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WEIGHTED NORM INEQUALITIES
FOR THE RIEMANN-LIOUVILLE AND
WEYL FRACTIONAL INTEGRAL OPERATORS

K. F. ANDERSEN AND E. T. SAWYER

ABSTRACT. The weight functions u(z) for which R, the Riemann-Liouville
fractional integral operator of order a > 0, is bounded from LP(u? dz) to
L(u%dz), 1< p< 1/a, 1/g =1/p — a, are characterized. Further, given p, ¢
with 1/¢ > 1/p—a, the weight functions u > 0 a.e. (resp. v < oo a.e.) for which
there is v < oo a.e. (resp. u > 0 a.e.) so that Rq is bounded from LP(v? dzx)
to L9(u%dz) are characterized. Analogous results are obtained for the Weyl
fractional integral. The method involves the use of complex interpolation of
analytic families of operators to obtain similar results for fractional “one-sided”
maximal function operators which are of independent interest.

1. Introduction. For 0 < a < 1 the Riemann-Liouville fractional integral oper-
ator R, and the Weyl fractional integral operator W, are defined, up to normalizing
constants, for locally integrable functions f on (0,00) by

oo}

(Raf)(-’v)=/0$($—t)°‘_1f(t)dt, (Waf)(z)=/ (t-2)*7'f(t)dt, x>0

Ifl1<p<1/a,1/¢g=1/p—a and T is either one of these operators, then it is well
known (7, Theorem 383] that

[ /0 ) I(Tf)(z)l"dx} e [ /0°° | f(f'«‘)l”da;} 1/

for some constant C' depending on p, ¢, a but independent of f. The purpose of
this paper is to study weighted analogues of these inequalities of the form

1/q

(L1) [CienEeee) s [T ()P da] v

where u and v are nonnegative weight functions and C is a constant depending on
D, q, , u, v but independent of f.

Our approach to these inequalities involves dominating R, and W, in terms of
the fractional “one-sided” maximal function operators M, and M}, defined for
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548 K. F. ANDERSEN AND E. T. SAWYER

0<a<l1lby

T

(M7 f)(z) = sup Ao~ / S@®ld, >0,

O<h<z —h

z+h

(MF 1)@ =swphet [0l 2>
h>0 T

As is easy to see, (Mg f)(z) < (Ralf])(z) and (M f)(z) < (Walf|)(z). Even

though these inequalities cannot be reversed, applying a result of Welland [15] to

the function f(t)x(0,)(t), it follows that for each €, 0 < € < min(a, 1 — @), there is

a constant C. depending only on £, such that

(1.2) [(Ra /) ()] < Cel(Mgy f)(@)(Mg_c f)()]/2.
Similarly
(1.3) |(Waf)(2)] < Cel(M, f)(2)(MF_. ()],

From (1.2), (1.3) and the results we prove for (1.1) with T = M, and T = M},
which are of interest in their own right, we shall deduce inequalities of the form
(1.1) for T = Ry and T = W,,. From these, the interested reader may easily deduce
(see [2]) inequalities of the form (1.1) for various other fractional integral operators
T such as the Erdélyi-Kober operators IZ,& and ng given by

Vx_”(£+a)+’/

@) = [ - et

| Zdl

Jy = —

( B,nf)(z) r(a)

Under the hypothesis 1 < p < 1/a, 1/qg = 1/p — & and u = v, we give character-

izations of those weights u for which (1.1) holds if T is any one of Ry, Wy, My,
M. Indeed, we shall prove the following theorem.

oo
/ (8 — z¥)P= g B =1 p(p) gy,
T

THEOREM 1. If0<a<l,l1<p<l/a(l/a=o00 iffa=0),1/g=1/p—a,
1/p+1/p' =1 then (1.1) holds with u =v
(a) for T = M5 or T = Ry (a > 0) ¢f and only if

(1.4) {% /a " ) dx]l/q [% /a ihu(g:)_p’ dz]l/pl <c

for some constant C and all a, h with 0 < h < a;
(b) for T = M} or T =W, (a > 0) if and only if

(1.5) [% /‘:h u(z)? dz] v {% /aa+h u(z)™? dz] " <C

for some constant C and all a, h with 0 < h < a.

Observe in particular that any nonincreasing weight function u satisfies (1.4)
while any nondecreasing weight function u satisfies (1.5).

The proofs of (a) and (b) are similar. For T = M the proof applies the method,
due to Stein [14], of complex interpolation of analytic families of operators to certain

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS 549

linearizations of M . The endpoint o = 1 is trivially estimated, while the endpoint
a = 0 is treated by known results [11] for M. The use of interpolation here is
in contrast to the ‘geometric’ Calder6n-Zygmund decomposition type methods by
which the fractional Hardy-Littlewood maximal function operator M, and the Riesz
fractional integral I, have been successfully studied, even in the more general two
weight function setting {13, 10]. It is desirable to obtain a ‘geometric’ type proof
of Theorem 1, since the interpolation method seems restricted to the single weight
function context, but we have so far been unable to do so. While we have not
been able to characterize the weight pairs (u,v) for which (1.1) holds with T = R,,
Wa, M7 or M, the following results provide answers to a pair of related problems
posed by Muckenhoupt [8], namely: given T, if u(z) > 0 a.e. (respectively v(z) < co
a.e.) when is there a weight function 0 < v(z) < oo a.e. (respectively u(z) > 0 a.e.)
such that (1.1) holds? We shall prove the following two theorems.

THEOREM 2. Let0<a<1,1<p,g<oo,1/gq>1/p—a,l/p+1/p =1.1If
u(z) > 0 a.e., there is 0 < v(z) < 0o a.e. such that (1.1) holds
(a) for T= M5 or T = R, (o > 0) if and only of
* u(z)?
(1.6) /R z(l_—a)qda: < oo forallR>0;

(b) for T = MF or T =W, (a > 0) if and only if
R
(1.7) / u(z)?dz < oo for all R > 0.
0
THEOREM 3. Let0<a<1,1<p,g<oo,1/¢g>1/p—a,1/p+1/p =1. If

0 <v(z) < 00 a.e., there is u(z) > 0 a.e. such that (1.1) holds
(a) for T = M5 or T = R, (a > 0) if and only if

R
(1.8) / v(z)"? dz < oo for all R > 0.
0
(b) for T =W, (o > 0) if and only if
(1.9) / 2@ VPy(z) P dz < 0o for all R > 0;
R
(¢) for T = M} if and only of
s
(1.10) sup S(a"l)”’/ v(z)"? dz < 0o for all R > 0.
S>R R

The assertions of Theorem 3 regarding R, and W, follow immediately from
Theorem 2 together with Holder’s inequality and its converse since R, and W, are
dual operators in the sense that

/ " (Raf)(2)o(z) dz = / " (2) Wag)(z) de
0 0

for all f,g >0, while1/¢>1/p— «ifand only if 1/p' > 1/¢ — a.

For the Hardy-Littlewood maximal operator M and p = ¢, an analogue of The-
orem 2 was obtained by A. Gatto and C. Gutiérrez [6] and independently by W.-S.
Young [16] while an analogue of Theorem 3 was obtained by Carleson and Jones
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550 K. F. ANDERSEN AND E. T. SAWYER

[5] in this case. Extensions to certain fractional maximal functions and integrals
were given in [1 and 12].

Theorems 2 and 3 are proved by considering separately the local and global
behaviour of R,, W,, M7 and MZ: the local behaviour being governed by the
operator

z+h
(Naf)(z) = sup (2h)""" / F@Old, 2 >0,
0<h<z/4 z—h

while the global behaviour is captured by the Hardy operators
T [e o}
(Pr)@) = [ 10@ wa @@= [ s 20
z

For example, the left fractional maximal function M satisfies
(Mg f)(z) < 2'7%(Naf) () + 41271 (Pf])(2).

As we shall see, conditions (1.6)-(1.10), answering the two problems posed by
Muckenhoupt, are determined solely by the global behaviour. The local operator
N, is handled by the following variant of an inequality of Gatto and Gutiérrez [6].
Let

z+b
@NE = s b+a) [ il
a,b>0 z—a
b+a<2z/3
LEMMA 1. Let0<a<1,1<p<l/a(l/la=cifa=0),1/¢q=1/p— a.
There are constants Cp o such that

q/p

— e 1—a
(L11) /{DO:(Namzwgu)dzscp,ax [/0 @PILo))] "dz]

and if p > 1,

1/p

1) [ [7 i@ da] " G [T v@rica@nral

holds for all locally integrable f, g with g > 0 a.e.

Using Lemma 1 we answer the two problems posed by Muckenhoupt in the case
T = N,.

LEMMA 2. Let0<a<l,1<p<l/a(l/la=oc0ifa=0),1/g=1/p-q,
1/p+1/p = 1. If u(z) > 0 (respectively v(z) < o) a.e., there is v(z) < o©
(respectively u(z) > 0) a.e. such that (1.1) holds with T = N, if and only if u(z)?
(respectively v(x)"’l) 1s locally integrable on (0,00), i.e. integrable on every compact
subset of (0, 00).

Since the local integrability of u(z)? and v(z) ™ is a (readily deduced) necessary
condition for (1.1) to hold with T = R4, W,, M or M}, Lemma 2 shows that the
local behaviour of these operators does not play a crucial role in Theorems 2 and
3. Instead, it is the analogue of Lemma 2 for T'= P and T = @ that is decisive.
However, for T = P or T = @, the weights u, v for which (1.1) holds have been
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characterized very simply by Bradley [4], see also [3]. For example, (1.1) holds with
T = P if and only if

oo 1/q R , 1/v'
(1.13) [/ u(z)? dm] [/ v(z)7P dzl <C foral R>0,
R 0

and the analogue of Lemma 2 for T = P is now evident (for example, given u(z) > 0
a.e., there is v(z) < 0o a.e. such that (1.1) holds with T = P, if and only if the first
factor on the left side of (1.13) is finite for all R > 0).

Theorem 1 is proved in §§2 and 3. The lemmas are proved in §§4 and 5 while the
remaining theorems are proved in §6. We follow the usual practice that C denotes
an absolute constant, not necessarily the same from line to line.

2. Proof of Theorem 1 for T = M; and M. First suppose (1.1) holds
with T = M5 and u = v, and fix 0 < h < a. Let f(z) = x(a_h,a)(z)u(a:)‘p'. Then
fora<z<a+h,

Mz @ 2w [* u,

and plugging this estimate into (1.1) we obtain

e[ [ el L]

since u~P'P*tP = 4~P', A standard argument [9] shows that the right side of (2.1)
is finite, and if we then divide both sides by this quantity, we obtain (1.4) since
1/g+1/p=1-a.

Conversely, suppose (1.4) holds and set w = u!/(1=%), If 0 < p(z) < z for z > 0,
z € C, define an operator S ,, by

(2.2 (Sf)(@) = (“’(’”))l—z [ ey

’ o p(z) z—p(z)
for appropriate f. The family of operators {8%,w}2ec is analytic in the open strip
{2: 0 < Rez < 1} and continuous on the closed strip {z: 0 < Rez < 1} in the
sense that each of the functions z — f?w(S;,w f)g is analytic in the open strip and
continuous on the closed strip for all f, g bounded with compact support contained
in the support of w. Note that by (1.4), the support of w is of the form [0, 8], b < oo,
and that w=! (even w~(172)?") is locally integrable on (0,b). This is sufficient for
the continuity of the family of operators (2.2) near Rez = 0.

Now set = g(1 — ). Then (1.4) can be rewritten

1 [oth 1r 11 , 1/r'
(2.3) E/ w" [5/ hw"] <l
a a—

since 1/p' =1-1/p=1-(1/g+a) =1-((1 —a)/r) —a) = (1 - a)(1/r).
However, (2.3) and Theorem 1 of [11] imply that

oo =)
/ lw(Mq I < Cz/ lwf|" forall f>0,
0 ]
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552 K. F. ANDERSEN AND E. T. SAWYER
where Cy depends only on C;. With g = wf, this becomes
oo oo
(2.9 [ g umor <6 [Tl foralig 20
0 0

Finally, since

|(8Fw ()] < /z ( )w_1|f| <w(Mywlf)(z) for all z,
z—p(z

(2.4) shows that
(2.5) S;y_w: L" - L" forallyeR

with a bound depending on C; but not on y, ¢ or w.
Since |(Sp1 f)(z)] < ff_@(z) [fl < |Ifllz:, we have

(2.6) Sptw: L' - L™ forallyeR

with bound one. By complex interpolation of an analytic family of operators (Stein
[14]), (2.5) and (2.6) yield

(2.7) S% : LP — L

with a bound depending on C; but not on ¢ or w since 1/p = (1—a)(1/r) + & and
1/g=(1-a)(1/r).

Now fix f(z) > 0 on (0,00) and define 0 < p(z) < z so that (M f)(z) <
2p(z)! ;_p(x) f for almost all z. (We may assume M f < oo a.e.). Then with

g =w!"°f, we have
(2.8) w' T (MG w* g)(z) < 2(S3,9)(z) for ae. z.

Combining (2.7) and (2.8) we obtain

00 1/q %) 1/p
[/0 uwl-%M;wa-‘g)P] <y [/0 |g|"] for all ¢ > 0,
or

oo 1/q oo 1/p
[/ Iu(M;f)l"] <Gy [/ qul”] for all f >0,
0 0

where C3 depends on C; but not on f. This proves (1.1) for T = M, and u = v
and completes the proof of part (a) of Theorem 1 in the case T = M. The proof
of part (b) in the case T = M/ is similar.

3. Proof of Theorem 1 for T = R, and W,. We prove only the assertion
regarding R, in part (a), the proof for W, being similar. First, since (M7 f)(z) <
(Ra|f1)(z), the necessity of (1.4) for (1.1) with T = R, and u = v follows immedi-
ately from what was proved in §2. Conversely, assume (1.4) holds. We will deduce
(1.1) for T = R, and u = v from Welland’s inequality, (1.2), and the results just
proved for M5 in §2. To this end, we set a; = a —¢€, ag = a+¢€. Forz = 1,2,
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WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS 553

define ¢; by 1/¢; = 1/p — o, so that 1/2¢q; + 1/2q = 1/q. Now apply (1.2) and
Holder’s inequality with indices 2q; /g and 2¢2/q to obtain
(3.1)

[ (Rep@ioutorras)

1/q

1/2q2

<c. [ [T e n@ieuare dz] v [ 1Mz n@euta) ao

=C.I- 1L

Now ¢; < ¢q and so Hélder’s inequality shows that (1.4), which we have assumed,
holds also with ¢; in place of ¢. Thus I < C[f;° |f(z)[Pu(z)? dz]'/?P by the results
of §2. Term II is handled in the same way once we are able to show that (1.4) holds
with g in place of ¢ for ¢ sufficiently small. Note however that Hélder’s inequality
fails for this purpose since g2 > ¢. Instead, we use the theory of A, weights in [11].
First, we observe that (1.4) is equivalent to the assertion that u? satisfies the A
condition with 7 = 14 ¢/p’. Thus u?(1~"") satisfies AY, [11, Remark A] and so also
A}, for some s > r [11, Remark C]. By [11, Remark A] once more, 49(1=7")(1=9)
satisfies A;. Now choose € > 0 so that

qz=q(1—r')(1—8)=q<s_l)~

r—1

Then 49 satisfies A7 which is equivalent to (1.4) with g2 in place of ¢ (since
q2(1 — ') = q(1 —7') = q/(1 —r) = —p'). As before, the results of §2 yield
II < C[fy° |f(z)|Pu(z)? dz]*/??, and combining these estimates for I and II with
(3.1) yields (1.1) with T = R, and u = v.

4. Proof of Lemma 1. Fix A > 0 and f, g locally integrable with g > 0.
Set Ex = {z > 0: (Naf)(z) > A}. Then E\ C U,cg, I= where I, is an interval
(z = hz,z+hg) with by < 2/4 and (2h;)*~! [, |f] > A. There are sequences {z;},
{h;} (hj = h;) and a constant C so that

(4.1) XEs () D X(z,—hy,z;4+h,)(t) < C.
J
Then,
T;+h;
| s@aa<> [T g@yas
E, f; z;—h;

z;+h; z+h; q
Sfj_: [/z,-_h, g(z)dz} [X(—Z'E,l)l_-a /z,._h, |f(t)|dt]

z,+h; o +h; a/p
srqz[ﬁ—j / g(z)dw] [/ N If(t)I”dt]
J

i—h; i—h;

by Holder’s inequality and the fact that [(1 — @) — 1/p’]g = 1. Now observe that if
t € (z; — h;,z; + h;) then t > z; — h; > 3h; since h; < z;/4, and so

zj+h;
. / o(z) dz < (Lg)(t).

% fC]‘—hj
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554 K. F. ANDERSEN AND E. T. SAWYER

Thus,
a/p
T )P p/q
/ d<,\qzv N (OP[(Lg) ()] dt]
a/p
<\9 [Z/ (®)P[(Lg)( )]”/th] since ¢ > p
o a/p
<o [ [Tyorizowrea] by 4,
i.e.

an [ Ag(z)dz]wscp,ar‘ [ rerizonr- “"dt]l/p.

Let (Tof)(z) = (No[f(Lg)*])(z) (for fixed g). Then (4.2) yields

1/q o) 1/p
[ / o(z) dz] < Cpah~! [ / If(t)l”(Lg)(t)dt] ,
{z>0: (Taf)(z)>A} 0

and Marcinkiewicz interpolation then yields (for p > 1)

1/p

" Nalf o la@ds| < Cpa | [T 10OPEOO @]
0 0

since Lg > 0 a.e. this is equivalent to (1.12).

5. Proof of Lemma 2. We begin by proving the necessity of local integrability
for u? and v~? if (1.1) holds. So suppose (1.1) holds with T = N, where u(z) > 0
a.e.and v(z) < ocoa.e. For R >0ande > 0,let fre(z) = X(R,53/4)(z)(v(z)+€)'p'.
Then

a—1 ~5R/4 ,
(Nafre)(z) 2 (%) /R (v+e)77, R <z <5R/4,
and so
R\ [ [5R/4 ) sr/a /4 ) 1/q
g -p q 1,49
() L e [ ] < [t
00 1/p
so|[Turare] " o
(5.1)

J
5R/4 I R

/ (v+e)7PPoP

/R

[ ~5R/4 ) 1/p
<C / (v+e)7? since p — pp’ = —
R

Now divide both sides of (5.1) by the term on the right side and then let ¢ — 0 to
obtain that both u? and v=?" are integrable on (R,5R/4) for all R > 0.
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Conversely, we consider first the case where u(z)? > 0 a.e. and locally integrable
on (0,00). Let u, = x(gn,2n+1)u for n € Z. Then for f locally integrable,

o flau? Naf19( 9-Inl
/0|Nf|u<2/| £19(un + 271710

nez

a/p
<C) [/ |fIP(Lgn)'~ "‘”] by (1.12) with g = (un +271"1)2

nez

0o a/p
<C V | 1P [Z(Lyn)l"’”” since p < g.
0 nez
Thus (1.1) holds for T = N, if we define v(z) by v* = 3, . ,(Lgn)'~*? and v(z) is
finite a.e. since the support of Lug, is contained in [2"~1,2"*2] and Lud < oo a.e.
for each n.
Finally, we consider the case where v(z) < oo a.e. and v(z)~? is locally integrable
n (0,00). For notational convenience we set 0 = v™? and for R > 0, o =
X(r,2R)0- Let
Egx = {z € [4R/3,8R/5]: Noog < 2*}
and define an operator Tg x by

(TR,kf) (Z) = XEg.k (IE)NQ (fO'R)(l').
With g =1, (1.11) shows that

(5.2) Tri: L' (or) — LY (=% (dg) with norm < C,
while Holder’s inequality yields

(5.3) Trx = LY%(0g) —» L®(dz) with norm < 2%(1—2)
since

z+h
(TR,kf)(x>=xER,k<x>[ sup (2h)21 [ Ifldn]

O<h<z/4
l1-a

1 z+h oo 1 [
< XEg,(z) sup 3 OR |fI/*or
O<h<z/4 z—h 0
o0 a
< gk(1=a) [/ |f|1/°‘aRJ by definition of Eg \.
0

Applying Marcinkiewicz interpolation to (5.2) and (5.3) yields

o0 1/q , 0o 1/p
(5.4) [ / ITR,kfrf] < Cpa2tl? [ / |f|paR] for all f 0.
0 0

Recalling that (T« f)(z) = (Nafv“")(z) for £ € Eg k, and then replacing f by
gv? in (5.4) produces

1/p

e 2R
(5.5) [/ INo,glq] < Cp,a2k/”' l/ |g|pv”} for all g > 0.
Erk R
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556 K. F. ANDERSEN AND E. T. SAWYER

Now define up by
oo
uf = Z 2 k2~ka/P v [% X(4r/3,8R/5)(NooR) ™97 _1] .
k=0

Raising (5.5) to the power ¢ and summing we obtain

o 2R a/p
(5.6) / (Nog)iuf <208, l/ |g|”v”l for all g > 0.
0 R

Setting R = R; = (3)(£)’ in (5.6), multiplying by 271! and then summing the
result yields

o 1/q - \p
/ (Nag)? Z 2‘|j|u‘}3]_ < Cpa [/ Igl”v”] for all ¢ > 0.
0 j€z 0

Thus (1.1) holds for T' = N, if we define u(z) by u? =3 2~ ls |uR and u(z) is
positive a.e. by construction.

6. Proofs of Theorems 2 and 3. We begin by proving part (a) of Theorem
2. Suppose first that (1.1) holds for T = R, or T = M5 where u(z) > 0 a.e. and
v(z) < 00 a.e. For R > 0 and € > 0, let

’

fre(Z) = X(0,r)(T)(v(z) +€)7F.

Then
R 12
(Raf)(z) > (M7 [)(z) > 2o~ / (w+e)?, z>R,
0

and plugging this estimate into (1.1), arguing as in (5.1) and then letting € — 0
yields

1/p'
© u(z)e 1/q R .,
(6.1) [/ z(l_a)q] /0 v(z)7? dz <C forall R>0.

R

This proves the necessity of (1.6) (and also (1.8)) for (1.1) withT = R, or T = M, .

Conversely, suppose (1.6) holds. We assume in what follows that 1/g =1/p — «
since the case 1/q¢ > 1/p — o may be obtained from this using Holder’s inequality
in a suitable manner. As pointed out in the introduction, we have for f > 0,

(6.2) (Mg f)(z) < 2'7%(Nof)(z) + 47 %2271 (Pf)(z), 2 >0.

By Lemma 2, there is v;(z) < 0o a.e. such that (1.1) holds for T' = N, with v = v;.
If we choose vq to satisfy

1/p’

oo 1/q R ,
[/ (@~ Dy ()9 d;,;} [/ v, ¥ =1 forall R >0,
R 0
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WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS 557

then Bradley’s result (see (1.12)) shows that (1.1) holds for (T'f)(z) = z*~!(Pf)(z)
with v = v,. Thus if v = max{v;,v2}, then (6.2) shows that (1.1) holds for
T=M;.

To soflow that (1.1) holds for T = R, (with some v(z) < oo a.e.) we use
Welland’s inequality, (1.2), as in the proof of Theorem 1. Choose € > 0 so that
€ <min{a,1/p—a} and set 1/q; = 1/p—(a —¢€), 1/q2 = 1/p— (a +¢€). Note that

e u(z)? Y et u(z)?
/R zl1—(a—¢)la1teqq:/p’ dz _/R gll—(a+e)laz—eqqz2/p’ dz

o0 q
=/ M 4z <o forall R >0.
R T —a)q

By what we just proved for M, there are v;(z) and vo(z) finite a.e. so that

69 [ e 2w <[ [T

60 [T 2w < [T i)

for all f > 0. Applying (1.2) and Holder’s inequality with exponents 2¢;/q and
2g2/q, we see that [[;° |(Raf)(2)|%u(z)? dz]'/? is dominated by a constant multiple
of the geometric mean of (6.3) and (6.4). Thus (1.1) holds for T = R, with
v = max{v,ve}. This proves part (a) of Theorem 2. The remaining cases of
Theorems 2 and 3 are all proved similarly, i.e. M7 and M} are dominated by N,
and P or @, and then Welland’s inequalities, (1.2) and (1.3), are used to pass to
R, and W,.
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