
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 15, Number 4, Pages 979–1006
S 0894-0347(02)00397-1
Article electronically published on June 21, 2002

WEIGHTED PALEY-WIENER SPACES

YURII I. LYUBARSKII AND KRISTIAN SEIP

1. Introduction

This paper explores the connections between three objects: Strictly positive
weights on the real line, weighted L2 spaces of entire functions, and entire functions
generating such spaces, as depicted by de Branges [4].

Let H be a Hilbert space of entire functions whose norm is given by a positive
weight function w(x) > 0:

‖f‖2w =
∫ ∞
−∞
|f(x)w(x)|2dx.

Assume that point evaluation is a bounded functional on H for each point z ∈ C,
and also that H has the following symmetry property: H is closed under the
operations f(z) 7→ f(z)(z− ζ)/(z− ζ) (provided f(ζ) = 0) and f(z) 7→ f(z). These
assumptions ensure that H is a Hilbert space of entire functions in the sense of
de Branges [4]. According to de Branges’ theory, there exists an entire function E
belonging to the so-called Hermite-Biehler class (see below for definition) such that
H = H(E) isometrically; here H(E) consists of all entire functions f such that
both f(z)/E(z) and f(z)/E(z) belong to H2 of the upper half-plane, and the norm
of f is given by

‖f‖2E =
∫ ∞
−∞

|f(x)|2
|E(x)|2 dx.

The constructions of this paper rely crucially on the representation H = H(E).
We define the majorant of such a space H as

M(z) = sup{|f(z)| : ‖f‖w ≤ 1, f ∈ H}.
For x ∈ R the function M(x) can be considered as a regularization of 1/w(x)
by functions from H . We will say that the weight w is a majorant weight if
M(x)w(x) is uniformly bounded from below and above by positive constants (de-
noted M(x)w(x) ' 1) for some Hilbert space H as just described with norm ‖ · ‖w.
Such a space H will be called a weighted Paley Wiener space.

The model case is H = PWτ (τ > 0), where PWτ is the classical Paley-Wiener
space consisting of all entire functions of exponential type ≤ τ whose restrictions
to the real line are square integrable. These spaces correspond to the trivial weight
w ≡ 1. In a sense, we will show what is the widest class of weights and associated
spaces for which results on sets of uniqueness, sampling, and interpolation for PWτ
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can be extended in a direct and natural way, keeping the basic features of the theory
intact.

Our first main theorem gives an explicit representation of all majorant weights:

Theorem 1. A function w(x) > 0 is a majorant weight if and only if there exist a
function m(x) ' 1 and a real entire function g such that

logw(x) + g(x) +
∫ ∞
−∞

[log |1− x/t|+ (1 − χ[−1,1](t))x/t]m(t)dt ∈ L∞,(1)

where χ[−1,1] is the characteristic function of the interval [−1, 1].

Remark. For example, in the case of the classical space PWτ one has w(x) ≡ 1 and
thus can take g = 0, m ≡ 1.

There exists a trivial isometry by which the function g can be eliminated: Mul-
tiply all functions in H by a factor eg, and replace the weight w by we−g. Thus,
without loss of generality, we may assume that g ≡ 0. However, it is convenient
to accept a linear function; in what follows, we will assume that the function g of
Theorem 1 is linear.

To a given majorant weight represented as in Theorem 1, with g(x) = ax, we
associate a lower uniform density defined as

D−(m) = lim
r→+∞

1
r

inf
x

∫ x+r

x

m(t)dt;

here the limit exists because the function d(r) = infx
∫ x+r

x
m(t)dt is superadditive,

i.e., d(r + s) ≥ d(r) + d(s). (This lower uniform density is essentially the same as
the one used by Beurling [2]; see Section 6 below.)

The following theorem gives a description of all weighted Paley-Wiener spaces
with norm ‖ · ‖w.

Theorem 2. The family of all weighted Paley-Wiener spaces whose norms are
given by a fixed majorant weight w represented as in Theorem 1 and with g(x) = ax
can be parametrized by all real numbers b > −D−(m)/π. The space associated with
a given b consists of all entire functions f satisfying ‖f‖w < ∞ and log |f(z)| ≤
Cε + ω(z) + ε|z| for all ε > 0, where

ω(z) = a<z + b|=z|+
∫ ∞
−∞

[log |1− z/t|+ (1− χ[−1,1](t))<z/t]m(t)dt.

In other words, a weighted Paley-Wiener space is completely characterized by
the function ω. Note that if b ≥ 0, then clearly ω is subharmonic. On the other
hand, if b < 0, then one can prove that ω differs from a subharmonic function by
a bounded function. We may therefore assume without loss of generality that ω is
subharmonic.

The weighted Paley-Wiener space associated with ω (from now on assumed to
be subharmonic) will be denoted by L2

ω.
It follows from Theorem 2 that weighted Paley-Wiener spaces consist of functions

of order at most one (but not necessarily of finite type), or, more precisely, an entire
function f from this space satisfies log |f(z)| ≤ C|z| log+ |z|+Cf . Our inclusion of
the linear term az in ω is partly motivated by this fact, as we obtain in this way
all possible spaces of order one.

We introduce a terminology which reflects that we are dealing with entire func-
tions with properties similar to those functions which are of exponential type and
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WEIGHTED PALEY-WIENER SPACES 981

belong to the Cartwright class [10, Lecture 16]. Recall that a function F analytic
in the upper half-plane belongs to the Nevanlinna class if log |F | has a positive har-
monic majorant. By Nevanlinna’s factorization theorem, every F in the Nevanlinna
class can be factorized uniquely as

F (z) = B(z)eihzeG(z),

with B a Blaschke product, h a real constant, and G analytic in the upper half-plane
such that its real part is the Poisson integral of a measure µ satisfying∫ ∞

−∞

d|µ|(t)
1 + t2

<∞.

The number h is called the mean type of F . (See [4, pp. 22–30].) Now suppose
ω is a harmonic function in the upper half-plane and let S be analytic such that
log |S(z)| = ω(z). If f is an entire function such that both f(z)/S(z) and f(z)/S(z)
belong to the Nevanlinna class and are of mean type h1 and h2, respectively, we say
that f is of ω-type max(h1, h2). We note that L2

ω consists of those entire functions
f which are of nonpositive ω-type and whose restrictions to the real line satisfy
fe−ω ∈ L2(R).

The regularity condition (1) on w leads to a very different characterization of
weighted Paley-Wiener spaces. Given a sequence Σ of distinct complex numbers,
we denote by PWτ (Σ) the set of all functions in PWτ vanishing on Σ; it is clear
that PWτ (Σ) is then a closed subspace of PWτ . Using a multiplier lemma (which
also plays a role in the proof of Theorem 1), we are able to associate weighted
Paley-Wiener spaces with such subspaces of classical Paley-Wiener spaces:

Theorem 3. To every weighted Paley-Wiener space L2
ω, there exist τ > 0, a se-

quence Σ = {ξk − i}k∈Z with ξk+1 − ξk ' 1, and an associated entire function
F vanishing on Σ such that f(z) 7→ f(z)F (z) is a bijective mapping from L2

ω to
PWτ (Σ), with norm equivalence ‖f‖L2

ω
' ‖fF‖2.

An immediate consequence of this theorem is a Beurling-Malliavin-type density
theorem concerning the zeros of functions in L2

ω. In a similar way, we are able to
transfer all known results about sampling and interpolation for PWτ to the L2

ω

setting. Details about these results are presented in Section 6.
We have mentioned that L2

ω = H(E) isometrically for some entire function E
belonging to the Hermite-Biehler class. We denote this class by HB; it consists of
all entire functions E with no zeros in the upper half-plane and satisfying |E(z)| ≥
|E(z)| whenever =z > 0. More generally, to a given space L2

ω, there exists a
collection of entire functions E ∈ HB such that merely L2

ω = H(E), where equality
is understood in the sense of sets. (Incidentally, this implies equivalence between
the two norms ‖·‖w and ‖·‖E, by an argument based on the closed graph theorem.)
We will now give a description of all E such that L2

ω = H(E). (The space H(E) will
henceforth be referred to as a de Branges space; see Section 2 for a more detailed
account of such spaces.)

Some additional notation, to be used throughout the paper, is required to state
our fourth theorem. Write E(x) as

E(x) = |E(x)|e−iϕ(x),(2)

where ϕ(x), called the phase function of E, is a continuous branch of − Im logE(x);
since E ∈ HB, ϕ(x) is a nondecreasing function. Let Λ be the zero set of E and
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982 YU. I. LYUBARSKII AND K. SEIP

λ(x) = ξ(x) − iη(x) the point from Λ closest to the point x on the real line; this
function is well defined for all real x, except for at most countably many points.
We define λ(x) for all x by requiring it to be left-continuous at each point. Also,
set

σ(x) = min(η(x), 1) and BE(z) =
E(z̄)
E(z)

,

the latter being an inner function in the upper half-plane. Now our fourth main
theorem reads as follows.

Theorem 4. Let L2
ω be a weighted Paley-Wiener space. Then a de Branges space

H(E) satisfies H(E) = L2
ω if and only if the following five conditions are met:

(i) E is of ω-type 0.
(ii) ϕ′(x)|E(x)|2 ' e2ω(x).
(iii) There exists an ε0 > 0 such that if =λk ≥ −ε0, then dist(λk,Λ \ {λk}) ' 1.
(iv) ϕ′(x) ' σ(x)/min(|x− λ(x)|2, 1).
(v) The two functions |1 ± BE(x + i)|2/σ(x) both satisfy the Muckenhoupt (A2)

condition.

We shall see in Section 7 that if the zeros of E all lie in a horizontal strip, then
condition (v) of Theorem 4 can be reduced to the statement that σ satisfies the
Muckenhoupt (A2) condition.

We end this introduction by pointing out some interesting similarities and con-
nections with classical results. Let us consider the important case that w satisfies
the logarithmic integral condition:∫

R

| logw(x)|
1 + x2

dx <∞.

It means in particular that the usual conjugation operator f 7→ f̃ on the real
line can be applied to logw. Theorem 1 can then be rewritten in the following
form: w is a majorant weight if and only if it can be written as w = eu+v, with
u, (ṽ)′ ∈ L∞. Thus our condition has a certain similarity with the Helson-Szegö
condition, and also with the following version of the Beurling-Malliavin multiplier
theorem. Let w(x) ≥ 1 be a measurable function on the real line, and denote by
Lpw the space of functions f such that fw ∈ Lp (p ≥ 1). Beurling and Malliavin
determine those weight functions w such that (1) Lpw contains Fourier transforms
of measures supported in [−a, a] for each a > 0, and (2) the translation operators
f(x) 7→ f(x + t) are bounded on Lpw: w has properties (1) and (2) if and only if
it can be written as w = eu+v, with u, v′ ∈ L∞. Obviously, there is a large class of
weights which are both majorant and of Beurling-Malliavin-type.

Problems concerning the relation between majorants and weights and problems
about norm equivalence in spaces of analytic functions have been considered by
many authors and for a number of different spaces. We refer the reader to [1],
[13], where such problems are studied in connection with weighted approximation
on the real line, and to [11], [6] in which weighted Bergman and Fock spaces with
radial weights are considered.1 In Section 7, we shall compare our Theorem 4 with
a result of Volberg [17] about norm equivalence in so-called model spaces.

1It is an interesting open problem for the latter type of spaces to obtain a description of
majorant weights in terms of Laplacians, without any a priori assumption about the weights.
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Outline of the paper. We begin our study in Section 2 by exploring the distribu-
tion of the zeros of those functions E in the Hermite-Biehler class which generate
weighted Paley-Wiener spaces. What we find is that the condition M(x)w(x) ' 1
imposes strict restrictions on the distribution and the location of the zeros of E. In
Section 3, the results of Section 2 are used to prove the necessity part of Theorem 1.
The sufficiency part is proved in Section 4 by using a certain multiplier lemma for
entire functions. (Incidentally, this lemma has proved to be an efficient tool for other
questions related to spaces of entire functions; see, e.g., [14].) Section 5 contains
the proof of Theorem 2, and thus gives a description of all weighted Paley-Wiener
spaces given by the same majorant weight. The lemma on multipliers is used again
in Section 6, this time to prove Theorem 3. Section 6 also contains some examples
of how Theorem 3 can be used to transfer function theoretic results from classical
to weighted Paley-Wiener spaces. To be more specific, we prove results on sets
of sampling, interpolation, and uniqueness. The last section (Section 7) presents
the proof of Theorem 4. This proof makes use of an interpolation theorem of de
Branges for the space H(E), as well as a theorem from Section 6 describing so-
called complete interpolating sequences for weighted Paley-Wiener spaces in terms
of Muckenhoupt’s (A2) condition (cf. [12]). It is the latter relation which explains
the appearance of the (A2) condition in Theorem 4.

Let us make one remark on the notation of this paper: We will write f . g
whenever there is a constant K such that f ≤ Kg; thus f ' g if both f . g and
g . f .

2. Distribution of the zeros of E

This section is the most technical part of the paper. It makes a bridge between
weighted Paley-Wiener spaces and the theory of de Branges spaces of entire func-
tions. We begin with a brief summary of some important facts from de Branges’
theory, which will play a crucial role in our exposition. We then obtain a descrip-
tion of the distribution of the zeros of those functions E from the Hermite-Biehler
class HB for which H(E) is a weighted Paley-Wiener space.

A Hilbert space H of entire functions is a de Branges space if the following
conditions are met:

(H1) Whenever f is in the space and has a nonreal zero ζ, the function g(z) =
f(z)(z − ζ̄)/(z − ζ) is in the space and has the same norm as f .

(H2) For every nonreal ζ the linear functional defined on the space by f 7→ f(ζ)
is continuous.

(H3) The function f∗(z) = f(z̄) belongs to the space whenever f belongs to the
space and has the same norm as f .

The simplest model example is the classical Paley-Wiener space PWτ (= L2
τ |=z|).

A wider class of examples can be constructed via functions from HB. To every
function E ∈ HB we associate the space H(E), which may be defined as in the
introduction, but which we prefer to introduce in a slightly different way, in line
with the definition of de Branges. We define H(E) to be the set of all entire
functions f satisfying

‖f‖2E =
∫ ∞
−∞

|f(t)|2
|E(t)|2 dt <∞,
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984 YU. I. LYUBARSKII AND K. SEIP

and such that f is of nonpositive log |E|-type. It is clear that H(E) is a de Branges
space. The following fundamental theorem of de Branges says that all de Branges
spaces arise in this way [4, p. 57].

Theorem A. A Hilbert space H, whose elements are entire functions, which sat-
isfies (H1), (H2), and (H3) and which contains a nonzero element is equal isomet-
rically to some space H(E).

It follows from condition (H2) that for each nonreal ζ there exists a reproducing
kernel K(ζ, z) for the space H(E). We shall need its representation, which also
defines the kernel for real ζ [4, p. 50].

Theorem B. For each ζ ∈ C the function

K(ζ, z) =
i

2
E(z)E(ζ)− E∗(z)E∗(ζ)

π(z − ζ̄)
,(3)

considered as a function of z, belongs to H(E) and is the reproducing kernel of
H(E), i.e.,

〈f,K(·, ζ)〉E =
∫ ∞
−∞

f(t)K(ζ, t)
|E(t)|2 dt = f(ζ)

for each f ∈ H(E).

Together with the elementary fact that [M(z)]2 = K(z, z), this yields an expres-
sion for the majorant via the function E. We shall use this expression only for real
z. If E(x) 6= 0, then (3) yields

[M(x)]2 = K(x, x) =
1
π
ϕ′(x)|E(x)|2 .(4)

If E(x) = 0, then clearly f(x) = 0 for all f ∈ H(E). Thus (4) holds for all x ∈ R,
if we declare the right-hand side to be zero when E(x) = 0.

There exists a well-known canonical factorization of functions in HB (see, e.g.,
[4], p. 20, or [10], Lecture 27). Suppose E ∈ HB and let Λ = {λk} be the zero set of
E, with λk = ξk − iηk (ηk ≥ 0) and counting multiplicities in the usual way. Then∑

λk 6=0

ηk
ξ2
k + η2

k

<∞,

and E can be represented as

E(z) = Czmeu(z)e−iαz
∏
k

(1− z/λk)ez<(1/λk),(5)

where α > 0 and u is an entire function which is real on the real axis.
In what follows, we shall consider functions E which do not vanish on the real

axis. Then ϕ′(x) is well defined for all x ∈ R and, by (5),

ϕ′(x) = α+
∑
k

ηk
(x− ξk)2 + η2

k

(6)

for all x ∈ R. Here α corresponds to the presence of an exponential factor exp(−iαz)
in the canonical representation of E. If we replace this factor by sin(α(z + i)), we
obtain a function E1 ∈ HB with |E1(x)| ' |E(x)| and the spaces H(E) and H(E1)
coincide and have equivalent norms. Therefore, without loss of generality, we will
assume that α = 0.
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Now let w be a majorant weight, H the corresponding Hilbert space of entire
functions and E ∈ HB (with α = 0 in (5)) such that H = H(E). Then

‖f‖2w =
∫ ∞
−∞

|f(x)|2
|E(x)|2 dx '

∫ ∞
−∞

|f(x)|2
|E(x)|2ϕ′(x)

dx(7)

holds for functions f ∈ H , as follows from the relation M(x)w(x) ' 1 and the
expression for M given by (4). In particular, let us see what (7) means for two
prototypes of functions in H . First, consider reproducing kernels corresponding to
points from the real line: For each ξ ∈ R, set gξ(z) = K(ξ, z)/E(ξ). It follows from
(4) that

‖gξ‖2w =
K(ξ, ξ)
|E(ξ)|2 =

1
π
ϕ′(ξ).

Using the explicit expression for K(ξ, x) given by (3) as well as (7), we obtain the
basic relation ∫ ∞

−∞

sin2(ϕ(ξ)− ϕ(x))
ϕ′(x)(x − ξ)2

dx ' ϕ′(ξ).(8)

Second, define fk(z) = E(z)/(z − λk) for each λk ∈ Λ. Applying (7) with f = fk,
we get ∫ ∞

−∞

dx

ϕ′(x)|x − λk|2
' 1
ηk
.(9)

The results obtained below about the distribution of the zeros of E are mainly
consequences of (8) and (9).

The chief result of this section is the following lemma, which shows the necessity
of conditions (iii) and (iv) of Theorem 4.

Lemma 1. Suppose w is a majorant weight and H is a Hilbert space of entire
functions whose norm is ‖ · ‖w. If H = H(E), then the zero set Λ of E satisfies
(iii) There exists an ε0 > 0 such that if =λk ≥ −ε0, then dist(λk,Λ \ λk) ' 1.
(iv) ϕ′(x) ' σ(x)/min(1, |x− λ(x)|2).

Lemma 1 is a consequence of a series of statements describing the properties of
Λ. The first is:

Lemma 2. There exist positive numbers M0, ε0 such that if ϕ′(ξ) ≤ ε0 for some
ξ ∈ R, then there exists λk = ξk − iηk ∈ Λ satisfying

|ξ − ξk| ≤M0 and ηk ≤M2
0 ϕ
′(ξ).(10)

Proof. Assume the lemma is false, i.e., that for each ε > 0 and M > 0 we have
ϕ′(ξ) ≤ ε for some ξ ∈ R, but for each k ∈ Z

|ξ − ξk| > M or ηk > M2ϕ′(ξ).(11)

Fix M and ε, and a corresponding point ξ. For each h ∈ R satisfying |h| < M/10,
we claim that

1
2
ϕ′(ξ) ≤ ϕ′(ξ + h) ≤ 2ϕ′(ξ).(12)

Indeed, (6) yields (ξ − ξk)2 + η2
k ≥ ηk/ϕ

′(ξ) for each k. Together with (11) this
implies (ξ − ξk)2 + η2

k ≥M2, k ∈ Z. Therefore, if |h| ≤M/10, we have
1
2
≤
(
(ξ + h− ξk)2 + η2

k)/((ξ − ξk)2 + η2
k

)
≤ 2,
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and so
1
2

ηk
(ξ − ξk)2 + η2

k

≤ ηk
(ξ + h− ξk)2 + η2

k

≤ 2
ηk

(ξ − ξk)2 + η2
k

for k ∈ Z. Summing over k, we obtain (12). Now take Q = min( π
4ϕ′(ξ) ,

1
10M). We

have from (11) and the mean-value theorem that∫ ∞
−∞

sin2(ϕ(ξ) − ϕ(x))
ϕ′(x)(x − ξ)2

dx ≥
∫
|x−ξ|≤Q

sin2(ϕ(ξ)− ϕ(x))
ϕ′(x)(x − ξ)2

dx ' Qϕ′(ξ);

if M is sufficiently large and ε sufficiently small, then this contradicts (8).

Lemma 3. There exists a constant C such that for all L > 1 the following state-
ment holds: If, for some j,k ∈ Z, |ξj − ξk| ≤ L and ηj , ηk ≤ L, then

1
CL2

≤ ηk
ηj
≤ CL2.

Proof. Suppose that for some L > 1, γ > 1, and k, j we have |ξj − ξk| ≤ L and
ηk > γL2ηj . We have then to prove that γ cannot be arbitrarily large. Consider
the integrals

Il =
∫ ∞
−∞

dx

|x− λl|2ϕ′(x)
=
∫
|ξj−x|<2L

+
∫
|ξj−x|≥2L

= I
(1)
l + I

(2)
l ' 1

ηl
, l = j, k.

The latter relation is just (9). Thus we have I(1)
k , I

(2)
k . 1/ηk. Since |x − λk| '

|x− λj | for |ξj − x| > 2L, we also have I(2)
j ' I(2)

k . 1/ηk. Since

I
(1)
j + I

(2)
j ' 1

ηj
>
γL2

ηk
,

it follows that I(1)
j & 1/ηj if γ is sufficently large. On the other hand, we may

estimate I(1)
j from above. Set τ = L(ηj/ηk)1/2, and write

I
(1)
j =

(∫
|x−ξj |<τ

+
∫
τ<|x−ξj|<2L

)
dx

|x− λj |2ϕ′(x)
= J1 + J2.

We use the inequality ϕ′(x) ≥ ηj |x−λj |−2 for estimating J1, and ϕ′(x) ≥ ηk(3L)−2

(|x− ξj | ≤ 2L) for dealing with J2, and obtain

I
(1)
j = J1 + J2 .

L
√
ηjηk

.

Our two estimates for I(1)
j imply 1/ηj . L/

√
ηjηk, which is incompatible with the

assumption that ηk > γL2ηj if γ is sufficiently large. So γ is bounded, and the
proof is complete.

Lemma 4. For each M > 0 set q(M) = supx #{λk ∈ Λ : x < ξk ≤ x + M,ηk <
M}. Then q(M)− 1 .M log(M + 1).
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Proof. For small M the inequality q(M)−1 .M log(M+1) means that q(M) = 1,
i.e., that dist(λj ,Λ \ {λj}) & 1 for ηj is sufficiently small. We begin by proving
the latter statement. Let us assume the contrary, i.e., that we can choose λ′ =
ξ′ − iη′, λ′′ = ξ′′ − iη′′ ∈ Λ so that η′, η′′ ≤ ε and |λ′ − λ′′| ≤ 2δ. We will show that
this yields a contradiction if ε and δ are sufficiently small.

By Lemma 3, η′ ' η′′. Therefore, we may assume η′ = η′′(= η): If necessary,
change the imaginary part of λ′ from −η′ to −η′′; this will only influence the
constants in the equivalence relation (7). Assume for simplicity that λ′ = −δ − iη
and λ′′ = δ − iη. Consider the two test functions

g(z) =
E(z)
z − λ′ and h(z) =

E(z)
(z − λ′)(z − λ′′) ,

which both clearly belong to H(E). By applying (7) with f = h, we obtain∫ ∞
−∞

dx

ϕ′(x)|x − λ′|2|x− λ′′|2 '
∫ ∞
−∞

dx

|x− λ′|2|x− λ′′|2 =
π

2η
1

η2 + δ2
.(13)

On the other hand,∫ ∞
−∞

dx

ϕ′(x)|x − λ′|2|x− λ′′|2 =
∫ 1

−1

+
∫
|x|>1

= I1 + I2.

We have

I2 .
∫
|x|>1

dx

ϕ′(x)|x − λ′|2 .
∫ ∞
−∞

dx

ϕ′(x)|x − λ′|2 ' ‖g‖
2
w '

1
η
,

I1 .
1
η

∫ 1

0

dx

(x + δ)2 + η2
. 1
ηmax(η, δ)

.

So we obtain

I1 + I2 .
1

ηmax(η, δ)
,

which contradicts (13) for η, δ sufficiently small.
We now know that there exists an ε0 > 0 such that q(M) = 1 for M ≤ ε0. We

next assume M > ε0. Fix a square

Q(ξ,M) = {z = x− iy : ξ < x ≤ ξ +M, y < M}.

By what was proved above, we need only bound the number of points from Λ to
be found in

Qε0(ξ,M) = {z = x− iy : ξ < x ≤ ξ +M, ε0 ≤ y < M}.

To this end, set

p = #(Λ ∩QM/2(ξ,M),

which is the number of points from Λ to be found in the lower half of the square
Q(ξ,M). We assume p ≥ 2, and let λ′, λ′′ ∈ Λ be two points from QM/2(ξ,M).
Then let h be as in the first part of the proof. On the one hand, we have

‖h‖2w =
∫ ∞
−∞

dx

|x− λ′|2|x− λ′′|2 '
1
M3

,
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independently of ξ. On the other hand, noting that ϕ′(x) & pM
|x−λ′|2 , we obtain that

‖h‖2w '
∫ ∞
−∞

dx

ϕ′(x)|x − λ′|2|x− λ′′|2 .
1

pM2
.

Combining the two norm estimates, we get p .M .
We now make a dyadic decomposition: Split the upper half of Q(ξ,M) into two

smaller squares, and repeat the above argument for these smaller squares of side
length M/2. We iterate the argument so that in the j-th step we are dealing with 2j

squares of side length M/2j; we stop when M/2j ≤ ε0. Summing up the estimates
in each step, we arrive at the estimate claimed in the lemma.

Lemma 5. For each sufficiently large M > 0 there exists C > 0 such that the
inequality ηj ≤ 1 yields that each interval [ξj − M, ξj ] and [ξj , ξj + M ] contains
points x at which ϕ′(x) < Cηj .

Proof. Denote by Π the square which has as one of its sides the interval [ξj − 5M,
ξj + 5M ], and which is located in the lower half-plane. Partition Λ as Λ = Λ1 ∪
Λ2 ∪ Λ3, where

Λ1 = Λ ∩Π, Λ2 = {λk ∈ Λ \Π, ηk ≤ 5Mηj}, Λ3 = Λ \ (Λ1 ∪ Λ2).(14)

Write ϕ′(x) = ψ1(x) + ψ2(x) + ψ3(x), where

ψi(x) =
∑
λk∈Λi

ηk
(x− ξk)2 + η2

k

, i = 1, 2, 3.

We will estimate each term ψi(x) separately.
It follows from Lemma 4 that there exists a constant N = N(M) > 0 such that,

for each ξ ∈ R, the number of points λk ∈ Λ with |ξk− ξ| < 5M and ηk < 5M does
not exceed N . Therefore, for all x ∈ [ξj −M, ξj +M ], we have

ψ2(x) =
∑
l 6=0

∑
|ξk−ξj−10lM|<5M, ηk<5Mηj

ηk
(x− ξk)2 + η2

k

.MNηj

∞∑
l=1

1
(Ml)2

. ηj .

Now by Lemma 3 there exists a constant γ = γ(M) > 0 such that ηk < γηj
if λk ∈ Λ1, with γ independent of j. We also have #Λ1 ≤ N . Pick a point
x0 ∈ [ξj −M, ξj ] such that

dist(x0, {ξk : λk ∈ Λ1}) > M/(10N).

Then ψ1(x0) ≤ γN(10N/M)2ηj . Similarly, we can find a point x1 ∈ [ξj , ξj + M ]
such that

ψ1(x1) ≤ γN(10N/M)2ηj . ηj .
The estimate for ψ3(x) follows from

Proposition 1. For each sufficiently large M there exists C > 0 such that ψ3(ξj) ≤
Cηj for each j satisfying ηj ≤ 1.

In the proof of Proposition 1, we shall use the following estimate.

Proposition 2. Assume ηj = ε ≤ 1 and ϕ′(x) ≥ Cε for |x − ξj | ≤ A for some
positive numbers A,C such that A ≥ 1/

√
C. Then

J :=
∫
|x−ξj|≤A

dx

ϕ′(x)|x − λj |2
. 1√

C

1
ε
,(15)

independently of ε,A,C.
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Proof. Take a > 0. We claim that

J ≤
∫
|x−ξj |≤a

dx

ηj
+

1
Cηj

∫
a<|x−ξj|≤A

dx

(x− ξj)2
. a

ηj
+

1
Caηj

,

where the last estimate is uniform with respect to A. To prove the claim, it suffices
to apply the inequalities ϕ′(x) ≥ ηj |x − λj |−2 for |x − ξj | ≤ a and ϕ′(x) ≥ Cε for
a ≤ |x− ξj | ≤ A. Then we obtain (15) by putting a = 1/

√
C.

Proof of Proposition 1. Assume the proposition is false: For arbitrary M > 0 and
C > 0 we can find λj satisfying ηj ≤ 1 and ψ3(ξj) ≥ Cηj . Let λk be the point (or
one of the points) from Λ3 which is closest to λj , and set m = |λj − λk|. Then a
direct estimate shows that ψ3(x) ≥ Cηj/10 for |x−ξj | ≤ 2m. Applying Proposition
2 with A = 2m and assuming 1/

√
C ≤ 2m, we have∫

|x−ξj |≤2m

dx

ϕ′(x)|x − λj |2
. 1√

C
· 1
ηj
.

On the other hand, we have |x− λj | ' |x− λk| for |x− ξj | ≥ 2m, and hence∫
|x−ξj|>2m

dx

ϕ′(x)|x − λj |2
'
∫
|x−ξj|>2m

dx

ϕ′(x)|x − λk|2
. 1
ηk
≤ 1

5Mηj
.

It follows that ∫ ∞
−∞

dx

ϕ′(x)|x − λj |2
.
(

1√
C

+
1
M

)
1
ηj
,

where C and M can be chosen arbitrarily large. This is a contradiction in view of
(9).

Now we complete the proof of Lemma 5. Take M and C from Proposition 1.
Since ψ3(x) ' ψ3(ξj) for |x− ξj | ≤M , it follows that ψ3(x) . ηj for |x− ξj | ≤M .
Collecting our estimates for ψ1, ψ2, and ψ3, we see that there exists M0 such that
for M ≥M0 and ηj ≤ 1

ψ(xi) . ηj , i = 0, 1.

Both M0 and the constant in this estimate depend only on the constants in the
relation M(x)/w(x) ' 1.

Remark 1. We have in fact proved that ψ2(x), ψ3(x) . ηj for x ∈ [ξj −M, ξj +M ].
So the main contribution to ϕ′(x) for all x ∈ [ξj −M, ξj +M ] comes from ψ1(x).

Remark 2. For λk ∈ Λ we have from (5) that ϕ′(ξk) > η−1
k . Therefore Lemma

2 and Lemma 5 are in a sense complementary: Lemma 2 says that if ϕ′(ξ) is
small enough, there exists λk with |ξk − ξ| . 1 and ϕ′(ξk) & 1/ϕ′(ξ). Under the
assumption of Lemma 5, we have ϕ′(ξj) > 1/ηj for ηj < 1 and obtain ϕ′(xi) . ηj
for some xi’s with |xi − ξj | . 1.

Proof of Lemma 1, condition (iii). We have already proved that dist(λj ,Λ\{λj}) &
1 when ηj is sufficiently small (see Lemma 4). The fact that also dist(λj ,Λ\{λj}) .
1 in this case is now immediate: If not, then for arbitrarily large M and ε−1 one
can find λj ∈ Λ with ηj < ε and such that Λ1 in (14) consists of only one point λj .
Remark 1 now yields that ϕ′(x) . ηj < ε on a large interval, but this contradicts
Lemma 2.
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To finish the proof of Lemma 1, we need to estimate the contribution to ϕ from
the points which are located far away from the real axis. To this end, set

Λ1 = {λk = ξk − iηk ∈ Λ; ηk ≤ 1}, Λ2 = Λ \ Λ1,

ϑ1(x) =
∑
λk∈Λ1

ηk
(x− ξk)2 + η2

k

, ϑ2(x) = ϕ′(x) − ϑ1(x).

Lemma 6. We have supx ϑ2(x) <∞.

Proof. Assume that for some ξ ∈ R and C > 0 we have ϑ2(ξ) = C. We shall
see that this leads to a contradiction for sufficiently large C. To begin with, note
that we may assume dist(ξ,Λ) & 1. This follows from condition (iii) of Lemma 1
(established above) and the fact that ϑ2(x) ' ϑ2(x + t) if |t| ≤ 1. We may also
assume that C is so large that dist(x,Λ) & 1 when |x− ξ| ≤ 1/C.

Let λ(2)(ξ) be the point (or one of the points) from Λ2 closest to ξ, and set
|λ(2)(ξ)− ξ| = m. Then (9) and the definition of Λ2 imply that

J :=
∫
|ξ−x|≥2m

dx

ϕ′(x)|x − λ(2)(ξ)|2 ≤
∫ ∞
−∞

dx

ϕ′(x)|x − λ(2)(ξ)|2 . 1.

On the other hand, using that ϕ′ ≥ ϑ2 and taking (7) into account, we obtain

C ≤ ϕ′(ξ) '
∫ ∞
−∞

sin2(ϕ(x) − ϕ(ξ))
ϕ′(x)(x − ξ)2

dx =
∫
|x−ξ|≤2m

+
∫
|x−ξ|>2m

= I1 + I2.

We have I2 . J . 1. Put

I1 =
∫
|x−ξ|≤1/C

+
∫

1/C<|x−ξ|≤2m

= I
(1)
1 + I

(2)
1 .

A direct estimation shows that C/10 ≤ ϑ2(x) ≤ 10C when |x− ξ| ≤ 2m, and since
ϕ′ ≥ ϑ2, we get

I
(2)
1 . 1

C

∫
|x−ξ|>1/C

dx

(x− ξ)2
. 1.

Using Lemma 4 and the assumptions that ϑ2(ξ) = C and dist(x,Λ) & 1 for |x−ξ| ≤
1/C, we obtain ϕ′(x) . C for |x− ξ| ≤ 1/C. Thus by the mean value theorem, we
have

sin2(ϕ(x) − ϕ(ξ)) . C2|x− ξ|2

when |x− ξ| ≤ 1/C, and hence I(1)
1 . 1.

Combining our estimates for I(1)
1 , I(2)

1 , and I2, we get∫ ∞
−∞

sin2(ϕ(x) − ϕ(ξ))
ϕ′(x)(x − ξ)2

dx . 1,

which contradicts the inequality ϕ′(x) ≥ C if C is sufficiently large.

Proof of Lemma 1, condition (iv). It is enough to prove that

ϕ′(x) ' σ(x)/|x − λ(x)|2

when σ(x) < η0 and otherwise ϕ′(x) ' 1. We observe that the first estimate follows
from Lemma 5 and part (iii) of Lemma 1.

Assume that σ(x) ≥ η0. Then Lemmas 2 and 5 show that ϕ′(x) & 1, while
Lemmas 4 and 6 show that ϕ′(x) . 1.
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3. Proof of Theorem 1: Necessity

In this section, we shall prove the necessity of the representation for a majorant
weight, as claimed in Theorem 1. Thus we begin by assuming we are given a
majorant weight w and an associated Hilbert space H whose norm is ‖ · ‖w.

We note that Theorem A guarantees the existence of a de Branges space such
that H = H(E) isometrically. This means in particular that Lemma 1 applies.

A simple and important special case is when ϕ′(x) ' 1, where ϕ is as in the
previous section. Then the relation M(x)w(x) ' 1 and the expression for M given
by (4) imply w(x)−1 ' |E(x)|, and so

logw(x) + log |E(x)| ∈ L∞.

The function log |E(x+i|y|)| is subharmonic because E ∈ HB. Its Riesz measure is
supported by the real line. Applying a Cauchy-Riemann equation to log |E(x+iy)|,
we find that the density of this Riesz measure with respect to one-dimensional
Lebesgue measure is ϕ′. Therefore, we have a Riesz decomposition

log |E(x+ i|y|)| = u(z) +
1
π

∫ ∞
−∞

[log |1− z/t|+ (1 − χ[−1,1](t))x/t]ϕ′(t)dt,

where u(z) is harmonic in the whole complex plane. The identity u(x + iy) =
u(x − iy) implies uy(x) = 0, x ∈ R, and so by the Cauchy-Riemann equations we
have vx(x) = 0 for each v which is a harmonic conjugate of u. Therefore, there
exists a harmonic conjugate v of u vanishing on the real line. The condition of
Theorem 1 will be met if we set g(x) = u(x) + iv(x) and m(x) = ϕ′(x)/π.

Our goal is to reduce the general case to this special situation. It follows from
Lemma 1 that the condition ϕ′(x) ' 1 is violated if and only if infj ηj = 0. In
particular, Lemma 1 implies:

Lemma 7. Let E and ε0 be as in Lemma 1. Then the product

F (z) = E(z)
∏
ηk<ε0

1− z/(ξk − iε0)
1− z/λk

converges uniformly on compact sets to a function F ∈HB and F (x)= |F (x)|e−iψ(x)

satisfies ψ′(x) ' 1 for x ∈ R.

Hence the necessity of the condition in Theorem 1 in the general case follows
from the following lemma.

Lemma 8. With F as in Lemma 7 and σ defined (as earlier) via the zeros of E,
we have

w(x) ' 1
|F (x)|2σ(x)

,

and, for each ε > 0, there exists a function µ(x) for which ‖µ‖L∞ < ε and a real
number a such that

log σ(x) + ax−
∫ ∞
−∞

[log |1− x/t|+ (1− χ[−1,1](t))x/t]µ(t)dt ∈ L∞.

In Section 7, we shall obtain a more subtle estimate for σ.
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Proof of Lemma 8. We use the properties of E described in Lemmas 1 and 3.
Lemma 1 shows that |F (x)|2σ(x) ' |E(x)|2ϕ′(x) and hence |F (x)|2σ(x)w(x) ' 1.
By Lemma 3, there exist an L0 > 1 and a constant C such that

| log σ(x) − log σ(ξ)| ≤ 2 log |x− ξ|+ C(16)

if |x − ξ| ≥ L0. Now fix ε > 0 and choose a number T > L0, L = T 2, such that
(logT )/T < ε and

logL
T

< ε,
T logL
L

< ε.(17)

Define

h1(x) =

{
− logσ(kL), x = kL, k ∈ Z,
linear for x ∈ (kL, (k + 1)L), k ∈ Z.

The function h1 is piece-wise linear. The slope of each linear piece is estimated by
(16), so that we get ‖h′1‖∞ < (2 logL+ C)/L. By the construction of h1, we have

1
σ(x)

= eu1(x)+h1(x) , u1 ∈ L∞(R).

By an appropriate smoothing of h1, we can replace it by a smoother function h
satisfying

‖h′‖∞ <
logL
L

, ‖h′′‖∞ <
logL
L

,(18)

|h(x)− h(ξ)| ≤ 2 log |x− ξ|+ Constant, |x− ξ| ≥ L0,

and also

σ−1(x) = eu(x)+h(x)

for some u ∈ L∞.
We finally transform h appropriately. To this end, note that h can be extended

continuously to a harmonic function in the upper half-plane, given there by

h(x+ iy) =
y

π

∫
h(t)

(x− t)2 + y2
dt.

We differentiate h in the vertical direction, and find by an integration by parts that

hy(z) = −< 1
π

∫
h′(t)
z − tdt.

If we can prove that in fact

h̃′(x) =
1
π

p.v.
∫ ∞
−∞

h′(t)
x− tdt

is well defined, and that h̃′ ∈ L∞, then Green’s theorem will give us that

h(z) = a<z + 2
∫ ∞
−∞

[log |1− z/t|+ (1− χ[−1,1](t))<z/t]h̃′(t)dt(19)

for some real a, and =z ≥ 0. If, in addition, we can make the L∞ norm of h̃′
arbitrarily small by choosing ε sufficiently small, we have proved Lemma 8.
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By (18) and (17), we have∣∣∣∣∣p.v.
∫
|x−t|<T

1
x− t

(
h′(x) +

∫ t

x

h′′(τ)dτ
)
dt

∣∣∣∣∣ . T logL
L

< ε.

Each of the integrals ∫
x−t>T

h′(t)
x− tdt and

∫
x−t<−T

h′(t)
x− tdt

is absolutely convergent. Indeed, integration by parts gives∣∣∣∣∫ ∞
x+T

h′(t)
v − tdt

∣∣∣∣ =
∣∣∣∣−h(x)− h(t)

x− t
∣∣
t=x+T

−
∫ ∞
x+T

h(x)− h(t)
(x− t)2

dt

∣∣∣∣
. logT

T
+
∫ ∞
T

log τ
τ2

dτ < ε.

Summing our estimates, we obtain |h̃′(x)| < 3ε, and the proof of Lemma 8 is
complete.

Formula (19) will be needed later. We state it in a slightly different form for
future reference:

Lemma 9. Set

u(x+ iy) =
|y|
π

∫
log σ(t)

(x− t)2 + y2
dt.

Then for each ε > 0 we can find a function µ for which ‖µ‖∞ < ε and a real number
a such that∣∣∣∣u(z) + a<z − 2

∫ ∞
−∞

[log |1− z/t|+ (1− χ[−1,1](t))<z/t]µ(t)dt
∣∣∣∣ . 1

for all z ∈ C.

4. A multiplier lemma and proof of Theorem 1: Sufficiency

The proof of the sufficiency of the condition in Theorem 1 is considerably easier
than that of the necessity. It is a consequence of the following multiplier lemma.

Lemma 10. Suppose ω is a subharmonic function of the form

ω(z) =
∫ ∞
−∞

[log |1− z/t|+ (1− χ[−1,1](t))<z/t]m(t)dt,

where m(t) ' 1. Then there exists a function F ∈ HB with zero sequence Σ =
{ξk − i}k∈Z satisfying ξk+1 − ξk ' 1 and such that

|F (z)|e−ω(z) ' dist(z,Σ)
1 + dist(z,Σ)

for all z ∈ C.

Proof. Because m ' 1, we have ω(z) − ω(z + i) = O(1), and so we may replace
ω(z) by the function z 7→ ω(z + i), which has its Riesz measure supported by the
horizontal line =z = −1. Therefore, if we construct a function G with zeros on the
real line and the desired properties, then we obtain F by setting F (z) = G(z + i).
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Partition the real line into a sequence of disjoint intervals Ik = [xk, xk+1), k ∈ Z,
with x0 = 0, such that ∫

Ik

m(t)dt = 1

for all k, and choose ξk ∈ Ik so that

ξk =
∫
Ik

tm(t)dt.

Let δξk denote a point mass at the point ξk, and set

ν =
∑
k

δξk

and dµ(t) = m(t)dt− dν(t). What we need to show is that∣∣∣∣∫ ∞
−∞

log |1− z/t|dµ(t)
∣∣∣∣ ' 1

when dist(z, {ξk}) ≥ ε for every ε > 0.
Set h(x) =

∫ x
0 dµ(t) and H(x) =

∫ x
0 h(t)dt. Observe that

h(xk) = H(xk) = 0

for all k, by the construction of the sequence ξk, and consequently both h and H
are bounded functions. Integrating twice by parts we get∫ ∞

−∞
log |1− z/t|dµ(t) = <

∫ ∞
−∞

H(t)
(z − t)2

dt,

and the result follows.

To prove the sufficiency part of Theorem 1, it is enough to choose E = Feg/2,
where F is the function constructed in Lemma 9, and H = H(E). Then w ' 1/|E|2
and M ' w, since ϕ′ ' 1.

5. Proof of Theorem 2

We begin by proving that each space L2
ω of the form given in Theorem 2 is a

weighted Paley-Wiener space. To this end, for given m and b as in the statement
of that theorem, introduce the smoothed function

mr(x) :=
1
2r

∫ r

−r
m(x− t)dt,

where r > 0 is chosen so large that mr(x) + πb ' 1, and set

ωr(z) = a<z +
∫ ∞
−∞

[log |1− z/t|+ (1− χ[−1,1](t))<z/t](mr(t) + πb)dt.

We see that |ωr(z) − ω(z)| . 1, which means that ω can be replaced by ωr. Now
apply Lemma 10 to ωr, so that we obtain a function E ∈ HB with zero sequence
Σ = {ξk − i} satisfying ξk+1 − ξk ' 1 and such that

|E(z)|e−ω(z) ' dist(z,Σ)
1 + dist(z,Σ)

.

It is plain that H(E) ⊂ L2
ω. To see that we also have L2

ω ⊂ H(E), we recall the
following classical inequality of Plancherel and Pólya [10, p. 50]: If g is analytic in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WEIGHTED PALEY-WIENER SPACES 995

the upper half-plane, continuous up to the real line, and log |g(z)| . ε|z| for all
ε > 0, then ∫ ∞

−∞
|g(x+ iy)|2dx ≤

∫ ∞
−∞
|g(x)|2dx(20)

for all y > 0. In other words, if g ∈ L2(R), then g ∈ H2(C+). This means that if
f ∈ L2

ω, then f/E and f∗/E belong to H2(C+) or equivalently f ∈ H(E). Since
H(E) is a weighted Paley-Wiener space, we have shown that each space given in
Theorem 2 is one too.

Before proceeding with the proof of Theorem 2, we note another consequence of
the Plancherel-Pólya inequality.

Lemma 11. Let E be the function constructed above. If ϕ′(x)|E(x)|2 ' e2ω(x) and
the zeros of E satisfy conditions (iii) and (iv) of Lemma 1, then

‖f‖E . ‖f‖w

for all f ∈ L2
ω, where w(x) = e−ω(x).

Proof. First set g(z) = f(z)e−ω(z) and integrate (20) with respect to y from 0 to
1/2; then set g(z) = f∗(z)e−ω(z) and make the same integration. We then obtain∫

|y|<1/2

|f(z)|2e−2ω(z)dA(z) ≤ ‖f‖2w

for f ∈ L2
ω, where dA denotes Lebesgue area measure on C. A direct computation

shows that |ω(z + iy)− ω(z)| ≤ π|y|‖m+ b‖∞, and so we obtain∫
|y|<1/2

|f(z)|2e−2ω(z+i/2)dA(z) ≤ eπ‖m+b‖∞‖f‖2w.(21)

We have then achieved that the integrand on the left-hand side is subharmonic in
the strip |=z| < 1/2.

Choose a real sequence xk, k ∈ Z, so that xk < xk+1 and∫ xk+1

xk

ϕ′(x)dx = 1.

By the assumption about E, xk+1 − xk ' 1. Choose ε ≤ 1/2 so that ε ≤ xk+1− xk
for all k. We then have

|f(x)|2e−2ω(x+i/2) ≤ 1
ε2π

∫
|x−z|<ε

|f(z)|2e−2ω(z+i/2)dA(z)

by subharmonicity. Multiplying by ϕ′(x) and integrating with respect to x, we get∫ xk+1

xk

|f(x)|2e−2ω(x+i/2)ϕ′(x)dx

≤ 1
ε2π

∫
xk−1<<z<xk+2,|=z|<1/2

|f(z)|2e−2ω(z+i/2)dA(z).

Summing these inequalities, we obtain∫ ∞
−∞
|f(x)|2e−2ω(x+i/2)ϕ′(x)dx ≤ 3

ε2π

∫
|=z|<1/2

|f(z)|2e−2ω(z+i/2)dA(z),
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which proves the result, when taking into account (21) and the inequality

|ω(x+ i/2)− ω(x)| ≤ π

2
‖m+ b‖∞.

We continue with the proof of Theorem 2. What remains is to prove that any
weighted Paley-Wiener space H with norm ‖ · ‖w can be expressed as stated in
the theorem. Suppose such a space H is given. Take E and σ as in Lemma 1,
and choose µ of Lemma 9 so that m0(x) = φ′(x) + µ(x) ' 1. We prove first that
H = H(E) = L2

ω0
, where

ω0(z) = a<z +
∫ ∞
−∞

[log |1− z/t|+ (1− χ[−1,1](x))<z/t]m0(t)dt.

We begin by noting that the ω0-type and the log |E|-type are the same for any
entire function f . To see this, we use the estimate

|E(z)| ' min(1, dist(z,Λ))eω0(z)−u(z),

which follows from Lemmas 7 and 8, and deduce from this that

eu(z)|E(z)|2 . e2ω0(z) . e−u(z)|E(z)|2.
The assertion then follows because Lemma 9 shows that −u(z) is the Poisson inte-
gral of a nonnegative function.

Now if f ∈ H(E), then f is of nonpositive ω0-type, and so f ∈ L2
ω0

since
‖f‖w ' ‖f‖E. On the other hand, if f ∈ L2

ω0
, we use Lemma 11, which says

that ‖f‖E . ‖f‖w. Thus f ∈ H(E) because f is of nonpositive log |E|-type. We
conclude that H(E) = L2

ω0
.

Next we prove that m0 can be replaced by m+ b. We consider the function

g(z) =
∫ ∞
−∞

[log |1− z/t|+ (1 − χ[−1,1](x))<z/t](m(t)−m0(t))dt,

which is bounded on R and harmonic off the real line. We will prove that

g(z) = h(z) + c|y|,
with h(z) ' 1 and c a real constant. By symmetry, it is enough to consider the
upper half-plane. Set (z = x+ iy)

k(z) = g(z)− 1
π

∫ ∞
−∞

y

(x− t)2 + y2
g(t)dt.

A direct estimate shows that |k(z)| . |y|. Thus k + C|y| is a positive harmonic
function for a sufficiently large C, and so the representation for g follows from the
canonical representation for positive harmonic functions in a half-plane [4, p. 7].

To prove the bound b > −D−(m), assume to the contrary that b ≤ −D−(m).
Choose an ε > 0. Then for all sufficiently large R there exists x such that∫ x+R

x−R
(m(t) + b)dt ≤ εR.

We may assume for convenience that x = 0. We apply Green’s theorem,∫
Ω

(v∆u − u∆v)dA(z) =
∫
∂Ω

(
v
∂u

∂n
− u∂v

∂n

)
ds,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WEIGHTED PALEY-WIENER SPACES 997

with u(z) = g(z)− c|y|, v(z) = R2 − |z|2, and Ω the half disk |z| < R, =z > 0. We
obtain from this ∣∣∣∣∣

∫ R

−R
(m0(t)−m(t)− b)(R2 − t2)dt

∣∣∣∣∣ . R2.

However, this integral can be estimated directly. Set

d(x) =
∫ x

0

(m0(t)−m(t)− b)dt.

Then rewriting the integral and integrating by parts, we get∫ R

−R
(m0(t)−m(t)− b)(R2 − t2)dt =

∫ R

0

(d′(t) + d′(−t))(R2 − t2)dt

= 2
∫ R

0

(d(t)− d(−t))tdt ≥ inf
t
m0(t)

4
3
R3 − εR3 & R3

for sufficiently small ε. We have reached a contradiction, and the proof is finished.

6. Connection with classical Paley-Wiener spaces; Sampling,

interpolating, and uniqueness sequences

In this section, we consider weighted Lp spaces as well, as they may be included
in the discussion at no extra cost.

Assume we are given a subharmonic function ω as described in Theorem 2, with
Laplacian supported by the real axis and Riesz measure m(x)dx, m ' 1, and with
b = 0. We define

‖f‖pω,p =
∫ ∞
−∞
|f(x)|pe−pω(x) dx

for p < ∞, and ‖f‖ω,∞ = supx∈R |f(x)|e−ω(x). We denote by Lpω (0 < p ≤ ∞)
the space of entire functions f for which ‖f‖ω,p < ∞ and such that log |f(z)| ≤
Cε + ω(z) + ε|z| for all ε > 0. We say that Lpω is a weighted Paley-Wiener space.
This definition is in accordance with our previous definition of a weighted Paley-
Wiener space when p = 2. The Lp version of the Plancherel-Pólya inequality [10,
p. 50] shows that Lpω is a Banach space when 1 ≤ p ≤ ∞, and a complete metric
space when p < 1. With this notation, the classical Paley-Wiener spaces are Lpτ |=z|,
where τ > 0 is the maximal type of functions in the space.

We will now prove Theorem 3. We begin by choosing τ > supx∈Rm(x) so
that u = τ |=z| − ω is a subharmonic function with Riesz measure µ(x)dx, µ ' 1.
Applying Lemma 10 to u, we get an entire function F satisfying F ' eu outside
the vicinity of the zeros of F . Then clearly f ∈ Lpω if and only if fF ∈ Lpτ |=z|,
and ‖f‖ω,p ' ‖fF‖p. In other words, if we denote the zero set of F by Σ and the
closed subspace of Lpτ |=z| consisting of all functions g ∈ Lpτ |=z| that vanish on Σ by
Lpτ |=z|(Σ), then Lpω may be associated with Lpτ |=z|(Σ) through the transformation
f 7→ fF . Thus we have proved the following Lp-version of Theorem 3:

Theorem 3′. To every weighted Paley-Wiener space Lpω, there exist τ > 0, a se-
quence Σ = {ξk − i}k∈Z with ξk+1 − ξk ' 1, ξk ∈ R, and an associated entire
function F with zero set Σ such that f(z) 7→ f(z)F (z) is a bijective mapping from
Lpω to Lpτ |=z|(Σ), with norm equivalence ‖f‖ω,p ' ‖fF‖p.
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Theorem 3′ enables us to transfer function-theoretic results from classical to
weighted Paley-Wiener spaces. We shall give a few examples, one of which will be
needed in the proof of Theorem 4.

We begin by describing sampling and interpolation in Lpω. Given a sequence
Γ = {γk} of distinct points γk = αk + iβk from C, we set

‖f |Γ‖pω,p =
∑
k

|f(γk)|pe−pω(γk)(1 + |βk|)

for p <∞ and ‖f |Γ‖ω,∞ = supk |f(γk)|e−ω(γk), where we permit f to be a function
defined on some set containing Γ. (We consider Γ both as a set and as a sequence.)
In particular, a sequence of complex numbers (to be thought of as interpolation
values) will sometimes be considered as a function on Γ: a = {ak} = {a(γk)}. The
space of sequences a such that ‖a|Γ‖ω,p <∞ will be denoted by `pω.

We say that Γ is
• a sampling sequence for Lpω if we have

‖f |Γ‖ω,p ' ‖f‖ω,p
for f ∈ Lpω;
• an interpolating sequence for Lpω if, for every sequence a ∈ lpω, there exists a

solution f ∈ Lpω to the interpolation problem

f(γk) = ak for every γk ∈ Γ;

• a complete interpolating sequence for Lpω if Γ is both sampling and interpolating
for Lpω.

Equivalently, Γ is a complete interpolating sequence for Lpω if and only if the in-
terpolation problem f(γk) = ak has a unique solution f ∈ Lpω whenever ‖a|Γ‖ω,p <
+∞. Such sequences exist only when 1 < p <∞.

It is convenient to introduce the following distance function:

ρ(z, ζ) =
|z − ζ|

1 + |z − ζ̄|
.

We say that Γ is ρ-separated if there exists a number δ > 0 such that ρ(Γj , γk) ≥ δ
whenever j 6= k.

Results concerning sampling and interpolation in classical Paley-Wiener spaces
can be transferred by means of the following lemma.

Lemma 12. With F , Σ, and τ as in Theorem 3 and Γ ∪ Σ ρ-separated, Γ is
sampling for Lpω if and only if Γ ∪ Σ is sampling for Lpτ |=z|, and Γ is interpolating
for Lpω if and only if Γ ∪Σ is interpolating for Lpτ |=z|.

For the proof of Lemma 12, we shall use the following lemma.

Lemma 13. The sequence Σ from Theorem 3′ is interpolating for each of the spaces
Lpτ |=z|, 0 < p ≤ ∞.

Lemma 13 is a consequence of an interpolation theorem of Beurling. We shall
comment on its proof below.

Proof of Lemma 12. The following two implications follow directly from Theorem
3′: If Γ∪Σ is sampling (interpolating) for Lpτ |=z|, then Γ is sampling (interpolating)
for Lpω.
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Assume now that Γ∪Σ is not sampling for Lpτ |=z|. Then we can find an f ∈ Lpτ |=z|
of norm 1 which is small on this sequence, i.e., for any ε > 0 we can find such an f
satisfying ‖f |Γ ∪ Σ‖τ |=z|,p ≤ ε. Since, by Lemma 13, Σ is interpolating for Lpτ |=z|,
we can add a small function g ∈ Lpτ |=z| (‖g‖p . ε) such that f + g vanishes on Σ.
It follows that Γ cannot be sampling for Lpω.

Assume finally that Γ is interpolating for Lpω. We wish to show that then Γ∪Σ is
interpolating for Lpτ |=z|. Suppose we are given a (the interpolation data on Γ) and b
(the interpolation data on Σ). By Lemma 13, we may begin by solving the problem
g(σj) = bj in Lpτ |=z|. We next solve the problem h(γk) = (ak− g(γk))/F (γk) in Lpω.
Then f = g + hF is a solution to the interpolation problem on Γ ∪ Σ.

Let us see how the results of [2] and [14] can be interpreted in the weighted
case. We need then an extension of Beurling’s notion of lower and upper uniform
densities. In what follows, I denotes an arbitrary half-open interval of the form
[α, β). Let µ and ν be two positive Borel measures on R both being uniformly
locally finite, which we take to mean that there exist positive constants Cµ and Cν
such that µ(I) ≤ Cµ|I| and ν(I) ≤ Cν |I| when |I| ≥ 1. For all r > 0 set

D−µ (ν, r) = inf
|I|=r

ν(I)
µ(I)

and D+
µ (ν, r) = sup

|I|=r

ν(I)
µ(I)

.

We observe that

D−µ (ν, s+ t) ≥ s

s+ t
D−µ (ν, s) +

t

s+ t
D−µ (ν, t)

and

D+
µ (ν, s+ t) ≤ s

s+ t
D+
µ (ν, s) +

t

s+ t
D+
µ (ν, t),

and, using that the two measures are uniformly locally finite, we deduce from this
that the two limits

D−µ (ν) = lim
r→∞

D−µ (ν, r) and D+
µ (ν) = lim

r→∞
D+
µ (ν, r)

exist.
If µ is the Riesz measure of a subharmonic function ω, we write Dω instead of Dµ

and we just drop the subindex µ when µ is Lebesgue measure. Also when ν = nΓ

is the counting measure of a sequence Γ ⊂ R we write Dµ(Γ) instead of Dµ(nΓ). In
particular, D+(Γ) and D−(Γ) are the classical upper and lower Beurling densities.

Suppose Γ is a ρ-separated sequence of complex numbers, and let A be a positive
number. Define accordingly the following real sequence:

Γ(A) = {αk : αk + iβk ∈ Γ, |βk| < A}.
With the same abuse of notation, we define

D−ω (Γ) = lim
A→∞

D−ω (Γ(A)) and D+
ω (Γ) = lim

A→∞
D+
ω (Γ(A)).

We say that Γ satisfies the two-sided Carleson condition if for any diskD centered
on the real line, we have ∑

γk∈D∩Γ

|=γk| ≤ Cr(D),

where r(D) is the radius of D and C is independent of D.
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Beurling’s classical theorems on real sampling and interpolating sequences [2]
have recently been extended by Ortega-Cerdà and Seip [14]:

Theorem C. A sequence Γ is sampling for L∞τ |=z| if and only if it contains a ρ-
separated subsequence Γ′ satisfying D−(Γ′) > τ/π.

Theorem D. A sequence Γ is interpolating for L∞τ |=z| if and only if it is ρ-separated,
satisfies the two-sided Carleson condition, and D+(Γ) < τ/π.

Using Lemma 12, as well as the fact that∣∣∣∣nΣA(I)−
∫
I

m(x)dx
∣∣∣∣ . 1

for A > 1, we obtain from these theorems the following corollary:

Theorem 5. A sequence Γ is sampling for L∞ω if and only if it contains a ρ-
separated subsequence Γ′ satisfying D−ω (Γ′) > 1. A sequence Γ is interpolating for
L∞ω if and only if it is ρ-separated, satisfies the two-sided Carleson condition, and
D+
ω (Γ) < 1.

Note that since D+(Σ) < τ/π and Σ is separated, Lemma 13 is a consequence
of the sufficiency part of Beurling’s original density theorem.

When p < ∞, it is clear that a sampling sequence must satisfy the two-sided
Carleson condition. If this additional restriction is put on Γ, both results remain
valid if p = ∞ is replaced by p ≤ 1 (see [5]). However, for 1 < p < ∞, only the
sufficiency parts remain true. In this case, there exist sampling2 and interpolating
sequences Γ satisfying respectively D−ω (Γ) = 1 and D+

ω (Γ) = 1. In particular, there
exist complete interpolating sequences, the description of which is our next aim.
From now on, we assume 1 < p <∞.

Our next theorem generalizes the main theorem of [12]. We should add that the
problem of describing complete interpolating sequences for L2

τ |=z| was investigated
for the first time in [16]. We refer to [12] and [8] for the extensive history of the
subject.

We need the classical Muckenhoupt (Ap) condition for a positive weight v(x) >
0, x ∈ R:

sup
I

{(
1
|I|

∫
I

vdx

)(
1
|I|

∫
I

v−
1
p−1 dx

)p−1
}
<∞,

where I ranges over all intervals on the real line. The celebrated Hunt-Muckenhoupt-
Wheeden theorem [3] asserts that the latter condition is necessary and sufficient
for boundedness of the classical Hilbert operator

H : f 7→ (Hf)(t) =
1
iπ

∫
f(τ)
t− τ dτ

2After this paper was written, a complete description of the real sampling sequences for the
classical Paley-Wiener space L2

τ |=z| was given by Ortega-Cerdà and Seip [15]. Their methods rely

on de Branges’ theory and lead to a corresponding description of the real sampling sequences for
each weighted Paley-Wiener space.
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on the weighted space consisting of all functions f satisfying

‖f‖pw,p :=
∫
|f(t)w(t)|pdt <∞,

with v = wp. It is this fact which underlies Theorem G below.
Suppose that Γ is a complete interpolating sequence for Lpω. It may be that 0 ∈ Γ,

in which case we assume that γ0 = 0. The generating function of the sequence Γ is
defined as

S(z) = (z − γ0) lim
R→∞

∏
|γk|<R
k 6=0

(1 − z

γk
) exp

{
z

∫ R

R

m(x)(1 − χ[−1,1](x))dx
x

}
.(22)

The main theorem of [12] may now be stated as follows.

Theorem E. A sequence Γ = {γk} of distinct complex numbers γk = αk + iβk is a
complete interpolating sequence for Lpτ |=z|, 1 < p <∞, if and only if the following
three conditions are met:

(i) Γ is ρ-separated and satisfies the two-sided Carleson condition.
(ii) (22) converges compactwise to an entire function S of exponential type τ .
(iii) {|S(x)|/dist(x,Γ)}p (x ∈ R) satisfies the (Ap) condition.

We obtain from this:

Theorem 6. A sequence Γ = {γk} of distinct complex numbers γk = αk + iβk is a
complete interpolating sequence for Lpω if and only if the following three conditions
are met:

(i) Γ is ρ-separated and satisfies the two-sided Carleson condition.
(ii) (22) converges compactwise to an entire function S of ω-type 0.
(iii) {|S(x)|e−ω/dist(x,Γ)}p (x ∈ R) satisfies the (Ap) condition.

Proof. For general ω, Lemma 12 implies that Γ is a complete interpolating sequence
for Lpω if and only if Γ is a complete interpolating sequence for Lpτ |=z|. Rewriting
the corresponding condition on SF , replacing F by e−ω, we obtain Theorem 6 as
a direct consequence of Theorem E.

Theorem 6 plays a crucial role in the proof of Theorem 4.
We end this section by proving a uniqueness theorem. This is done by interpret-

ing Beurling-Malliavin densities in the Lpω setting.
Given a class K of entire functions, we say that a sequence of complex numbers

Γ = {γk} (counting multiplicities in the usual way) is a uniqueness sequence for
K if there is no nontrivial function f ∈ K vanishing on Γ. We are not able to
characterize the uniqueness sequences for the individual spaces Lpω, but we shall
get as close as the Beurling-Malliavin theorem permits us to get. Denote by C−ω
the collection of all entire functions of negative ω-type (see the Introduction for the
definition of ω-type); it is clear that C−ω contains all the spaces Lpω−ε|=z|, ε > 0. We
will assume that the Blaschke condition is fulfilled, i.e.,∑

k

∣∣∣∣= 1
γk

∣∣∣∣ <∞,(23)

because otherwise it is plain that Γ is a uniqueness sequence for all classes C−ω .
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The Beurling-Malliavin density can be defined in many ways. We shall use the
following definition from [9]. A partition {Ik}k∈Z of the real line into intervals
Ik = [xk(1− ak), xk(1 + ak)) is said to be fine if |xk| → ∞ when |k| → ∞, and∑

k

a2
k <∞.

Let µ and ν denote two positive Borel measures on R. The Beurling-Malliavin
density %µ(ν) of ν with respect to µ is defined as the infimum of the numbers a for
which there exists a fine partition {Ik} such that

ν(Ik) ≤ aµ(Ik)

for all k ∈ Z. If no such a exists, we set %µ(ν) = ∞. Here we have extended
the usual Beurling-Malliavin density somewhat: In the classical situation, µ is just
ordinary Lebesgue measure. In what follows, we are mainly interested in the case
that µ = µω, where µω is the absolutely continuous (Riesz) measure associated
with ω:

µω(S) =
∫
S

m(x)dx.

We will permit ourselves the same abuse of notation as we did when considering
lower upper uniform densities: When µ = µω, we write %µ = %ω. Also, if Γ is a
sequence of (not necessarily distinct) points from R and ν is the associated counting
measure, we write %µ(ν) = %µ(Γ). If µ is ordinary Lebesgue measure, we drop the
subscript and let %(ν) denote the Beurling-Malliavin density of ν with respect of µ.

To deal with complex sequences, we map complex points γk from Γ = {γk} to the
real line according to the rule 1/γ∗k = <(1/γk); thus points on the real line remain
fixed while points on the imaginary line are thrown to infinity. This mapping carries
those points γk with nonzero real part into a real sequence Γ∗ = {γ∗k}. The classical
Beurling-Malliavin theorem may now be stated as follows:

Theorem F ([3]). A sequence Γ satisfying the Blaschke condition (23) is a unique-
ness sequence for C−τ |=z| if and only if %(Γ∗) ≥ τ/π.

We obtain from it the following corollary:

Corollary 1. A sequence satisfying the Blaschke condition (23) is a uniqueness
sequence for C−ω if and only if %ω(Γ∗) ≥ 1.

Proof. We check that the theorem is a direct consequence of Theorem 3′ and The-
orem F. If Σ and τ are as in Theorem 3′, it is clear that Γ is a uniqueness sequence
for C−ω if and only if Γ∪Σ is a uniqueness sequence for C−τ |=z|. Clearly, if Γ satisfies
the Blaschke condition, so does Γ ∪ Σ, and then Γ is a uniqueness sequence for
C−τ |=z| if and only if %τ |=z|(Γ∗ ∪ Σ∗) ≥ 1. In other words, it is enough to prove the
identity

%τ |=z|(Γ∗ ∪ Σ∗) = %ω(Γ∗).

We denote the counting measures of Γ∗ and Γ∗∪Σ∗ by nΓ∗ and nΓ∪Σ∗ , respectively,
and note that the identity follows from the estimate∣∣∣∣n∗Γ(I) +

∫
I

(τ −m(t))dt− nΓ∗∪Σ∗(I)
∣∣∣∣ . 1;

the latter estimate is a direct consequence of the construction of Σ.
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It is of interest to see how the uniform densities are related to the Beurling-
Malliavin density. To this end, set ωt(x) = ω(x− t) and Γt = {γk − t}k; then by a
theorem of Beurling [2, p. 345] and Theorem 5, we have the relation

D−ω (Γ) = lim
A→∞

inf
t∈R

%ωt(Γt(A)),

provided Γ is ρ-separated. This relation makes precise the intuition that a sampling
sequence is a uniform uniqueness sequence. On the other hand, if Γ satisfies the
two-sided Carleson condition, we have

D+
ω (Γ) = lim

A→∞
sup
t∈R

%ωt(Γt(A)),

which expresses that an interpolating sequence is “essentially” a uniform non-
uniqueness sequence.

We finally note that the Beurling-Malliavin density can be used to relate two
different weighted Paley-Wiener spaces in the following way:

Corollary 2. The set of uniqueness sequences for C−ω1
is contained in the set of

uniqueness sequences for C−ω2
if and only if %ω1(µω2) ≤ 1.

The proof can be done by appropriate manipulations with fine partitions. How-
ever, it is probably most easily done by an appeal to a different formulation of the
Beurling-Malliavin theorem, e.g., Theorem 2.1 of [9]. We omit the details.

7. Proof and discussion of Theorem 4

We shall make use of the following remarkable theorem of de Branges [4, p. 55].

Theorem G. Let H(E) be a de Branges space and ϕ a phase function associated
with E. Suppose α is a real number and let Γ = {γk} be the sequence of real
numbers such that φ(γk) = α + kπ, k ∈ Z. Then if eiαE − e−iαE∗ 6∈ H(E), the
normalized reproducing kernels K(γk, z)/M(γk) constitute an orthonormal basis for
H(E); eiαE − e−iαE∗ ∈ H(E) holds for at most one α, modulo π.

We shall see that if H(E) is a weighted Paley-Wiener space, then eiαE−e−iαE∗
is never in H(E), independent of α.

We begin by noting that the norms of L2
ω and H(E) are equivalent if L2

ω = H(E)
in the sense of sets, by the closed graph theorem. This is so because the identity
map f 7→ f from L2

ω to H(E) is closed.
We prove the necessity of the five conditions. The necessity of (i) is obvious, and

so is that of (ii) because it expresses the equivalence between the two majorants
along the real line. The necessity of (iii) and (iv) follows from Lemma 1.

To prove the necessity of (v), observe that along with (i), (iii), and (iv), it says
that the zero sequences of 1±BE both constitute complete interpolating sequences
for L2

ω. So if we can prove that these zero sequences are complete interpolating
sequences for H(E), we have proved the necessity of (v).

By Theorem G, we know that the zero sequence of at least one of the functions
1 ± BE is a complete interpolating sequence for H(E). To prove that both zero
sequences have this property, we need to show that none of the functions are in
L2(R). We begin by noting that

‖1±BE‖22 &
∫
R
σ(x)dx.
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This is so because by (iv) there exists in either case an increasing sequence x±k , k ∈
Z, such that x±k+1 − x

±
k ' 1, and |1 ± BE(x±k )| = 2. Also by (iv), ϕ′(x) & 1/σ(x)

so that ∫
|x±k −t|<σ(x±k )

|1 ±BE(t)|2dt & σ(x±k ).

Summing over k, we obtain the desired estimate. But using (ii) and the fact that
E(z)/(z − Γ0) ∈ H(E), we obtain∫

1
σ(x)(1 + x2)

dx <∞,

which implies that σ is not integrable.
To prove the converse implication, i.e., the sufficiency of the conditions (i)–(v), we

begin by observing that (i)–(iv) along with Lemma 11 imply that L2
ω ⊂ H(E). By

Theorem 6, at least one of the two zero sequences 1±BE is a complete interpolating
sequence for H(E). Also, as above, (i)–(v) ensure that the same sequence is a
complete interpolating sequence for L2

ω. Since the majorants of the two spaces are
equivalent for real x by (ii), this proves that L2

ω = H(E).
The following four remarks shed some light on the contents of Theorem 4.

Remark 1. If all the zeros of E lie in a horizontal strip, then condition (v) of
Theorem 4 can be replaced by the simpler and more convenient condition that σ
be an (A2) weight.

Let us prove this statement. Observe first that we may assume that the zeros of
E are hyperbolically separated: Due to (iii) and (iv) of Theorem 4, we may distort
the zeros of E vertically without changig the space H(E) and in such a way that the
zeros become hyperbolically separated. Now since the zeros of E are hyperbolically
separated and because of (iii) and (iv) of Theorem 4, the zero sequence of E is a
complete interpolating sequence for H(E). This follows from a standard duality
argument, along with Carleson’s interpolation theorem, and the fact that the zeros
of E constitute a set of uniqueness for H(E).

Now if H(E) = L2
ω, it follows that Γ is a complete interpolating sequence for

L2
ω. By (ii) of Theorem 4 and (iii) of Theorem 6, σ is an (A2) weight. Conversely,

if σ is an (A2) weight, then by (i) and (ii) of Theorem E and Theorem 6, Γ is a
complete interpolating sequence for L2

ω. We use Lemma 11 as above to check that
L2
ω ⊂ H(G), and check that the majorants of the two spaces are equivalent at Γ.

It follows that H(E) = L2
ω.

Remark 2. If σ(x)→ 0 when |x| → ∞ and H(E) = L2
ω, then all the zeros of E lie

in a horizontal strip. For suppose there exists a sequence of indices kj such that
ηkj →∞. We have from Lemma 9 that

ω(x+ iy) = log |E(x + i|y|)|+ u(x+ iy),

where ∣∣∣∣u(x+ iy)− |y|
π

∫
log σ(t)

(x− t)2 + y2
dt

∣∣∣∣ . 1.

Thus the majorant M of L2
ω satisfies

M2(Γkj ) '
|E(ξjk + iηkj )|2 exp(u(ξjk + iηkj ))

ηkj
.
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On the other hand, since L2
ω = H(E), we also have

M2(Γkj ) '
|E(ξjk + iηkj )|2

ηkj
,

so that ∣∣∣∣∣ηkjπ
∫

log σ(t)
(ξkj − t)2 + η2

kj

dt

∣∣∣∣∣ . 1.

But this is impossible if both ηkj →∞ and σ(t)→ 0 when |t| → ∞.

Remark 3. Let us consider some concrete E such that H(E) = L2
π|=z| but |E(x)| 6'

1. (There are many such E.) Fix δ > 0 and set

Eδ(z) = (z + i)
∞∏
k=1

(
1− z

k − δ − ik−4δ

)(
1− z

−k + δ − ik−4δ

)
;

the zero set of Eδ is denoted by Λδ. A direct estimate of the infinite product yields

|Eδ(x)| ' (1 + |x|)2δdist(x,Λδ).

We also have

σ(x) ' (1 + |x|)−4δ and ϕ′(x) =
σ(x)

dist(x,Λδ)2
.

In this case, it is immediate that (i)–(iv) of Theorem 4 hold, with ω(z) = π|=z|.
To meet (v) of Theorem 4 as well, we need (by Remark 1) σ to be an (A2) weight.
Thus H(Eδ) = L2

π|=z| if and only if 0 ≤ δ < 1/4.

Remark 4. Let L2
ω be a weighted Paley-Wiener space, and suppose E ∈ HB is

chosen so that L2
ω = H(E). Then as observed above B(z) = E∗(z)/E(z) is an

inner function in C+, and it is seen that the mapping f 7→ f/E transforms H(E)
isometrically onto KΘ = H2 	ΘH2, where H2 denotes the Hardy space H2 of the
upper half-plane C+. Thus Theorem 4 can be interpreted as a theorem about norm
equivalence in so-called model spaces KΘ for certain special inner functions Θ. The
most comprehensive study of norm equivalence in model spaces can found in [17],
where a necessary and sufficient condition is obtained when the weight function
(corresponding to E/eω in our case) is bounded. This is in contrast to Theorem 4,
in which the most interesting case occurs when E/eω is unbounded on R. Thus, in
a sense, Theorem 4 is complementary to [17, Theorem 2].
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