F , μ) and (Fn)n≥0, the family of all stopping times is denoted by T .

Throughout this paper, C will denote a constant not necessarily the same at each occurrence.

Acknowledgement. This paper was completed while the first author was at the Faculty of Math-
ematics of the University of Seville, Spain. He is very grateful for the hospitality. The authors thank
Gang Li for many valuable comments on this paper. They also thank the anonymous referee for his/her
careful reading of the manuscript and useful corrections.

1. Results and their proofs.

DEFINITION 1.1. Let ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that 1/p =
1/p1 + 1/p2 and σi = ω

− 1
pi−1

i ∈ L1, i = 1, 2. We say that the couple of weights (ω1, ω2)

satisfies the reverse Hölder’s condition RH(p1, p2), if there exists a positive constant C such
that ( ∫

{τ<∞}
σ1dμ

) p
p1

( ∫
{τ<∞}

σ2dμ

) p
p2 ≤ C

∫
{τ<∞}

σ

p
p1

1 σ

p
p2

2 dμ , ∀τ ∈ T .
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REMARK 1.2. In literature there exist many inverse Hölder’s inequalities of the type

‖f ‖p‖g‖q ≤ C‖f g‖1 ,

where 1/p + 1/q = 1, C is a constant and the functions f and g are subjected to suitable
restrictions. The suitable restrictions can be found in [19, 25]. In our paper, we find that the
reverse Hölder’s condition is useful for bilinear weighted theory in martingale context.

DEFINITION 1.3. Let v, ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that

1/p = 1/p1 + 1/p2. Denote that −→p = (p1, p2) and σi = ω
− 1

pi−1

i ∈ L1, i = 1, 2. We
say that the triple of weights (v, ω1, ω2) satisfies the condition A−→

p , if there exists a positive
constant C such that

sup
n≥0

En(v)
1
p En(ω

1−p′
1

1 )

1
p′

1 En(ω
1−p′

2
2 )

1
p′

2 ≤ C ,

where 1/pi + 1/p′
i = 1, i = 1, 2.

DEFINITION 1.4. Let v, ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that

1/p = 1/p1 + 1/p2. Denote that −→
p = (p1, p2) and σi = ω

− 1
pi−1

i ∈ L1, i = 1, 2. We
say that the triple of weights (v, ω1, ω2) satisfies the condition S−→p , if there exists a positive
constant C such that

( ∫
{τ<∞}

M(σ1χ{τ<∞}, σ2χ{τ<∞})pvdμ

) 1
p

≤ C|{τ < ∞}|
1

p1
σ1 |{τ < ∞}|

1
p2
σ2 , ∀τ ∈ T .

REMARK 1.5. If we substitute p1 = p2 and ω1 = ω2 into Definition 1.3 and Def-
inition 1.4, they reduce to the Ap1 condition and the Sp1 condition in martingale spaces,
respectively (see, e.g., [17]).

1.1. Bilinear version of two-weight inequalities.

THEOREM 1.6. Let v, ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that 1/p =
1/p1 + 1/p2 and (ω1, ω2) ∈ RH(p1, p2), then the following statements are equivalent:

(a) There exists a positive constant C such that for any τ ∈ T , any f ∈ Lp1(ω1) and
any g ∈ Lp2(ω2),

(3)

( ∫
{τ<∞}

(|fτ ||gτ |)pvdμ

) 1
p

≤ C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2) ;

(b) There exists a positive constant C such that

(4) ‖M(f, g)‖Lp,∞(v) ≤ C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2), ∀f ∈ Lp1(ω1), g ∈ Lp2(ω2);
(c) The triple of weights (v, ω1, ω2) satisfies the condition A−→

p .

PROOF. We shall follow the scheme: (a)⇔(b)⇐(c)⇐(a).
(a)⇒(b). It is trivial and we omit it.



WEIGHTED NORM INEQUALITIES FOR MULTISUBLINEAR MAXIMAL OPERATOR 543

(b)⇒(a). Fix n ∈ N and B ∈ Fn. For f ∈ Lp1(ω1) and g ∈ Lp2(ω2), let

F = f χB and G = gχB ,

respectively. Then En(F ) = fnχB and En(G) = gnχB. Moreover

|fngn|χB ≤ M(F,G) .

Combining with (4), we have

λp

∫
B∩{|fngn|>λ}

vdμ ≤ λp

∫
{M(F,G)>λ}

vdμ

≤ C

( ∫
Ω

|F |p1ω1dμ

) p
p1

( ∫
Ω

|G|p2ω2dμ

) p
p2

= C

( ∫
B

|f |p1ω1dμ

) p
p1

( ∫
B

|g|p2ω2dμ

) p
p2

.

For k ∈ Z, let

Bk = {2k < |fn||gn| ≤ 2k+1} .

Note that

{2k < |fn||gn| ≤ 2k+1} ⊆ {2k < |fn||gn|} .

Then ∫
Ω

(|fn||gn|)pvdμ =
∑
k∈Z

∫
Bk

(|fn||gn|)pvdμ

≤ C
∑
k∈Z

∫
Bk∩{|fn||gn|>2k}

2kpvdμ

≤ C
∑
k∈Z

( ∫
Bk

|f |p1ω1dμ

) p
p1

( ∫
Bk

|g|p2ω2dμ

) p
p2

≤ C

( ∑
k∈Z

∫
Bk

|f |p1ω1dμ

) p
p1

( ∑
k∈Z

∫
Bk

|g|p2ω2dμ

) p
p2

= C

( ∫
Ω

|f |p1ω1dμ

) p
p1

( ∫
Ω

|g|p2ω2dμ

) p
p2

,

where we have used Hölder’s inequality. As for τ ∈ T , it is easy to see that∫
{τ<∞}

(|fτ ||gτ |)pvdμ =
∑
n≥0

∫
{τ=n}

(|fn||gn|)pvdμ

≤ C
∑
n≥0

( ∫
Ω

|f χ{τ=n}|p1ω1dμ

) p
p1

( ∫
Ω

|gχ{τ=n}|p2ω2dμ

) p
p2
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≤ C

( ∑
n≥0

∫
Ω

|f χ{τ=n}|p1ω1dμ

) p
p1

( ∑
n≥0

∫
Ω

|gχ{τ=n}|p2ω2dμ

) p
p2

≤ C

( ∫
Ω

|f |p1ω1dμ

) p
p1

( ∫
Ω

|g|p2ω2dμ

) p
p2

.

Therefore, ( ∫
{τ<∞}

(|fτ ||gτ |)pvdμ

) 1
p

≤ C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2) .

(c)⇒(b). For f ∈ Lp1(ω1), g ∈ Lp1(ω2) and n ∈ N, we get

|En(f )| ≤ En(|f p1ω1|)
1

p1 En(ω
− 1

p1−1

1 )

1
p′

1 and |En(g)| ≤ En(|gp2ω2|)
1

p2 En(ω
− 1

p2−1

2 )

1
p′

2 .

Furthermore,

|En(f )En(g)|p ≤ En(|f p1ω1|)
p
p1 En(|gp2ω2|)

p
p2 En(ω

− 1
p1−1

1 )

p

p′
1 En(ω

− 1
p2−1

2 )

p

p′
2

= Ev
n(|f p1ω1v

−1|)
p
p1 Ev

n(|gp2ω2v
−1|)

p
p2 En(v)En(ω

− 1
p1−1

1 )

p

p′
1 En(ω

− 1
p2−1

2 )

p

p′
2 ,

where Ev
n(·) is the conditional expectation relative to the probability measure v

|Ω|v dμ. Be-
cause of (v, ω1, ω2) ∈ A−→p , we get

|En(f )En(g)| ≤ CEv
n(|f p1ω1v

−1|) 1
p1 Ev

n(|gp2ω2v
−1|) 1

p2 .

Thus

M(f, g) ≤ CMv(f p1ω1v
−1)

1
p1 Mv(gp2ω2v

−1)
1

p2 .

From this, using Hölder’s inequality for weak spaces (see, e.g., [7, p. 15]), we obtain

‖M(f, g)‖Lp,∞(v) ≤ C‖Mv(f p1ω1v
−1)

1
p1 ‖Lp1,∞(v)‖Mv(gp2ω2v

−1)
1

p2 ‖Lp2,∞(v)

= C‖Mv(f p1ω1v
−1)‖

1
p1
L1,∞(v)

‖Mv(gp2ω2v
−1)‖

1
p2
L1,∞(v)

≤ C‖f p1ω1v
−1‖

1
p1
L1(v)

‖gp2ω2v
−1‖

1
p2
L1(v)

= C‖f p1ω1‖
1

p1
L1 ‖gp2ω2‖

1
p2
L1

= C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2) .

(a)⇒(c). For any n ∈ N and B ∈ Fn, set f = ω
− 1

p1−1

1 χB and g = ω
− 1

p2−1

2 χB. Then

( ∫
B

En(ω
− 1

p1−1

1 )pEn(ω
− 1

p2−1

2 )pvdμ

) 1
p

≤ C

( ∫
Ω

ω
− 1

p1−1

1 χBdμ

) 1
p1

( ∫
Ω

ω
− 1

p2−1

2 χBdμ

) 1
p2

.
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Furthermore,
( ∫

B

En(ω
− 1

p1−1

1 )pEn(ω
− 1

p2−1

2 )pEn(v)dμ

) 1
p

(5)

≤ C

( ∫
B

En(ω
− 1

p1−1

1 )dμ

) 1
p1

( ∫
B

En(ω
− 1

p2−1

2 )dμ

) 1
p2

.

We claim that there exists a constant C such that
(
En(ω

− 1
p1−1

1 )pEn(ω
− 1

p2−1

2 )pEn(v)
) 1

p ≤ CEn(ω
− 1

p1−1

1 )
1

p1 En(ω
− 1

p2−1

2 )
1

p2 .

Otherwise, for any C > 0, let

B = {En(ω
− 1

p1−1

1 )pEn(ω
− 1

p2−1

2 )pEn(v) > CEn(ω
− 1

p1−1

1 )
p
p1 En(ω

− 1
p2−1

2 )
p
p2 } ,

then μ(B) > 0. Consequently,∫
B

En(ω
− 1

p1−1

1 )pEn(ω
− 1

p2−1

2 )pEn(v)dμ > C

∫
B

En(ω
− 1

p1−1

1 )
p
p1 En(ω

− 1
p2−1

2 )
p
p2 dμ

≥ C

∫
B

En(ω
− 1

p1−1
p
p1

1 ω
− 1

p2−1
p
p2

2 )dμ(6)

= C

∫
B

ω
− 1

p1−1
p
p1

1 ω
− 1

p2−1
p
p2

2 dμ

≥ C

( ∫
B

ω
− 1

p1−1

1 dμ

) p
p1

( ∫
B

ω
− 1

p2−1

2 dμ

) p
p2

,(7)

where (6) and (7) follow from Hölder’s inequality for En(·) and the RH(p1, p2) condition,
respectively. It follows that

∫
B

En(ω
− 1

p1−1

1 )pEn(ω
− 1

p2−1

2 )pEn(v)dμ > C

( ∫
B

ω
− 1

p1−1

1 dμ

) p
p1

( ∫
B

ω
− 1

p2−1

2 dμ

) p
p2

,

which contradicts (5). By contradiction, we have
(
En(ω

− 1
p1−1

1 )pEn(ω
− 1

p2−1

2 )pEn(v)
) 1

p ≤ CEn(ω
− 1

p1−1

1 )
1

p1 En(ω
− 1

p2−1

2 )
1

p2 .

Then

En(v)
1
p En(ω

1−p′
1

1 )

1
p′

1 En(ω
1−p′

2
2 )

1
p′

2 ≤ C .

This completes the proof. �

THEOREM 1.7. Let v, ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that 1/p =
1/p1 + 1/p2 and (ω1, ω2) ∈ RH(p1, p2), then the following statements are equivalent:

(a) There exists a positive constant C such that

‖M(f, g)‖Lp(v) ≤ C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2) , ∀f ∈ Lp1(ω1) , g ∈ Lp2(ω2) ;
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(b) There exists a positive constant C such that

(8) ‖M(f σ1, gσ2)‖Lp(v) ≤ C‖f ‖Lp1 (σ1)‖g‖Lp2 (σ2) , ∀f ∈ Lp1(σ1) , g ∈ Lp2(σ2) ,

where σi = ω
− 1

pi−1

i , i = 1, 2;
(c) The triple of weights (v, ω1, ω2) satisfies the condition S−→p .

REMARK 1.8. We mention that the first author has also obtained a similar character-
ization for the multisublinear maximal function in function space. The multilinear testing
condition was further discussed by [2] in function space, which generalized the result in [22].

PROOF. It is clear that (a)⇔(b)⇒(c), so we omit them. To prove (c)⇒(b), we proceed
in the following way. Let f ∈ Lp1(σ1), g ∈ Lp2(σ2). For all k ∈ Z, define stopping times

τk = inf{n : |E(f σ1|Fn)E(gσ2|Fn)| > 2k} .

Set

Ak,j = {τk < ∞} ∩ {2j < E(σ1|Fτk )E(σ2|Fτk ) ≤ 2j+1} ;
Bk,j = {τk < ∞, τk+1 = ∞} ∩ {2j < E(σ1|Fτk )E(σ2|Fτk ) ≤ 2j+1} , j ∈ Z .

Then Ak,j ∈ Fτk , Bk,j ⊆ Ak,j . Moreover, {Bk,j }k,j is a family of disjoint sets and

{2k < M(f σ1, gσ2) ≤ 2k+1} = {τk < ∞, τk+1 = ∞} =
⋃
j∈Z

Bk,j , k ∈ Z .

Trivially,

E(f σ1|Fτk ) = Eσ1(f |Fτk )E(σ1|Fτk ) and E(gσ2|Fτk ) = Eσ2(g|Fτk )E(σ2|Fτk ) .

On each Ak,j , we have

2kp ≤ ess inf
Ak,j

|E(f σ1|Fτk )
pE(gσ2|Fτk )

p|

≤ ess inf
Ak,j

|Eσ1(f |Fτk )E
σ2(g|Fτk )|p ess sup

Ak,j

(
E(σ1|Fτk )E(σ2|Fτk )

)p

≤ 2p ess inf
Ak,j

|Eσ1(f |Fτk )E
σ2(g|Fτk )|p|Bk,j |−1

v

∫
Bk,j

(
E(σ1|Fτk )E(σ2|Fτk )

)p
vdμ .

To estimate
∫
Ω
M(f σ1, gσ2)

pvdμ, firstly we have∫
Ω

M(f σ1, gσ2)
pvdμ

=
∑
k∈Z

∫
{2k<M(f σ1,gσ2)≤2k+1}

M(f σ1, gσ2)
pvdμ

≤ 2p
∑
k∈Z

∫
{2k<M(f σ1,gσ2)≤2k+1}

2kpvdμ

= 2p
∑

k∈Z,j∈Z

2kp

∫
Bk,j

vdμ
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≤ 4p
∑

k∈Z,j∈Z

ess inf
Ak,j

|Eσ1(f |Fτk )E
σ2(g|Fτk )|p

∫
Bk,j

(
E(σ1|Fτk )E(σ2|Fτk )

)p
vdμ .

It is clear that ϑ is a measure on X = Z2 with

ϑ(k, j) =
∫

Bk,j

(
E(σ1|Fτk )E(σ2|Fτk )

)p
vdμ .

For the above f ∈ Lp1(σ1), g ∈ Lp2(σ2), define

Tf,g (k, j) = ess inf
Ak,j

|Eσ1(f |Fτk )E
σ2(g|Fτk )|p

and denote

Eλ =
{
(k, j); ess inf

Ak,j

|Eσ1(f |Fτk )E
σ2(g|Fτk )|p > λ

}
and Gλ =

⋃
(k,j)∈Eλ

Ak,j

for each λ > 0. Then we have

|{Tf,g > λ}|ϑ =
∑

(k,j)∈Eλ

∫
Bk,j

(
E(σ1|Fτk )E(σ2|Fτk )

)p
vdμ

=
∑

(k,j)∈Eλ

∫
Bk,j

(
E(σ1χGλ |Fτk )E(σ2χGλ |Fτk )

)p
vdμ

≤
∫

Gλ

M(σ1χGλ, σ2χGλ)
pvdμ .

Let τ = inf
{
n: |Eσ1(f |Fn)E

σ2(g|Fn)|p > λ
}
. We have Gλ ⊆ {

Mσ1,σ2(f, g)p > λ
} =

{τ < ∞}, where Mσ1,σ2(f, g) = sup
n≥0

|Eσ1(f |Fn)||Eσ2(g|Fn)|. It follows from S−→
p and

RH(p1, p2) that

|{Tf,g > λ}|ϑ ≤
∫

{τ<∞}
M(σ1χ{τ<∞}, σ2χ{τ<∞})pvdμ

≤ C|{τ < ∞}|
p
p1
σ1 |{τ < ∞}|

p
p2
σ2

≤ C

∫
{τ<∞}

σ

p
p1

1 σ

p
p2

2 dμ .

Therefore,∫
Ω

M(f σ1, gσ2)
pvdμ ≤ 4p

∫
X

Tf,gdϑ = 4p

∫ ∞

0
|{Tf,g > λ}|ϑdλ

≤ C

∫ ∞

0

∫
{τ<∞}

σ

p
p1

1 σ

p
p2

2 dμdλ

= C

∫ ∞

0

∫
{Mσ1,σ2 (f,g)p>λ}

σ

p
p1

1 σ

p
p2

2 dμdλ

= C

∫
Ω

Mσ1,σ2(f, g)pσ

p
p1

1 σ

p
p2

2 dμ
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≤ C

∫
Ω

Mσ1(f )pMσ2(g)pσ

p
p1

1 σ

p
p2

2 dμ

≤ C

( ∫
Ω

Mσ1(f )p1σ1dμ

) p
p1

(∫
Ω

Mσ1(f )p2σ2dμ

) p
p2

≤ C‖f ‖p

Lp1 (σ1)
‖g‖p

Lp2 (σ2)
,

where we have used Hölder’s inequality. Hence (8) is valid. �

COROLLARY 1.9. Let v, ω be weights and 1 < p < ∞. Suppose that ω
− 1

p−1 ∈ L1.

Then the following statements are equivalent:
(a) There exists a positive constant C such that

( ∫
{τ<∞}

|fτ |pvdμ

) 1
p

≤ C‖f ‖Lp(ω) , ∀τ ∈ T , f ∈ Lp(ω) ;

(b) There exists a positive constant C such that

‖Mf ‖Lp,∞(v) ≤ C‖f ‖Lp(ω) , ∀f ∈ Lp(ω) ;
(c) The couple of weights (v, ω) satisfies the condition Ap.

COROLLARY 1.10. Let v, ω be weights and 1 < p < ∞. Suppose that ω
− 1

p−1 ∈ L1.

Then the following statements are equivalent:
(a) There exists a positive constant C such that

‖Mf ‖Lp(v) ≤ C‖f ‖Lp(ω) , ∀f ∈ Lp(ω) ;
(b) There exists a positive constant C such that

‖M(f σ)‖Lp(v) ≤ C‖f ‖Lp(σ) , ∀f ∈ Lp(σ) ,

where σ = ω
− 1

p−1 ;
(c) The couple of weights (v, ω) satisfies the condition Sp.

PROOF. If we substitute p1 = p2 and ω1 = ω2 into Theorem 1.6 and Theorem 1.7,
then the reverse Hölder’s condition is trivial and we get Corollary 1.9 and Corollary 1.10. �

1.2. Bilinear version of one-weight theory. We recall the following Proposition 1.11
which characterizes an Ap weight in martingale context (see, e.g., [13, 16]). Then, we par-
tially give its bilinear analogue.

PROPOSITION 1.11. Let ω be a weight and let 1 < p < ∞. Suppose that ω
− 1

p−1 ∈
L1. Then the following statements are equivalent:

(a) The weight ω satisfies the condition Ap, i.e.,

sup
n≥0

En(ω)En(ω
− 1

p−1 )p−1 ≤ C ;
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(b) There exists a positive constant C such that

‖En(f )‖Lp(ω) ≤ C‖f ‖Lp(ω) , ∀n ∈ N, f ∈ Lp(ω) ;
(c) If f ∈ Lp(ω), then En(f ) ∈ Lp(ω), for any n ∈ N, and

lim
n→∞

( ∫
Ω

|En(f ) − f |pωdμ

) 1
p

= 0 ;
(d) There exists a positive constant C such that

‖Mf ‖Lp(ω) ≤ C‖f ‖Lp(ω) , ∀f ∈ Lp(ω) .

REMARK 1.12. In the proof of Theorem 1.6, the condition (ω1, ω2) ∈ RH(p1, p2)

has been used only to show that (3) implies (v, ω1, ω2) ∈ A−→
p . Moreover, under the same

assumptions as in Theorem 1.6, the following statements are equivalent:
(a) There exists a positive constant C such that for any n ∈ N, any f ∈ Lp1(ω1) and

any g ∈ Lp2(ω2),

(9)

( ∫
Ω

|En(f )En(g)|pvdμ

) 1
p

≤ C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2);
(b) The triple of weights (v, ω1, ω2) satisfies the condition A−→

p .

LEMMA 1.13. Let ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that 1/p =
1/p1 + 1/p2, ω

− 1
pi−1

i ∈ L1, i = 1, 2 and v = ω
p/p1
1 ω

p/p2
2 . If f ∈ Lp1(ω1), g ∈ Lp2(ω2)

and En(f )En(g) ∈ Lp(v), for any n ∈ N, then

(10) lim
n→∞

( ∫
Ω

|En(f )En(g) − f g|pvdμ

) 1
p

= 0 ,

if and only if, for any ε > 0, there is a nonnegative function y ∈ Lp(v) such that

(11) sup
n≥0

( ∫
Ω

|En(f )En(g)χ{|En(f )En(g)|≥y}|pvdμ

) 1
p

≤ ε .

PROOF. Suppose that (11) is valid. We will prove (10). For any ε > 0, there is a
nonnegative function y ∈ Lp(v) such that

sup
n≥0

( ∫
Ω

|En(f )En(g)χ{|En(f )En(g)|≥y}|pvdμ

) 1
p

≤ ε .

Since ‖f g‖Lp(v) ≤ ‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2) < ∞, we can assume that y > |f g|. We also have
lim

n→∞ fn = f and lim
n→∞ gn = g, because the martingales (fn)n≥0 and (gn)n≥0 are uniformly

integrable. Thus

(2y)p ≥ |fngnχ{|fngn|<y} − f g|p → 0 , as n → ∞ .

It follows from the dominated convergence theorem

lim
n→∞ ‖fngnχ{|fngn|<y} − f g‖Lp(v) = 0 .
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For the above ε, there is an n0 ∈ N, such that

‖fngnχ{|fngn|<y} − f g‖Lp(v) < ε , ∀n > n0 .

Moreover,

‖fngn − f g‖Lp(v) = ‖fngn(χ{|fngn|<y} + χ{|fngn|≥y}) − f g‖Lp(v)

≤ (2
1−p
p ∨ 1)

(‖fngnχ{|fngn|<y} − f g‖Lp(v) + ‖fngnχ{|fngn|≥y}‖Lp(v)

)

< 2(2
1−p
p ∨ 1)ε, ∀n > n0 ,

which implies (10).
Conversely, we assume that (10) is valid. Since f g ∈ Lp(v), we obtain that for any

0 < ε < 1, there exists δ > 0 such that whenever E ∈ F satisfies |E|v < δ, then( ∫
E |f g|pvdμ

)1/p
< 1

2(2(1−p)/p∨1)
ε. For the above ε > 0, there exists an n0, such that

( ∫
Ω

|En(f )En(g) − f g|pvdμ

) 1
p

<

(
1

2(2
1−p
p ∨ 1)

∧ δ
1
p

)
ε , ∀n ≥ n0 .

Moreover, for the above ε > 0 and n ≥ n0, we obtain that

|{|En(f )En(g)| − |f g| > ε}|v = 1

εp

∫
{|En(f )En(g)|−|f g |>ε}

εpvdμ

≤ 1

εp

∫
Ω

|En(f )En(g) − f g|pvdμ < δ .

Let y = max{2|f1g1|, 2|f2g2|, . . . , 2|fn0gn0 |, |f g| + 2ε}. It follows that y ∈ Lp(v) and

sup
n≥0

( ∫
Ω

|En(f )En(g)χ{|En(f )En(g)|≥y}|pvdμ

) 1
p

= sup
n>n0

( ∫
{|En(f )En(g)|≥y}

|En(f )En(g)|pvdμ

) 1
p

= sup
n>n0

( ∫
{|En(f )En(g)|≥y}

|En(f )En(g) − f g + f g|pvdμ

) 1
p

≤ (2
1−p
p ∨ 1) sup

n>n0

( ∫
Ω

|En(f )En(g) − f g|pvdμ

) 1
p

+ (2
1−p
p ∨ 1) sup

n>n0

( ∫
{|En(f )En(g)|−|f g |>ε}

|f g|pvdμ

) 1
p

< ε .

This completes the proof. �

PROPOSITION 1.14. Let ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that
1/p = 1/p1 + 1/p2 and v = ω

p/p1
1 ω

p/p2
2 . If the triple of weights (v, ω1, ω2) satisfies the
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condition A−→
p , then

(12) lim
n→∞

( ∫
Ω

|En(f )En(g) − f g|pvdμ

) 1
p

= 0, ∀f ∈ Lp1(ω1) , g ∈ Lp2(ω2) .

PROOF. Let f ∈ Lp1(ω1) and g ∈ Lp2(ω2). It follows from the condition A−→
p and

Remark 1.12 that

( ∫
Ω

|En(f )En(g)|pvdμ
) 1

p ≤ C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2), ∀n ∈ N ,

which is the assumption of the Lemma 1.13. If (11) is valid , we have (12) by the Lemma
1.13. We will prove (11) in the following way. Since f and g are integrable, the martingales
(fn)n≥0 and (gn)n≥0 are uniformly integrable. It follows from Doob’s inequality that

(13) sup
λ>0

λ|{Mf > λ}| ≤
∫

Ω

|f |dμ and sup
λ>0

λ|{Mg > λ}| ≤
∫

Ω

|g|dμ .

For n ∈ N, fix λ > 0, which will be determined later. Then,

( ∫
Ω

|En(f )En(g)χ{|En(f )En(g)|≥λ}|pvdμ

) 1
p

=
( ∫

Ω

|En(f χ{|En(f )En(g)|≥λ})En(gχ{|En(f )En(g)|≥λ})|pvdμ

) 1
p

≤
( ∫

Ω

En(|f χ{Mf Mg≥λ}|)pEn(|gχ{Mf Mg≥λ}|)pvdμ

) 1
p

≤ C‖f χ{Mf Mg≥λ}‖Lp1 (ω1)‖gχ{Mf Mg≥λ}‖Lp2 (ω2) ,(14)

where (14) is a result of Remark 1.12. It is clear that

{MfMg ≥ λ} ⊆ {Mf ≥ λ
p
p1 } ∪ {Mg ≥ λ

p
p2 } .

Thus |{MfMg ≥ λ}| ≤ |{Mf ≥ λp/p1}| + |{Mg ≥ λp/p2}|. Combing with (13), we get
lim

λ→∞ |{MfMg ≥ λ}| = 0. Then, (11) follows from (14), because of the absolute continuity

of the integral. �

PROPOSITION 1.15. Let ω1, ω2 be weights and 1 < p1, p2 < ∞. Suppose that
1/p = 1/p1 + 1/p2 and v = ω

p/p1
1 ω

p/p2
2 . If there exists a positive constant C such that

‖M(f, g)‖Lp(v) ≤ C‖f ‖Lp1 (ω1)‖g‖Lp2 (ω2) , ∀f ∈ Lp1(ω1) , g ∈ Lp2(ω2) ,

we have (v, ω1, ω2) ∈ A−→
p , (9) and (12).

REMARK 1.16. The proof of Proposition 1.15 is clear and we omit it. But we can not
give the converse of the Proposition 1.15 in martingale spaces.
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