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Abstract. The principal problem considered is the determination of all non-
negative functions, U(x), for which there is a constant, C, such that

| [f*(x)rUix)dx g CJ \f(x)\'U(x) dx,

where l<p<oo, J is a fixed interval, C is independent of f, and/* is the Hardy
maximal function,

f*(x) =   sup -i-    i" |/(/)| dt.
yïx'.yej y — X     Jx

The main result is that U(x) is such a function if and only if

[ f C/(x) ¿.xi Í f [Uixïï-uo-vdxV '   S K\I\"

where I is any subinterval of J, \I\ denotes the length of / and AT is a constant inde-
pendent of /.

Various related problems are also considered. These include weak type results, the
problem when there are different weight functions on the two sides of the inequality,
the case whenp = l orp = oo, a weighted definition of the maximal function, and the
result in higher dimensions. Applications of the results to mean summability of
Fourier and Gegenbauer series are also given.

1. Introduction.   The original inequality of the type

(1.1) $ [f*(x)]>U(x) dx S cj |/(x)|»£/(x) dx

was the well-known one of Hardy and Littlewood [3] showing that (1.1) is true if
t/(x)=l and 1 <p<co. Stein in [10] showed that (1.1) is true for J=( —oo, oo) if
l<p<co, U(x)=\x\a and —\lp<a<\ — \jp. Fefferman and Stein in [1] showed
that (1.1) is true for7= ( — oo, oo)if 1 <p<oo and U*(x)¿ CU(x) for almost every x.

Theorems of this sort are important in proving weighted mean convergence
results for orthogonal series since the error terms can almost always be majorized
by some version of/*(x); this was done, for example, in [6], [7] and [8]. They can
also be used to prove mean summability results ; several examples of this are given
in this paper. It also turns out that the results here are needed to determine all the
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208 BENJAMIN MUCKENHOUPT [March

weight functions for which (1.1) is true if/* is replaced by the conjugate function
or the Hubert transform. This problem was considered by Helson and Szegö in
[4] and Forelli in [2] among others but has been solved completely only for the
conjugate function when p = 2. A sequel to this paper by this author and R.
Wheeden will give the solution to this problem for 1 <p< oo for both the Hubert
transform and the conjugate function.

As a first step in obtaining the main result the "weak type" problem is considered
in §2. Since it introduces no additional complications, a slightly more general
result is proved. The problem considered is to find all pairs of nonnegative func-
tions, U(x), V(x), for which there is a constant, B, such that

(1.2) f    U(x) dx ^ Ba~p ¡ \f(x)\pV(x) dx
JEo, Jl

where Ea is the subset of/ where/*(x) > a, 0 < a < oo, and B is independent of/and
a. A necessary and sufficient condition is given for this ; it follows easily that

(1.3) f í/(x)í/xlí[ [£/(x)]-1'<!'-1)í/xr * g F|7|p

for every subinterval, 7, of/is a necessary condition for (1.1) to hold.
Proving that (1.3) is a sufficient condition for (1.1) to hold is somewhat harder

and requires several lemmas concerning functions that satisfy (1.3). These are
proved in §3. Holder's inequality shows that if U satisfies (1.3) for a given p, it
satisfies (1.3) for all larger p. The major part of §3 is devoted to proving that a
function satisfying (1.3) for a given p also satisfies it for a smaller^. Once this is
known an interpolation argument in §4 completes the proof that (1.3) implies (1.1).

Several interesting corollaries follow from the results in §§2 and 3. If U(x)
satisfies (1.1) and -min [p-l, l/(p-l)]<a^l, then [U(x)]a also satisfies (1.1).
Furthermore, there is always an a> 1 and an a< —min [p—l, l/(p—l)] for which
[U(x)]a satisfies (1.1). It also follows that the set of all p for which a function,
U(x), satisfies (1.1) is always an interval of the form (p0, oo). These corollaries and
some results concerning the cases when p = 1 and p = oo are given in §4.

Surprisingly, the problem of finding all U and V such that

(1.4) £ [f*(x)]pU(x) dx ¿ CJ \f(x)\"V(x) dx

is much harder. In this case the condition for (1.2) is still necessary since (1.4)
implies (1.2), but this condition is not sufficient. In §5 several examples are given to
illustrate the difficulties.

In dealing with mean convergence problems for various orthogonal series in
[6], [7], and [8] it was natural to consider the weighted Hardy maximal function,

v*x-.ye]     yxdm(t)
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1972] WEIGHTED NORM INEQUALITIES 209

where m(t) was a suitable measure. In §6 a necessary and sufficient condition is
given for an inequality like (1.1) to hold for this maximal function. The result
follows from the same reasoning as the theorem concerning/*(x).

The n dimensional case is sketched in §7. Except for one basic lemma the de-
velopment is similar to the one dimensional case.

Finally, it is shown in §8 that weighted Cesaro and Abel mean summability
results hold for Fourier series if and only if the weight function satisfies the con-
dition (1.3). A similar result is proved for mean Abel summability of Gegenbauer
series.

Throughout this paper 0 • oo will be taken to be 0, C will denote a constant not
necessarily the same at each occurrence, | E | will denote the Lebesgue measure of
a set E, and/?' will be defined by l/p + l/p'= 1. When/>= 1, [j7 \g(x)\-1Kp-» dx]1-1
will be taken to mean ess sup^, |g(x)|_1.

2. A weak type result.   The theorem to be proved in this section is the following.

Theorem 1. Let J be a fixed interval, l^/?<oo, 0<a<oo, U(x) and V(x) be
nonnegative functions on J, and given f(x) on J let Ea be the subset of J where
f*(x) > a. Then there is a constant, B, independent off and a such that

(2.1) f    U(x)dx á Ba-p f \f(x)\"V(x) dx
JEa Jj

if and only if there is a constant, K, such that for every subinterval, I, ofJ

(2.2) íí t/(x)¿xl[f [V(x)]-^'" dxV l Ú K\I\».

Furthermore, if B and K are the least constants for which (2.1) and (2.2) are true,
K^Bú2pK.

For p=\ the convention stated at the end of §1 makes (2.2) take the form
J", U(x) dx S 7í|7| ess infxe/ V(x). It is immediate then that (2.2) for all sub-
intervals, 7, of/ with p = 1 is equivalent to the statement U*(x) ^ KV(x) for almost
every x in /; this is the condition used by Stein and Fefferman in [1].

To prove Theorem 1 it will first be shown that B^2"K, and, consequently, that
(2.2) implies (2.1). To do this fix a positive a and define

/i*(x) =   sup   -!— 1 X |/(0| dt   and   f$(x) =   sup   —— f" \f(t)\ dt.
y<x;yeJX     yjy y>x:yeJS      X J x

As shown on p. 31, Vol. I of [12], the set where/f(x) > a is a disjoint union of open
intervals, (ah b¡), and f*1 \f(t)\ dt^a\(ai, bt)\. The same is, of course, true for
/2*(x). Therefore, the set where f*(x) > a, Ea, is open and can be written as the
disjoint union of intervals, (ciy í/¡). Since either/* or/2* is greater than a on at least
half of each (c¡, dt), it follows that

(2.3) {a,\ñt)\dt*íaKci,di)\.
Jcí
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210 BENJAMIN MUCKENHOUPT [March

Now assume that f(x) = 0 at almost every point where V(x) = oo ; otherwise
(2.1) is immediate for any positive B. Then

(2.4) f    U(x) dx = 2 f ' U(x) dx.
JEh i   Jc¡

Using (2.3), the integral on the right side of (2.4) is bounded above by

Using Holder's inequality, (2.5) is bounded by

jpn~p   cd' r rdi ip-1 rit<16)   ieSbpJ, "W»*U, [Ft«-—»*]   ¿ow*
provided 0<F(x)<co almost everywhere in (ct, d¡). If F(x) = 0 on a subset of
(Cj, í/¡) of positive measure, j"¡í'i/(x) í/x=0 so (2.5) is bounded by (2.6) in this case.
If K(x) = oo on a set of positive measure, the fact that/(x) = 0 almost everywhere on
the set again shows that (2.6) bounds (2.5). Then replacing the integrals on the
right side of (2.4) with (2.6) and using (2.2) shows that

f    U(x) dx Ú 2»Ka-p 2 T |/(0m0 dt.
Je„ i Ja

This immediately implies (2.1) with B^2"K.
To show that FáTJ when p>l, fix a finite subinterval, I, of J and define

^ = JI[K(x)]-1,(p-1)</x. If .4=0, (2.2) is true for any K. If 0</i<co, let f(x)
= [V(x)]-1Kp-1} on I and 0 elsewhere. Then /*(x)^/|T| on all of I and (2.1)
shows that

(2.7) [ U(x)dx ¿ F|T|M-p |* [V(x)]-pKp~1)V(x) dx.

Since A < oo, V(x) > 0 almost everywhere on 7 and the integral on the right side of
(2.7) equals A. Multiplying both sides of (2.7) by A"'1 then proves (2.2) with
K^B.

If A = co, then [V(x)]~llp is not in V on 7. Then there is a function, g(x), which
is in Lp on 7 and 0 outside of 7 such that $i g(x)[V(x)]~llp dx=co. Define/(x)
=g(x)[V(x)Yllp. Then since [f(x)]pV(x)^[g(x)]p, [f(x)]pV(x) is integrable on 7
while /*(x) = oo everywhere on 7. Then (2.1) implies that Si U(x)dx=0 and this
immediately implies that (2.2) is true in this case for any K. This completes the
proof that F ^ F when /> > 1.

To prove that Fá B when p= 1, fix a finite subinterval, 7, of/. If ess inf¡,£, V(y)
= oo, (2.2) is true for all K. Otherwise, given e > 0, there is a subset, F, of 7 such that
|F|>0 and V(x)<e + ess infïe/ K(j) for all x in F. Define/(x)=l on F and 0
elsewhere. Then/*(x)^ |F|/|7| on 7 and (2.1) implies that

f t/(x) i/x ̂  ^ I   V(x) dx Ú B\I\ L+ess inf K(x)l.
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1972] WEIGHTED NORM INEQUALITIES 211

Since this is true for every e>0, (2.2) follows with K^B. This completes the proof
of Theorem 1.

3. Facts concerning condition (1.3). This section contains various lemmas that
will be needed in §4 to show that (1.3) implies (1.1). The principal result is Lemma 5.

Lemma 1. Let g(x) be nonnegative and integrable on a finite interval I, let a be
a positive constant, and let Q be a collection of open subintervals of I such that, for
every 77 in Q, ¡H S(x) dx^a\H\. Then if R = {JHeQ H, J"Bg(x) dx^k2a\R\.

Given e > 0, choose 8 > 0 so that if | E \ < 8 and E<=I, then JE g(x) dx < e. Choose
a finite collection 77^ ..., 77n from Q so that HJï=i ^el = l-^l ~& an^ no point of
7 is contained in more than two 77fc's. Then $Rg = $R-UHlcg+$uHkS^e + 2 ¡HkS
^¡e+a 2 |77fc| áe+2a|7?|. Since e is arbitrary, this proves the lemma.

Lemma 2. Let I be a finite interval, B a subset of I and Q a collection of open
subintervals of I such that, for every H in Q, |77ri 7?| =;2|77|/3. Then ifR = {JHeQ H,
\B n R\ â \R\ß.

Given £>0, choose 77i,..., 77n from Q so that \{J Hk\ > \R\ —e and no point of
7 is contained in more than two Hks. Then |7? n R\ ä \B n [J Hk\ ̂ i 2 1^ n Hk\
= i 2 l^kl = \P\ß~e and the lemma follows.

The next lemma, Lemma 3, is essentially a proof that if a function satisfies (1.3)
for every subinterval, 7, of a given interval, then the nonincreasing rearrangement
satisfies the same condition. To avoid some minor technical difficulties and to
simplify the proof of Lemma 5, however, Lemma 3 is stated in a slightly weaker
form.

Lemma 3. Assume that l^q<co, I is a fixed finite interval, gix) is nonnegative
and for every subinterval H, of I

(3.1) [£ g(x) dx] [£ [g(x)]-1'«-1' <&]"  ^ K\H\"

where K is independent of 77. Let his) be the nonincreasing rearrangement of gix) on
[0, |7|];   /i(i) = sup|£l=s;£=/[inf,e£g(x)].  Then if 0<*^|7|/20,

[\it)dt Ú 20Ks3"-1his).

Fix s and let a = (l/i) ^ hit) dt. If ag20A(i), there is nothing to prove since, by
Holder's inequality, K^ 1. If a = oo, §,gix) dx = co and (3.1) with 77=7 implies that
g(x) = oo for almost every x in 7 and, consequently, that /t(i) = oo. The conclusion
of the lemma is then immediate in this case also.

Therefore, assume that 20his)<a<co, and let B be the set of x in 7 such that
gix) > his). Then J"B gix) dx ä js0 hit) dt—shis) ; the subtracted term compensates for
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212 BENJAMIN MUCKENHOUPT [March

the fact that h(t) may equal h(s) on part of [0, s]. The definition of a and the fact
that a > 20h(s) then imply that

(3.2) |   g(x)dx > l9sa/20.

Next, let Q be the (possibly empty) set of all subintervals H oí I such that
SHg(x)dx = a\H\/lO and |77 n F| ä2|77|/3. Let R = {JHeQ H. By Lemma 1

(3.3) jj(x)dxf¿a\R\/5,

and by Lemma 2

(3.4) \BnR\ ^ |2î|/3.

By (3.4), |F| <:3\B n F| á3|F| <:3s so (3.3) implies that

(3.5) f     g(x) dx Ú 3sa/5.
JsnR

Then (3.2) shows that

(3.6) g(x) dx < -T5     g(x) dx.
Jbhr i?Jb

Let F denote the complement of F. If for every interval, 77, containing an x in
B n R, Sh g(x) rfx<a|77|/10, then g(x)ia/l0 almost everywhere in B n F and

(3.7) f     g(x)dx ^ a|FoF|/10.
JßnS

Again, by the definition of B and (3.2), |F n F| ^ |F| ás^(20/19a) J"Bg(x) dx so
(3.7) implies that

(3.8) f     g(x)dxú^.\ g(x)dx.
JßnR iy Jb

Since (3.6) and (3.8) are inconsistent, there must be an interval, G, containing an
x in B n F such that Gc/and jGg(x) d*x^a|G|/10.

Since si |7|/20 and a>20/i(j), j",g(x) ¿x = j0" A(f) úí/á ja+(|/| -s)h(s)ia\I\/lO.
Therefore, G can be enlarged to make an interval, F, such that F<= I and

(3.9) £ g(x) a* = alFl/10.

The interval, F, is not in Q since it contains an x that is not in F. Since F satisfies
one part of the definition of an 77 in Q, it must violate the other. Therefore,

(3.10) \FnB\ < 2|F|/3.
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1972] WEIGHTED NORM INEQUALITIES 213

Now by (3.1),

(3.11) K\F\* ä [£ gix) dx] [£ t^)]-1"«-» dx] '"*.

Also,

[I [fWi—»*],_1 ä [£nj[g(x)]---»^]fl-^i^|^.

By (3.10), |Fn 7J| ä |F|/3. Using these facts on the second part of the right side of
(3.11) and (3.9) on the first part shows that

a31~"\F\q(3 121 K\F\q > —-—-KXlA) A|f|   =     \0his)   •

Substituting the definition of a into (3.12) then gives the assertion of the lemma.

Lemma 4. Let hit) be nonnegative and monotone decreasing on [0,j] and assume
that there is a constant, D, such that, for Of^s^jßO, ¡0h(t) dt^Dshis). Then if
\úr<D¡iD-\),

By hypothesis

(3.13) A(5)/JóA(0*-¿
for O^s^jßO. Let ¿=//20 and let u satisfy O^u^b. Integrating (3.13) from u to b
gives

Exponentiating gives

I " hit) dt ^ iu/b)llD f hit) dt.
Jo Jo

Since h is decreasing, this implies that for 0<uf¿b

(3.14) hiu)èl-(£)VDfohit)dt.

Since h is decreasing, it is immediate that

(3.15) [' [hiu)]r du ^ 20 f [hiu)]r du.
Jo Jo

Using (3.14) in the right side of (3.15) then gives the assertion of the lemma.
The following definition will simplify the statement and proof of the next two

lemmas.
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214 BENJAMIN MUCKENHOUPT [March

Definition. A function, g(x), satisfies condition Ap on an interval, I, with
constant, K, if g(x) is nonnegative and, for every subinterval, 77, of 7, (3.1) holds.

Lemma 5. If l<p<co and U(x) satisfies condition Ap on the interval, J, with
constant, K, then there exist constants, r and L, depending only on p and K such that
l<r<p and U(x) satisfies condition Ar on J with constant, L.

Let 7 be a finite subinterval of/. Then [f/(x)]"1'(p_1) satisfies condition Ap. on 7
with constant K"''1. Next apply Lemmas 3 and 4 with g(x)=[U(x)]-1Kp~1) and
q=p'. This shows that if u=(D-^)/(D-l) where D = 20(3K)P'~\ there is a con-
stant, C, depending only on p and K such that

(3.16) [V(t)]udt ¿ CI7I1""        V(t)dt\

where V(t) is the decreasing rearrangement of [U(x)]~1Kp~1) on 7. Now (3.16)
immediately implies that

(3.17) f [U(x)]-uKp-»dx ú C|/|1-u[i [U(x)]-1>{p-1)dxY.

Combining (3.17) with the fact that U(x) satisfies condition Ap on / with con-
stant, K, shows that

(3.18) [f £/(x)î7xÏÏ|  [[/(x)]-u/(p-1> dx
(P - l)/u

< /£Ç(P-l)/u| m + (p-l)/u

Since C depends only on p and K, this shows that U(x) satisfies condition Ar on J
with constant, L, where r = 1 + (p — l)/u and L = KC(P ~ 1)/u. It is immediate that r and
L depend only on Kandp and that 1 <r<p.

Lemma 6. If 1 ip<co and U(x) satisfies condition Ap with constant, K, on an
interval, J, then there are constants, r and L, depending only on p and K, such that
r>l and [U(x)]r satisfies condition Ap on J with constant, L.

Let 7 be a finite subinterval of/. If p > 1, the first paragraph of the proof of Lemma
5 shows that (3.17) is true with C and u depending only on K and p and u > 1. The
same reasoning applied to U(x) instead of [U(x)]~1Kp~1) shows that there are
constants, v and C, depending only onp and Ksuch that v>l and

(3.19) í [U(x)]vdx á Cl/I^fí í/(x)í7xl".

Using (3.17), (3.19) and the hypothesis then shows that there is a constant, C,
depending only on p and K, such that

(3.20) [jij j* [U(x)f d*]1"^I [U(x)]-^»-» dx]
(P-D/u

â  C
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1972] WEIGHTED NORM INEQUALITIES 215

Now let r=min (w, v). Holder's inequality and (3.20) then show that

(3.21) [|1| ji [Uix)Y ̂ ]1,r[rjj ¡i [U(x)]-">-» dx]°    " ï C.

Taking the rth power of (3.21) then completes the proof of Lemma 6 for p> 1.
lfp=l, the same reasoning still proves (3.19). Since by hypothesis

4j f £/(x) dx <: K ess inf i/(x),
|7|J/ xei

(3.19) shows that

JL f [Uix)]v dx S CKV ess inf [t/(x)]"
|7|J/ xel

as desired.

4. Strong type results. The solution of the main problem of this paper is given
here as Theorem 2. Some other corollaries of the preceding section are given and
the cases p = 1 and p = oo are considered.

Theorem 2. If £/(x) is nonnegative on an interval, J, and l<p<oo, then there is a
constant, C, independent of f, for which (1.1) holds if and only if there is a constant,
K, independent of I for which (1.3) holds for all subintervals, I, of J. IfC and K are
the least constants for which (1.1) and (1.3) are true, then K^C¿giK,p) where g
is a function depending only on the indicated arguments.

If there is a C for which (1.1) holds, it is immediate that (2.1) is true for all
a>0 with B=C and F(x)=C/(x). Theorem 1 then proves that (1.3) holds with
K=C.

If (1.3) holds for a given K, then by Lemma 5 there are constants, r and L,
depending only on K andp, such that \<r<p and

(4.1) if C/(x)dx][i [[/(x)]"1*-1' dxY 1 ¿ L\I\\

By Holder's inequality it is also true that

(4.2) 1   <:    Kill2".£ £/(x)dx][[[t/(x)]-

Applying Theorem 1 to (4.1) and (4.2) shows that for all functions,/,

(4.3) Í   Uix) dx ^ 2rLa~r ¡ \fix)\rUix) dx
JEa J]

and

(4.4) I    £/(x) dx <: 22>Ka-2> í |/(x)|2pi/(x) dx
JEa Jj

where Ea is the subset of / where/*(x)>a. The Marcinkiewicz interpolation theo-
rem, p. 112, Vol. II of [12], then proves (1.1) with constant, C, depending only on
K and p.
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216 BENJAMIN MUCKENHOUPT [March

Corollary 1. If U(x) is nonnegative on an interval, J, and l<p<co, then there
is a C for which (1.1) is true if and only if there is a B for which (1.2) is true with
V(x)=U(x).

This immediate consequence of Theorems 1 and 2 is interesting since it says that
the weight functions for strong type and weak type are the same.

Corollary 2. If U(x) is nonnegative on an interval, J, 1 <p < oo, and there is a C
for which (1.1) is true, then the set of all afar which

(4.5) J" [f*(x)]p[U(x)r dx < cj   \f(x)\'[U(x)]a dx

where C is independent of f (but not of a) is an open interval containing [b, 1] where
b = max[-(p-l),-l/(p-l)].

The fact that U(x) satisfies (1.3) and Holder's inequality imply that [U(x)f also
satisfies (1.3). If [t/(x)]a satisfies (1.3), Holder's inequality implies that (1.3) is true
for [U(x)]d for any d between 0 and a. This shows that the set of all a for which
(4.5) is true is an interval containing [b, 1]. The fact that it is an open interval
follows immediately from Lemma 6.

Corollary 3. Given a nonnegative U(x) on an interval, J, the set of all p for
which there is a C that makes (1.1) true is an interval of the form (p0, oo).

Since (1.1) cannot be true for p = l except for trivial cases as shown below in
Theorem 5, Corollary 3 follows immediately from Theorem 1, Lemma 5 and
Holder's inequality.

Corollary 4. Assume that l<p<oo, U(x) is nonnegative and has period b and
let Af/(x) = supJ/#a. (l/(y — x)) J"" |/(0| dt. Then there is a constant, C, independent
of f such that

(4.6) f   [Mf(x)]pU(x)dx<c\   \f(x)\"U(x) dx
Jo Jo

for every f of period b if and only if there is a constant, K, independent of I for which
(1.3) holds for all intervals, I, satisfying |7| ¿b.

If (1.3) is true for all 7 satisfying |7| ib, there is a constant for which it is true
for all I<= [-b, 2b]. Given/with period b, let g(x)=f(x) on [-b, 2b] and 0 else-
where and let g*(x) be the maximal function of g on [—b, 2b]. By Theorem 2 there
is a C such that

/•2b ¡-2b
[g*(x)]pU(x) dxûC\     | g(x)\"U(x) dx.

J-b -l-b

Since g*(x) = Mf(x) on [0, b], this implies (4.6).
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1972] WEIGHTED NORM INEQUALITIES 217

If (4.6) is true, let 7be an interval with |7| f£¿>. Given/on 7, extend its definition
so that it has period b and is 0 where not otherwise defined, and let /* be the
maximal function off on 7. Then Mfix) è/*(x) on 7 and by (4.6)

j \f*(x)\>U(x)dx Ú CJ \f(x)\"U(x)dx.

Theorem 2 then implies that (1.3) is true for this 7 with K=C. This completes the
proof of Corollary 4.

Weighted norm inequalities for p = oo are much simpler and will be done with
two weight functions. The result depends upon whether the version of (1.1) to be
considered is

re Ti/i>       rr* -\ up
(4.7) [^ \f*(x)\>U(x) dx]     Ú C[| \f(x)\>V(x) dx]

or

(4.8) [£ \f*(x)U(x)\> dx]1* < c[[ |/(x)F(x)|> dx] **.

For /> < oo, these are equivalent problems, and it was more convenient to use the
form (4.7). For/? = oo, however, they give the following rather different results.

Theorem 3. Let U(x) and V(x) be nonnegative functions on an interval, J. Then
there is a constant, C, independent of f for which (4.7) holds for p = co if and only if
V(x) > 0 for almost every x in J or U(x)=0 for almost every x in J.

Theorem 4. Let U(x) and V(x) be nonnegative functions on an interval, J. Then
there is a constant, C, independent of f for which (4.8) holds for p = co if and only if
[l/V(x)]* g C/U(x)for almost every x in J.

Theorem 3 is trivial ; if V(x) were 0 on a set of positive measure, E, let f(x) be
the characteristic function of E. This produces an immediate contradiction unless
U(x) = 0 almost everywhere. The opposite implication follows immediately from
the fact that \\f*(x)l„ú¡f(.x)U.

Theorem 4 is almost as simple. For a given value, A, of ||/(x)F(x)||00 the left
side of (4.8) is maximized iff(x)=A/V(x). Therefore, if [l/V(x)]*gC/U(x), (4.8)
holds. The converse is immediate by taking f(x) = l/V(x).

For /? = 1 the following settles the problem.

Theorem 5. Let U(x) be a nonnegative function on an interval J. Then there is a
C for which (1.1) holds with p=\ if and only if U(x) = 0 almost everywhere on J or
U(x) = co almost everywhere on J.

If U(x) satisfies either condition, then (1.1) is certainly true. Conversely, if (1.1)
is true, suppose that 0 < U(x) < oo on a set of positive measure. Then there is a
positive number, A, such that the set where A< U(x)^2A has positive measure;
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call this set F. Let b be a point of density of F and not the right end of / and let
f(x) equal |x-A|_1|log \x—b\ |~2 on F and 0 elsewhere. Then the right side of
(1.1) is finite. Since b is a point of density of F, for all sufficiently large n, [a+2~n,
d+2"'tl]n£ has measure greater than 2~n~1. From this it follows that, for x > b
and near è,/*(x)^i|x—è|_1|log \x—b\ |_1, and that the leftside of (1.1) is infinite.

5. The two weight function problem.    For 1 ip< co, the problem of determining
all pairs of nonnegative functions, U(x) and V(x), such that

(5.1) £ [f*(x)]pU(x) dx è C| \f(x)\»V(x) dx

is quite different from the case when U(x)= V(x). Determining all such pairs is of
interest because in mean convergence and certain mean summability problems for
Hermite and Laguerre series many of the estimates involve Hardy maximal func-
tions and the weight functions must be different on the two sides of the inequality.

Two general statements can be made about the problem. If (5.1) holds, then by
Theorem 1 there is a F for which

(5.2) [(* £/(x)ax|[Y [K(x)]-1'(a-l)i/xl<! * ̂  F|7 Q

for every subinterval, 7, of/ with q=p. The proof of Theorem 2 also shows that if
(5.2) is true for some q<p, then (5.1) follows. Examples will now be given to show
that the obvious generalizations of most of the results in §§3 and 4 do not apply to
this problem.

First, observe that if J=[0,$] and q=l, then £/(x)=x_1(logx)~2, V(x)
= (—xlogx)-1 satisfy (5.2); therefore, they also satisfy (5.1) for/> = 2 and (5.2)
for <7=2. It is immediate that U(x) = - x log x, K(x)=x(Iogx)2 satisfy (5.2) for
q=2. They do not, however, satisfy (5.1) for p = 2 as the example f(x) =
x_1(log x)-2 shows. Therefore, (5.2)iorq=p does not imply (5.1) and the analogue
of Theorem 2 is false. This pair is also an example of the fact that the analogue of
Lemma 5 is not true.

The analogue of Lemma 6 is not true for either U or Fin this problem even with
the stronger hypothesis that they satisfy (5.1). The first example in which U(x)
=x_10ogx)~2 is an example of this; no power of U(x) greater than the first can
satisfy (5.2) for 7=/=[0, |] unless F(x) = co almost everywhere. To obtain a
similar example for V(x) it will be shown that

(5J) ^U^^úC^\f(x)\2x(lo%x)2dx.

This follows by observing that

f*(x) Ú sup -i- f 1/(01 dt+l r 1/(01 dt.
\y-x\%xl2;yel0,imy~ X Jx -¿Jo
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For the first term (5.3) follows by writing the integral on the left as the sum of
integrals over [2~n~1,2~n],n=l,2,..., and using the unweighted Hardy maximal
function inequality. For the second term (5.3) follows by use of Holder's inequality.

No power of x(log x)2 can be the V in (5.2) with q = 2 and 7= [0, \] unless U(x)=0
almost everywhere on [0, J]. This shows that Lemma 6 does not apply to V(x)
either.

The two weight function version of Corollary 1 is also false since, as shown
above, (5.2) with q=p is equivalent to (2.1) but is not equivalent to (5.1). Corollary
3 is also false; the functions in (5.3) satisfy (5.1) for/?5:2 but not for/?<2.

Theorem 5 also fails since there are nontrivial pairs of functions, U(x), V(x), for
for which (5.1) holds for p = \. A simple example would be to take /=[—1, 1],
U(x)=x on [0, 1] and 0 elsewhere and V(x) = l on [-1,0] and oo elsewhere. The
proof of Theorem 5 shows only that U(x)[V(x)]~1=0 for almost every x.

6. A weighted maximal function.    Given a measure, m, on an interval, /, define

ve/      yxdm(t)

where the quotient is to be taken as 0 if the numerator and denominator are both
0 or both oo. The following generalizations of Theorems 1 and 2 are true for this
maximal function; they are also a generalization of Lemma 1, p. 232 of [5]. An
application of Theorem 7 is given in §8.

Theorem 6. Let m be a Borel measure on an interval, J, which is 0 on sets con-
sisting of single points. Let U(x) and V(x) be nonnegative functions on J, assume that
1 ?£/7 < co and 0<a<oo, and given f(x) on J let Ea be the subset ofJ where f*(x) > a.
Then there is a constant, B, independent off and a such that

(6.2) f    U(x)dm(x) g Ba~p f \f(x)\"V(x) dm(x)
JEa JJ

if and only if there is a constant, K, such that for every subinterval, I, of J

[ U(x)dm(x)    f [Fix)]-1«"-1' dm(x)Y * è K[m(I)f.(6.3)

7/7i and Kare the least constants for which (6.2) and (6.3) are true, then K^B<2PK.

Theorem 7. Let m be a Borel measure on an interval, J, which is 0 on sets con-
sisting of single points. Let Uix) be a nonnegative function on J and assume that
1 <p<co. Then there is a constant, C, independent off, for which

(6.4) | [f£(x)]pU(x) dm(x) rg C£ \f(x)\"U(x) dm(x)

if and only if there is a constant, K, such that for every subinterval, I, ofJ

(6.5) f U(x) dm(x)] [ (* [UÇx)]-1«*-» dm(x)Y * Ú K[m(I)]p.
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7/C and K are the least constants for which (6.4) and (6.5) are true, then KiC
ig(K,p) where g is a function depending only on the indicated arguments.

With more assumptions on m these could be proved easily from Theorems 1 and
2 by a change of variables. In this form they are proved by repeating the proofs of
Theorems 1 and 2 with |F| replaced by m(E) and dx replaced by dm(x) throughout.
In Lemma 3, h(s) should be defined as sup infx6E g(x) where the sup is taken over
all sets, F, such that E<=J and m(E) = s. The dt used with rearranged functions in
Lemmas 3-5 should, of course, not be replaced by dm(t).

7. Higher dimensional case. Given a real valued function on Fn the maximal
function to be considered is

(7.1) /*(*) = sup jirí  |/(0| dt

where the sup is taken over all cubes, Q, with center x and | g I denotes the measure
of Q. Analogues of Theorems 1 and 2 will be proved in this section; the proofs are
almost the same. The following modification of the Calderón-Zygmund lemma,
Theorem 4, p. 17 of [9], will be needed.

Lemma 7. Let f(x) be a nonnegative integrable function on Rn and let a be a
positive constant. Then there is a sequence of sets, Sk, and a sequence of cubes Qk
such that

1. The intersection of different Sks has measure 0.
2. QkcSkc3Qk where 3Qk is the cube with the same center as Qk and with sides

parallel to Qks and three times as long.
3. 4-»a\Qk\úSsJ(t)dtúa\Qk\.
4. Iff*(x) > a, x is in [J Sk.

By the Calderón-Zygmund lemma there is a sequence of cubes, Qk, whose
interiors are disjoint,

(7.2) 4-»a|ßk| < f   f(t)dt i 2-»a Qk,
Jqk

and/(x) ^ 4""a for almost every x not in y Qk. Furthermore, it is shown in the
proof that the Qks can be chosen so that all are members of a collection, C, of
cubes consisting of a fixed mesh of equal cubes with disjoint interiors that fill Fn
and cubes obtained from these by successive divisions of these cubes into 2" equal
smaller cubes by bisecting the sides. It also appears in the proof that if Q is in C
and is not a subset of a Qk, then

(7.3) f  |/(0| ¿i = 4-»a|ß|.
Jq

Now define the Sks successively to be the set of all x in 3Qk that are not in the
interior of any Q, iorj^k nor in the interior of any S, iorj<k. Then statements
1 and 2 are immediate.
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The first part of 3 follows from (7.2) and the fact that Qk<=Sk. For the second
part observe that

(7.4) f  f{t) dt = f   f(t) dt + \        fit),
Jsk jQic JSk-Qic

Now Sk-Qk has at most a set of measure 0 in common with 1J Qk so/(x)á4_?la
for almost every x in Sk — Qk and

j:
f(t)dt S |Sfc-ßfc|4-»a Ú (3»-l)|ßfc|4-a.

Sk-Qk

Using this and the second part of (7.2) on (7.4) then proves the second part of 3
since 2-n + (3n-l)4-n^l.

To prove 4 let x be a point such that f*(x) > a. Then there is a cube, F, with
center at x such that SPf(l) dt>a\P\. There is a cube, Q, in the collection, C, with
|F|^|ß|<2n|F|, suchthat

(7.5) Í     fit) dt >
Jçr\P

_ 2~na\P\
Qr,P

since no more than 2n of the cubes in C of this size can intersect Fina set of posi-
tive measure. Then from (7.5) and the inequality on the size of |ß| it follows that
SQf(t) tf7>4~na|ß|. Since Q does not satisfy (7.3), it must be a subset of some Qk.
Then Pcz3Qk and x is in 3ßfc. By the definition of the S/s, x is in some 5,-, and,
therefore, in (J Sk.

Theorem 8. Let J be a subset of F\ 1 <p < oo, 0 < a < oo, t/(x) and V(x) be non-
negative functions on J and given f(x) let Ea be the subset of J where f*(x)> a. Then
there is a constant, B, independent off and a such that

(7.6) f    C/(x) dx i Ba~p f \f(x)\pV(x)
jEa J J

dx

where fis any real valued function vanishing outside J if and only if there is a constant,
K, independent of Q, such that

(7.7) f      £/(*) ax] [ f     [F(x)]-1'(p-1>rfxT  l i K\QY
J QnJ J UonJ J

far any cube, Q. Furthermore, if B and K are the minimum constants for which (7.6)
and(1.1) are true, then KiB^(l2)npK.

First assume that (7.7) is true. Given a, apply Lemma 7 to |/(x)| to obtain se-
quences Sk and Qk with the stated properties. Then

(7.8) |    U(x) dx <: 2 Í      U(x) dx.
JEa k JsknJ
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Part 3 of Lemma 7 shows that the right side of (7.8) is bounded by

SÍ^nf   1/(01*17   u(x)dx-
k    \-a\\¿k\ JSkc\J J    Jsknj

The proof then proceeds as the proof of Theorem 1 does after (2.5); the sets on
which U(x) and [Vix)]~1Kp~v are integrated in the analogue of (2.6) must be
changed from Sk n /to 3Qk n Jin order to apply (7.7). This shows that 7i^(12)np7c:.
The opposite implication and the fact that K^B follow from the same reasoning
as used to prove that part of Theorem 1.

Theorem 9. Let J be a cube in Rn or all of Rn, \<p< oo, and let U(x) be a non-
negative function on J. Then there is a constant, C, independent off(x) such that

(7.9) J [f*(x)fU(x) dx Ú CJ \f(x)\*U(x) dx
where f is any real valued function that vanishes outside J, if and only if there is a
constant, K, independent of Q such that

(7.10) Í1   U(x)dx    |   [í/(x)]-1,<p-1)dx]P  1 é K\Q\P

for any cube, Q, satisfying Q^J. If C and K are the least constants for which (7.9)
and (7.10) are true, then Kfí C^giK, p) where g is a function depending only on the
indicated arguments.

The set, J, could be somewhat more general in Theorem 9 and some such results
follow easily as corollaries of this theorem. Examples would be rectangular solids
in which the ratio of the longest side to the shortest is bounded, a half space, the
set where certain components are positive, etc.

The proof of Theorem 9 involves showing that analogues of Lemmas 1-5 are
true for n dimensional space with different constants. An outline of the principal
differences from the one dimensional case are given below.

The obvious version of Lemma 1 with "interval" replaced by "cube" through-
out is false even if the constant in the conclusion is changed. An additional hy-
pothesis is needed; it is that there is a constant, D, such that

(7.11) f      git)dt< d\ git)dt
JôHnJ Jh

for every subcube, H, of /. The proof then uses the lemma on p. 9 of [9] with
spheres replaced by cubes. The proof of that lemma shows that there is a sequence
of disjoint cubes, 77¡, such that Hte Q and 7?<= 577¡ n /. Then

í g^2¡       gï D2 f   gúDa^m úDa\R\.
JR j5H¡nJ JHí
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This completes the proof of the n dimensional Lemma 1 with the 2 in the conclusion
replaced by D.

The obvious analogue of Lemma 2 is true if the ^ in the conclusion is replaced by
(f)5~n. This is proved by using the lemma on p. 9 of [9] for cubes to choose a
disjoint sequence, 77¡, of cubes in g such that \B\ ¿ 5" 2 |T7j|. The proof is com-
pleted by observing that 2 |7/| ¿(3/2) 2 \H, n B\ â(3/2)\R n B\.

The obvious n dimensional version of Lemma 3 is also true; the constant in the
conclusion is different but depends only on K and a. The proof is like the one
dimensional version with different constants; the only essential difference is that
(7.11) must be proved in order to apply the n dimensional version of Lemma 1.
To do this let 77 be a subcube of / and let G be the smallest subcube of J that con-
tains 57/ n /. Then applying (3.1) to G shows that

(7.12) í      g(x)dxúK\G\p\\ [g(x)Y^p-» dx]

Since G =3 77, the right side of (7.12) is bounded by

i-?

K\G\ jjgix)]-1»»-1'^]
l-p

Holder's inequality shows that this is bounded by F|G|P|77|~P JH U(x) dx. Since
|G|/|77|g5n, this proves (7.11) with D = 5npF.

Lemma 4 is used unchanged. The n dimensional version of Lemma 5 follows in
the same way as the one dimensional version. The proof of Theorem 9 is then
exactly like the proof of Theorem 2.

Lemma 6 and the other theorems and corollaries in §§4 and 6 can also be carried
over easily to the n dimensional case.

8. Application to mean summability theorems. To illustrate some uses of
Theorems 2 and 7 the following will be proved. For further information on the
definitions used in Theorems 10 and 11 see [12] and for the definitions in Theorem
12 see [8].

Theorem 10. Assume that 1 ¿¡p<co,f(8) is integrable on [0, 2-n], U(8)^0,fand
U have period 2v and f(r, 8) is the Poisson integral of f(8). Then the following are
equivalent:

(i) lim^,-Sf\f(r,8)-f(8)\pU(8)d8 = 0  for   every   function   f   satisfying
Sf\f(8)\pU(8)d8<m.

(ii) There is a constant,  C, independent of f such that ST \f(r, 8)\PU(8) dd
úCST\f(8)\"U(8)dd.

(iii) For every interval, I, with \I\ ¿2tt,

Í t/(0)í70|íf [{/(x)]-1''"-" axl

where K is independent of I.

p-i
Ú K\I\P
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Theorem 11. Theorem 10 remains true if fir, 9) is replaced by <rn(f, 9), the
sequence of the first arithmetic means offs Fourier series, and limr^i- is replaced
by limn^x.

Theorem 12. Assume that lg/xoo, A > 0, f(6) sin2A 9 is integrable on [0,tr],
2 adíeos 0) Is the Gegenbauer expansion of f(9), and for 0^r< 1, f(r, 9) =
2"=o anrnP%(cos 9). Then the following are equivalent:

(i) linw- ft \f(r,9)-f(9)\*U(9) d9 = 0  for   every  function,   f   satisfying
¡*o\f(0)\*U(6)d6<ao.

(ii) 77îere is a constant, C, independent of f such that ft\f(r, 9)\PU(9) d9
úCft\f(9)\pU(9)d9.

(iii) For every subinterval, I, of [0, n],

í i" U(9) d9    i [U(9)]-^p-"[sin 9]2Kp" dö] *  * ̂  K   f sin2A 9 dö] '

where K is independent of I.

Most of the proof of Theorem 10 is standard. It will be proved by showing that
(i) implies (ii), (ii) and (iii) imply (i), (iii) implies (ii) and, finally, that (ii) implies
(iii).

Part (i) implies part (ii) by the Banach-Steinhaus theorem. Part (iii) implies that
either t/(x) = oo almost everywhere in which case (i) is immediate or that
ft" U(x) dx<co. In this latter case it follows that given e>0 and / satisfying
Jo" \f(e)\"V(e) d0<oo, there is a function, g(9), of the form

2 [cn cos n9 + dn sin n9]
n = o

such that \2n\f(9)-g(9)\*U(9)d9<E. Then writing f(r, 9)-f(6) as the sum of
f(r, 9)—g(r, 9), g(r, 9)—g(9) and g(9)—f(6), integrating and using Minkowski's
inequality and (ii) shows that

r2n
lim sup      \f(r, 9)-f(9)\'U(9) d9 ¿ Ce

r->l      Jo

This, of course, implies the limit statement in (i).
To prove that (iii) implies (ii) for p> 1, use the well-known fact that |/(r, 9)\

=/*(#); this follows, for example, immediately from Theorem 1, p. 232 of [5]. An
application of Corollary 4 completes the proof of (ii). If/? = 1 use Fubini's theorem
on the left side of the inequality in (ii) to show that it is bounded by

(8.1) ÇJ 1/10)1 (i Çjp(r, 9, <f,)U(9) dö) d<f,
where

(8.2) P(r, 9,<p) = $(l-r2)/(l-2rcos(9-<p) + r2)
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is the Poisson kernel. Now the inner expression in (8.1) is just U(r, </>) and, there-
fore, is bounded by U*(</>). Condition (iii) for p-\ is just the statement that
U*(<f>)SKU((f>) almost everywhere. This shows that (8.1) is bounded by

r2n¡■2k

k\   \fi4)\ui4>)ai>
Jo

as desired.
This leaves the proof that (ii) implies (iii). To do this fix an interval, 7, with

|7| á 2-7T and let r=max (0, 1 - |7|). Then if 8 and (f> are both in 7, it is apparent from
(8.2) that
(8.3) P(r,e,4,)^(4\I\)-\
Now let/(ö) be any nonnegative function with period 2?r that vanishes outside the
set consisting of 7 and the images of 7 under translation by an integral multiple of
27T. Then if 8 is in 7

(8.4) i/mi zümr'limiM
Using (8.4) in condition (ii) and restricting the integration on the left to 7 shows that

(8.5) £ uwdë^iuiiD-ijmde]' g c£ \f(8)\pu(8)ds.

Now the proof in Theorem 1 that (2.1) implies (2.2) can be repeated since all that
was used in that proof was (8.5).

The proof of Theorem 11 is practically the same. To obtain the analogue of (8.3),
n should be chosen as the larger of 0 and the greatest integer less than — 1 +tt/\I\.

The proof of Theorem 12 also follows the same scheme as the proof of Theorem
10. The first two parts are the same. To show that (iii) implies (ii) the fact that
|/(r, 8)\^Cf*(8) is needed where am = sin2A 8 and/* is the function defined in
(6.1) with /= [0,7r]. This inequality is proved in Lemma 3, p. 28 of [8]. Theorem 7
then completes the proof that (iii) implies (ii).

The only complications in the proof of Theorem 12 arise in showing that (ii)
implies (iii). To do this fix an interval, I— [a, b], and let r= l—(b — a)/6. As shown
in [11] the Poisson kernel in this case is

(sin*)8*"1«*P(r,8,<p) = ±(l-r2)r
77 Jo [1—2r(cos 8 cos $ + sin 0sin </> cos t) + r2]A

It will be shown that there is a positive constant, C, independent of I, 8 and j> such
that if 8 and (/> are in I

(8.6) P(r,8,mC f sin2* t dt\    .

To prove (8.6) assume first that I<^ [0, 3tr/4]. Now the denominator of the
integral in the definition of F can be written as

[(l-r)2 + 2r(l -cos 8-</>) + 2r sin 8 sin ^ (1 -cos t)f + 1.
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If a ä bß and 9 and <f> are in 7, \9 ^ <f> ^ 29 and

r1      í2A_1 d/     C0_2A
p(,fl,«SC(l-„£_iwf5WTTS£-r

where the C's are positive and independent of 7, 9 and <p. If a < 6/2 and 0 and <f> are
in 7, then

P(r,8,f) * C(l - Oj^/l^fla ^ C(l-r)-^-1
where the C's are positive and independent of 7, 9 and <j>. In both cases (8.6) follows
immediately.

By symmetry (8.6) is true if 7<= [\tt, tt] and 9 and <f> are in 7. If 7 intersects both
[0, ¿ir) and (3ir/4, tt] and 0 and <¿ are in 7, then |7| >-£tt, r^ 1 -w/12, P(r, 8, 0) has a
positive lower bound independent of 7, 0 and <f> and (8.6) is immediate. Therefore,
(8.6) is true if 0 and <f> are in 7 for any 7<= [0, tt]. Then (8.6) can be used to show that
(ii) implies (iii) in the same way that (8.3) was used to prove the same part of
Theorem 10. This completes the proof of Theorem 12.
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