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WEIGHTED NORM INEQUALITIES
FOR THE RIEMANN-LIOUVILLE AND

WEYL FRACTIONAL INTEGRAL OPERATORS

K. F. ANDERSEN AND E. T. SAWYER

ABSTRACT. The weight functions u(x) for which Ra, the Riemann-Liouville

fractional integral operator of order a > 0, is bounded from Lp(updx) to

L9(uq dx), 1 < p < I/a, 1/q = 1/p — a, are characterized. Further, given p, q

with 1/q > 1/p—a, the weight functions u > 0 a.e. (resp. v < oo a.e.) for which

there is v < oo a.e. (resp. u > 0 a.e.) so that Ra is bounded from Lp(vp dx)

to Lq(uqdx) are characterized. Analogous results are obtained for the Weyl

fractional integral. The method involves the use of complex interpolation of

analytic families of operators to obtain similar results for fractional "one-sided"

maximal function operators which are of independent interest.

1. Introduction. For 0 < a < 1 the Riemann-Liouville fractional integral oper-

ator Ra and the Weyl fractional integral operator Wa are defined, up to normalizing

constants, for locally integrable functions / on (0, oo) by

PX coo

(Raf)(l)=   I     (x-t)a-lf(t)dt,       (Waf)(X)= (t-xF^fWdt, X>0.
Jo Jx

If 1 < p < 1/a, 1/q = 1/p — a and T is either one of these operators, then it is well

known [7, Theorem 383] that

[/•oo -I 1/q r   /-oo -i 1/p

J     |(T/)(x)|«dxJ       <C[jo    \f{*)\Pdx

for some constant C depending on p, q, a but independent of /.  The purpose of

this paper is to study weighted analogues of these inequalities of the form

■   /-oo -I 1/q r   /-oo -i 1/p

(1.1) /     |(r/)(x)u(x)|«dx        <C [f(x)v(x)[p dx
Jo J Uo

where u and v are nonnegative weight functions and C is a constant depending on

p, q, a, u, v but independent of /.

Our approach to these inequalities involves dominating Ra and Wa in terms of

the fractional "one-sided" maximal function operators M~ and M+, defined for

Received by the editors December 5, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 26A33; Secondary 26D10;

42B25.

Research of the first author supported in part by NSERC grant A8185.

Research of the second author supported in part by NSERC grant A5149.

©1988 American Mathematical Society

0002-9947/88 $1.00 + $.25 per page

547
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



548 K. F. ANDERSEN AND E. T. SAWYER

0 < a < 1 by

(M-f)(x)=   sup   h*-1 f    1/(01 dt,        x>0,
0<h<x Jx-h

rx+h

{M+f)(x) = supha-1 [f(t)[dt,        x>0.
h>0 Jx

As is easy to see, (M~f)(x) < (Ra[f[)(x) and (M+/)(x) < (Wa\f[)(x). Even

though these inequalities cannot be reversed, applying a result of Welland [15] to

the function f(t)x(o,x)(t), it follows that for each e, 0 < e < min(a, 1 - a), there is

a constant C£ depending only on s, such that

(1.2) \(Raf)(x)\ < Ce[(M-+Ef)(x){M-_ef){x)Yl2.

Similarly

(1.3) \(Waf)(x)\ < CE[(M++ef)(x){M+_J)(x)Y'2.

From (1.2), (1.3) and the results we prove for (1.1) with T = M~ and T = M+,

which are of interest in their own right, we shall deduce inequalities of the form

(1.1) for T = Ra and T — Wa. From these, the interested reader may easily deduce

(see [2]) inequalities of the form (1.1) for various other fractional integral operators

T such as the Erdelyi-Kober operators J£ ^ and J%    given by

(I^f)(x) =-j^-Jo (x» - fJ-V^VW dt,

(•#,,/)(*) = T£)Jx    (f ~ X»)<3-H-»^+>'-lf(t) dt.

Under the hypothesis 1 < p < 1/a, 1/q — 1/p — a and u = v, we give character-

izations of those weights u for which (1.1) holds if T is any one of Ra, Wa, M~,

M+. Indeed, we shall prove the following theorem.

THEOREM 1. 7/0 < a < 1, 1<»< 1/a (1/a = oo ifa = 0), 1/q = 1/p-a,
1/p + 1/p' = 1 then (1.1) holds with u = v

(a) for T = M~ or T = Ra (a > 0) if and only if

"i      ra + h ~\ \ \     Pa 1 1/p'

(1.4) T u(x)qdx \- u(x)-p'dX <C
hJa [hJa-h

for some constant C and all a, h with 0 < h < a;

(b) for T = M+ orT = Wa (a > 0) if and only if

M     Ca "I !/«   r i      ra+h ] 1lp

(1.5) -/      u(x)qdx - u(x)-p'dx <C
[hJa-h J [nJa

for some constant C and all a, h with 0 < h < a.

Observe in particular that any nonincreasing weight function u satisfies (1.4)

while any nondecreasing weight function u satisfies (1.5).

The proofs of (a) and (b) are similar. For T = M~ the proof applies the method,

due to Stein [14], of complex interpolation of analytic families of operators to certain
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WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS   549

linearizations of M~. The endpoint a = 1 is trivially estimated, while the endpoint

a = 0 is treated by known results [11] for M0~. The use of interpolation here is

in contrast to the 'geometric' Calderon-Zygmund decomposition type methods by

which the fractional Hardy-Littlewood maximal function operator Ma and the Riesz

fractional integral Ia have been successfully studied, even in the more general two

weight function setting [13, 10]. It is desirable to obtain a 'geometric' type proof

of Theorem 1, since the interpolation method seems restricted to the single weight

function context, but we have so far been unable to do so. While we have not

been able to characterize the weight pairs (u, v) for which (1.1) holds with T = Ra,

Wa, M~ or M+, the following results provide answers to a pair of related problems

posed by Muckenhoupt [8], namely: given T, iiu(x) > 0 a.e. (respectively v(x) < oo

a.e.) when is there a weight function 0 < v(x) < oo a.e. (respectively u(x) > 0 a.e.)

such that (1.1) holds? We shall prove the following two theorems.

THEOREM 2. LetO < a < 1, 1 < p, q < oo, 1/q > 1/p -a, 1/p + 1/p' = 1. If
u(x) > 0 a.e., there is 0 < v(x) < oo a.e. such that (1.1) holds

(a) for T = M~ or T = Ra (a > 0) if and only if

f°°   u(x)q
(1.6) /        ,,   \   dx < oo    for all R > 0;

(b) for T = M+ orT = Wa (a > 0) if and only if

fR
(1.7) /    u{x)q dx < oo    for all R > 0.

Jo

THEOREM 3. Let 0 < a < 1, 1 < p, q < oo, 1/q > 1/p -a, 1/p + 1/p' = 1. If
0 < v(x) < oo a.e., there is u(x) > 0 a.e. such that (1.1) holds

(a) for T = M~ or T = Ra (a > 0) if and only if

(1.8) /    v(x)-p dx < oo    for all R > 0.
./o

(b) for T = Wa (a > 0) if and only if
rOO

(1.9) /     x(a~1)p'v(x)~p' dx< oo    forallR>0;
Jr

(c) for T = M+ if and only if

,   fs
(1.10) sup S{a-1)p   /    v(x)~p dx<oo    for all R > 0.

S>R Jr

The assertions of Theorem 3 regarding Ra and Wa follow immediately from

Theorem 2 together with Holder's inequality and its converse since Ra and Wa are

dual operators in the sense that

roo />oo

/    (Raf)(x)g(x)dx= f(x)(Wag)(x)dx
Jo Jo

for all /, g > 0, while 1/q > 1/p - a if and only if 1/p' > 1/q' - a.

For the Hardy-Littlewood maximal operator M and p = q, an analogue of The-

orem 2 was obtained by A. Gatto and C. Gutierrez [6] and independently by W.-S.

Young [16] while an analogue of Theorem 3 was obtained by Carleson and Jones
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550 K. F. ANDERSEN AND E. T. SAWYER

[5] in this case. Extensions to certain fractional maximal functions and integrals

were given in [1 and 12].

Theorems 2 and 3 are proved by considering separately the local and global

behaviour of Ra, Wa, M~ and M+: the local behaviour being governed by the

operator

(Naf)(x)=     sup    (2h)a~1 f       \f(t)\dt,        x>0,
0<h<x/4 Jx-h

while the global behaviour is captured by the Hardy operators

rx roo

(Pf)(x)=       f(t)dt    and    (Qf)(x)= f(t)dt,        x > 0.
Jo Jx

For example, the left fractional maximal function M~ satisfies

(M-f)(x)<21-a(Naf)(x) + A1-axa-1(P[f\)(x).

As we shall see, conditions (1.6)-(1.10), answering the two problems posed by

Muckenhoupt, are determined solely by the global behaviour. The local operator

Na is handled by the following variant of an inequality of Gatto and Gutierrez [6].

Let

(Lf)(x)=     sup    (b + a)-1 f     \f(t)[dt.
a,b>0 J x—a

b+a<2x/3

LEMMA 1. Let 0 < a < 1, 1 < p < 1/a (1/a = oo if a = 0), 1/q = 1/p - a.
There are constants CPiQ such that

r r   /-oo -| q/p

(l.H)      / g(x)dx<Cp,a\-q \        [f(x)[p[(Lg){x)[l-apdx
J{x>0:  {Naf){x)>\} UO J

and if p > 1,

[roo -| 1/Q r   /-oo -1 1/p

jf     \(Naf)(x)\*g(x)dx\       <CP,ayJQ    |/(x)H(Lff)(x)]1-a"dx

holds for all locally integrable f, g with g > 0 a.e.

Using Lemma 1 we answer the two problems posed by Muckenhoupt in the case

T = Na.

LEMMA 2. Let 0 < a < 1, 1 < p < 1/a (1/a = oo if a = 0), 1/q = 1/p - a,
1/p + 1/p' = 1. If u(x) > 0 (respectively v(x) < oo) a.e., there is v(x) < oo

(respectively u(x) > 0) a.e. such that (1.1) holds with T = Na, if and only if u(x)q

(respectively v(x)~p ) is locally integrable on (0, oo), i.e. integrable on every compact

subset of (0, oo).

Since the local integrability of u(x)q and v(x)~p is a (readily deduced) necessary

condition for (1.1) to hold with T = Ra,Wa, M~ or M+, Lemma 2 shows that the

local behaviour of these operators does not play a crucial role in Theorems 2 and

3. Instead, it is the analogue of Lemma 2 for T = P and T = Q that is decisive.

However, for T = P or T — Q, the weights u, v for which (1.1) holds have been

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS   551

characterized very simply by Bradley [4], see also [3]. For example, (1.1) holds with

T = P if and only if

r f°° 11/q \ cR 1
(1.13) /     u(x)qdx\ /    v(x)-p'dx <C   for all R > 0,

and the analogue of Lemma 2 for T = P is now evident (for example, given u(x) > 0

a.e., there is v(x) < oo a.e. such that (1.1) holds with T = P, if and only if the first

factor on the left side of (1.13) is finite for all R > 0).

Theorem 1 is proved in §§2 and 3. The lemmas are proved in §§4 and 5 while the

remaining theorems are proved in §6. We follow the usual practice that C denotes

an absolute constant, not necessarily the same from line to line.

2. Proof of Theorem 1 for T = M~ and M+. First suppose (1.1) holds

with T = M~ and u = v, and fix 0 < h < a. Let f(x) — X(a-h,a)(x)u(x)~p . Then

for a < x < a + h,

(M~f)(x) > (2ft)"-1 f   u-p',
Ja-h

and plugging this estimate into (1.1) we obtain

[pa -|        ra+h 'q \  fa 1 1fp

j      u-p'\    j       uq        <C u-p'
Ja—h J     Ja lJa—h

since u~p p+p = u~p . A standard argument [9] shows that the right side of (2.1)

is finite, and if we then divide both sides by this quantity, we obtain (1.4) since

1/q + 1/p' = 1 - a.
Conversely, suppose (1.4) holds and set w = u1/^1-"). If 0 < <p(x) < x for x > 0,

z E C, define an operator S^w by

m        (s-'><*>=(^)'X(,r*~v
for appropriate /. The family of operators {SJ,w}z&c is analytic in the open strip

{z: 0 < Rez < 1} and continuous on the closed strip {z: 0 < Rez < 1} in the

sense that each of the functions z h-> ̂ ^(S^^^g is analytic in the open strip and

continuous on the closed strip for all /, g bounded with compact support contained

in the support of w. Note that by (1.4), the support of w is of the form [0,6], b < oo,

and that w_1 (even w~^1~a^p') is locally integrable on (0,6). This is sufficient for

the continuity of the family of operators (2.2) near Re z = 0.

Now set r — q(l — a). Then (1.4) can be rewritten

',     ra+h       ]1/r r,     ra T 1/r'(2-3)      [U »1 [iL-i sc;/,~°

since 1/p' = 1 - 1/p = 1 - (1/g + a) = 1 - (((1 - a)/r) - a) = (1 - a)(l/r').
However, (2.3) and Theorem 1 of [11] imply that

roo roo

/     \w(M0~f)[r <C2 I     [wf[r   for all / > 0,
Jo Jo
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552 K. F. ANDERSEN AND E. T. SAWYER

where C2 depends only on Cy. With g = wf, this becomes

roo rOO

(2.4) /     |w(M0-W-1g)|r <C2 /     |g|r    for all g > 0.
Jo Jo

Finally, since

w(r)   rx
\{S%wf)(x)[ < -)-( / w-1!/! < ^(Mrjw-'mx)    for all x,

(2.4) shows that

(2.5) S%w \U -*U    for all y G R

with a bound depending on Cy but not on y, <p or w.

Since |(S#*/)(x)| < S*_v(x) |/| < H/IIl., we have

(2.6) $£+*»: L1 - L°°    for all 2/ € R

with bound one. By complex interpolation of an analytic family of operators (Stein

[14]), (2.5) and (2.6) yield

(2.7) S^w:Lp^Lq

with a bound depending on Cy but not on tp or w since 1/p = (1 - a)(l/r) + a and

l/g = (l-a)(l/r).

Now fix f(x) > 0 on (0,oo) and define 0 < <p(x) < x so that (M~f)(x) <

2<p(x)a~1 /^.-(j.) / for almost all x. (We may assume M~ f < oo a.e.). Then with

g = w1~af, we have

(2.8) w1-a(M-wa-1g)(x) < 2(S£wg)(x)    for a.e. x.

Combining (2.7) and (2.8) we obtain

[roo -1 1/Q r   /-oo -| 1/p

J     |w1-Q(M-«;a-1ff)|«l       < C3 Iy     \g\p forallg>0,

or
[roo -] 1/9 r   /-oo "I 1/p

^    |tx(M-/)|«        ^C3[yo    k/1PJ forall/>0,

where C3 depends on Cy but not on /. This proves (1.1) for T — M~ and u = v

and completes the proof of part (a) of Theorem 1 in the case T = M~. The proof

of part (b) in the case T = M+ is similar.

3. Proof of Theorem 1 for T = Ra and Wa. We prove only the assertion

regarding Ra in part (a), the proof for Wa being similar. First, since (M~ f)(x) <

(Ra\f\)(x), the necessity of (1.4) for (1.1) with T — Ra and u = v follows immedi-

ately from what was proved in §2. Conversely, assume (1.4) holds. We will deduce

(1.1) for T = Ra and u = v from Welland's inequality, (1.2), and the results just

proved for M~ in §2. To this end, we set ay = a — e, a2 = a + e.  For i = 1,2,
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define gj by 1/gi = 1/p — a,, so that l/2gi + l/2g2 = 1/g. Now apply (1.2) and

Holder's inequality with indices 2gi/g and 2q2/q to obtain

(3-1)
•   roo -] 1/Q

/     \(Raf)(x)[qu(x)« dx
.Jo

[roo Il/2qi  r   roo i 1/-Q2

j     \(M-J)(x)\q>u(xrdx y     \(M-J)(x)^u(x)q^dx

= CEI ■ II.

Now gi < g and so Holder's inequality shows that (1.4), which we have assumed,

holds also with gi in place of g. Thus I < C[f£° [f(x)[pu(x)p dx]1//2p by the results

of §2. Term II is handled in the same way once we are able to show that (1.4) holds

with g2 in place of g for e sufficiently small. Note however that Holder's inequality

fails for this purpose since q2 > q. Instead, we use the theory of A~ weights in [11].

First, we observe that (1.4) is equivalent to the assertion that uq satisfies the A~

condition with r = 1 +q/p'. Thus u,(1-r ) satisfies A$ [11, Remark A] and so also

A*, for some s > r [11, Remark C]. By [11, Remark A] once more, u'(1-r H1-3)

satisfies A~. Now choose e > 0 so that

g2=g(l-r')(l-S)=g(^).

Then uq2 satisfies A~ which is equivalent to (1.4) with q2 in place of g (since

q2(l - s') = g(l - r') — g/(l - r) = -p'). As before, the results of §2 yield

II < C[/0°° \f(x)\pu(x)p dx]1f2p, and combining these estimates for I and II with

(3.1) yields (1.1) with T = Ra and u = v.

4. Proof of Lemma 1. Fix X > 0 and /, g locally integrable with g > 0.

Set Ex = {x > 0: (Naf)(x) > X}. Then E\ C \Jx€E Ix where Ix is an interval

(x — hx,x + hx) with hx < x/A and (2hx)a~1 J7 |/| > A. There are sequences {xj},

{hj} (h} = hXj) and a constant C so that

(4-1) XE,(t) < Y.^,-h1,x,+h1){t) < C.

j

Then,

/    g{x)dx < V" / g(x)dx
J Ex jJxj-hj

r rxj+hj j        rxj+hj y

<-^[L,aixn[m^L,mid',
j rXj+hj ["    rXj+hj "j 9/P

<x-"Yl wr- g(x)dx    / "     \f(t)[pdt
j     [_inj Jxj-h, \Jxj-h,

by Holder's inequality and the fact that [(1 - a) - l/p']g = 1. Now observe that if

t E (xj — hj,Xj + hj) then t > Xj — hj > 3hj since hj < x3/\, and so

1       rxj+hj

■zr- I g(x)dx<(Lg)(t).
2«j Jxi-hj
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554 K. F. ANDERSEN AND E. T. SAWYER

Thus,

f r rx]+h3 y'p

/    g(x)dx<X~qY,    / \f(t)[p[(Lg)(t)}p/qdt
J Ex j     [Jxj-hj

1 q/p

<X~q   Y,P    h\f(t)\Pl(Lg)(t)]p/qdt since g>p
j    Jx—hj

[roo i q/p

J     \f(t)\p[(Lg)(t)]p/qdt by (4.1),

i.e.

V r ] 1/q f r°° 11lp

(4.2) y    g(x)dx\      ^Cp.aA-1^     l/WHtoOW]1-0"''*'       .

Let (Taf)(x) = (Na[f(Lg)a])(x) (for fixed g). Then (4.2) yields

\r Y>q V  roo -.i/P

/ g(x)dx\       ^C^X-1    /     |/(0|p(Lg)(<)di        ,
\J{x>0: (Taf){x)>\) UO

and Marcinkiewicz interpolation then yields (for p > 1)

"   /-oo 1 1/q r   /-oo -| 1/p

/     \Na[f(Lg)a}\qg(x)dx        < Cp,a    /     |/(*)|p(Lg)(t)di        ;
Jo J Uo

since Lg > 0 a.e. this is equivalent to (1.12).

5. Proof of Lemma 2. We begin by proving the necessity of local integrability

for uq and v~p if (1.1) holds. So suppose (1.1) holds with T = Na where u(x) > 0

a.e. andv(x) < oo a.e. For R > 0 ande > 0, let /j?,e(x) = X{R,hR/4)(x)(v(x)+e)~p .

Then
/p\c-l     rbR/i

(NafR,e){x)>{j\       J        (v + e)-p',        R<x<5R/4,

and so

/D\«-l   f   r5R/4 ]   [   roR/4      I1/9 r   /-oo 1 1/q

u) [/» (o+£)i[/B i ni {N"f«-r*f
[roo 1 1/P

J    (fR,e)pvp\ by (1.1)

(5-1) r° -il/p
V       ' \   rbR/4 ]   /P

= C    /        (w + £-)-pp>
JR

",5K/4 _l1/p

< C    / (u + e)   p since p — pp' = —p'.
Jr

Now divide both sides of (5.1) by the term on the right side and then let e —» 0 to

obtain that both uq and v~p  are integrable on (R, 5i?/4) for all R > 0.
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Conversely, we consider first the case where u(x)q > 0 a.e. and locally integrable

on (0, oo). Let un = X(2n,2n+1)u f°r nE Z. Then for / locally integrable,

roo roo

/     \Naf\quq<T [Naf[q(un + 2-W)q
J° n€ZJo

[roo -| Q/p

/     \mLgn)1-a" by (1.12) with gn = («„ + 2"W)«

■ ,oo      r ] ]q/p

<C    /     |/|p   ^(L5n)X"Qp since p<g.

J° Inez J.

Thus (1.1) holds for T = Na if we define v(x) by vp = T,nez(Lan)1~ap and v(x) is

finite a.e. since the support of Lu^ is contained in [2n-1,2n+2] and Lu* < oo a.e.

for each n.

Finally, we consider the case where v(x) < oo a.e. and v(x)~p is locally integrable

on (0, oo). For notational convenience we set a = v~p and for R > 0, aR —

X(R,2R)0-- Let

ER,k = {xE [4i?/3,8i?/5]: N0aR < 2k}

and define an operator TR<k by

(TR,kf)(x) = XER,k(x)Na(fo-R)(x).

With g = 1, (1.11) shows that

(5.2) TR,k: L1(aR)^L1^1-^'°°(dx)    with norm  < C,

while Holder's inequality yields

(5.3) TR,k = L1'a(o-R)^L00(dx)   with norm <2k(1'a)

since

(TR,kf)(x) = XERk(x)       sup    (2h)a~1 f      1/ltTfi
0<h<x/4 Jx-h

r n 1—a

<Xfi,lt(i)    sup       — /        aR \        [ft^o-H
0<h<x/4 \_in Jx-h UO

< 2fc(1-a) 17    |/|1/aaJ       by definition of ER<k.

Applying Marcinkiewicz interpolation to (5.2) and (5.3) yields

■ roo 1 1/q r   roo i 1/p

(5.4) J     \TRtkf\"        < Cp,a2k'p' \J     \f\paR for all / > 0.

Recalling that (TR>kf)(x) = (Nafv~p )(x) for x E ERtk, and then replacing / by

gvp in (5.4) produces

■ r Y'q \   r2R 1 X'P

(5.5) /       \Nag[q        < Cv%a2klp     \      \g[pvp for all g > 0.
/ER,k           J                          [Jr
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Now define uR by

oo

U«R = £ 2-k2-kq/p'XER,k        [« X(4fi/3,8R/5)(W0^)-*/p'-1'   .

k=0

Raising (5.5) to the power q and summing we obtain

roo r f2R       y/p

(5.6) J    (Nag)quqR<2Cla\j      \g[pvp for all g > 0.

Setting R = Rj = (f)(1)-7' in (5.6), multiplying by 2~IJI and then summing the
result yields

T l1/q ,/
roo r   roo -| l/P

/    (Nag)q T 2-^uqR < Cp,a    /     \g\pvp for all g > 0.
Jo jez JJ Uo J

Thus (1.1) holds for T = Na if we define u(x) by uq = T,j€z 2~^ur- and u(x) is

positive a.e. by construction.

6. Proofs of Theorems 2 and 3. We begin by proving part (a) of Theorem

2. Suppose first that (1.1) holds for T = Ra or T = M~ where u(x) > 0 a.e. and

v(x) < oo a.e. For R > 0 and e > 0, let

fR,e(x) = X{0,R)(x)(v(x) + £)-p'.

Then

rR
(Raf)(x) > (M"/)(x) > ia-' /    (v + £)~p , x > R,

Jo

and plugging this estimate into (1.1), arguing as in (5.1) and then letting e —> 0

yields

r r°° u(x)q y/q \ rR       ,   11/p
(6.1) y     ^ji^ y    v(x)-p dx <C    for all R > 0.

This proves the necessity of (1.6) (and also (1.8)) for (1.1) with T = Ra or T = M".

Conversely, suppose (1.6) holds. We assume in what follows that 1/g = 1/p — a

since the case 1/g > 1/p - a may be obtained from this using Holder's inequality

in a suitable manner. As pointed out in the introduction, we have for / > 0,

(6.2) (M-f)(x)<21-a(Naf)(x) + 41-axa-1(Pf)(x),        x > 0.

By Lemma 2, there is Vy(x) < oo a.e. such that (1.1) holds for T = Na with v = vy.

If we choose v2 to satisfy

r   roo "I 1/9  ["   rR ] 1/p'

/     x(o-1)qu(x)qdx\ I    v^p =1    forallJ2>0,
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then Bradley's result (see (1.12)) shows that (1.1) holds for (Tf)(x) = xa~1(Pf)(x)

with v = v2. Thus if v = max{ui,u2}, then (6.2) shows that (1.1) holds for

T = M~.
To show that (1.1) holds for T = Ra (with some v(x) < oo a.e.) we use

Welland's inequality, (1.2), as in the proof of Theorem 1. Choose e > 0 so that

e < min{a, 1/p - a} and set 1/g! = 1/p - (a - e), l/g2 = 1/p - (a + e). Note that

r     »(*)«     dx - r_u-W_dx
JR     ;rJl-(a-E)]gi-rEa«i/p' JR     a;[1-(a+e)]92_£992/P'

f°°   u(x)g
= /       ,,   \   dx < oo   for all R > 0.

JR    xi1-^

By what we just proved for M~, there are vy(x) and v2(x) finite a.e. so that

r   /-oo r   \, "I l/9i r   roo -i 1/p

(6.3) [yo [(j»/-_,/)(x)]«'^L_d«j   <[yo i/i^j  ,

(6.4) [yo [(^-+,/)(x)]«;=ii7Fd«j   <[yo i/i^J   ,

for all / > 0. Applying (1.2) and Holder's inequality with exponents 2gi/g and

2g2/g, we see that [/0°° \(Raf)(x)\qu(x)q dx}1^ is dominated by a constant multiple

of the geometric mean of (6.3) and (6.4). Thus (1.1) holds for T — Ra with

v = max{wi,u2}. This proves part (a) of Theorem 2. The remaining cases of

Theorems 2 and 3 are all proved similarly, i.e. M~ and M+ are dominated by 7VQ

and P or Q, and then Welland's inequalities, (1.2) and (1.3), are used to pass to

Ra and Wa.
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