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Available at: www.pmf.ni.ac.yu/org/filomat/welcome.htm

Filomat 20:1 (2006), 13–22

WEIGHTED PARTITIONS OF SPHERE MEASURES BY

HYPERPLANES

PAVLE V.M. BLAGOJEVIĆ1, ALEKSANDRA S. DIMITRIJEVIĆ BLAGOJEVIĆ1

AND MARKO S. MILOŠEVIĆ23

Abstract. In this paper we use the CS / TM scheme stated in [1]
for the V.V. Makeev equipartition problem [7] to prove the existence
of new weighted partitions. For the first time computations of the as-
sociated equivariant problem are done by codes written in the package
Mathematica 5.0 [2].

1. Statement of the main result

Let H1, H2 and H3 be planes in R3 through the origin. They are in the fan
position if H1 ∩ H2 = H1 ∩ H3 = H2 ∩ H3. Planes in the fan position cut
the sphere S2 in six parts σ1, .., σ6 which can be naturally oriented up to a
cyclic permutation.
A measure µ is the proper measure µ if µ([a, b]) = 0 for any circular arc
[a, b] ⊂ S2, and µ(U) > 0 for each nonempty open set U ⊂ S2.
We prove the existence of the following measure partitions.

Theorem 1. Let µ be a proper Borel probability measure on the sphere S2.
Then there are three planes in the fan position such that the ratio of measure
µ in angular sectors cut by planes is

(A) (1, 1, 2, 1, 1, 2) (C) (1, 1, 3, 1, 1, 3)

This result is a generalization of the Makeev result [7].
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2. Configuration space / Test map scheme

We use methods introduced in [1], and briefly review them. The CS / TM
scheme is the standard method for solving measure partition problems.
A k-fan (l; H1, H2, . . . , Hk) in R3 is formed of an oriented line l through
the origin and k closed half planes H1, H2, . . . , Hk which intersect along l.
The point x on the sphere S2 and k great semi circles emanating from x is
equally called . Sometimes instead of great semicircles we use open angular
sectors σi between li and li+1 or tangent vectors ti on li, i = 1, . . . , k. The
space of all k-fans in R3 or on the sphere S2 is denoted by Fk.
The configuration space for a proper Borel probability measure µ on S2

is given by

Xµ,n = {(x; t1, . . . , tn) ∈ Fn | (∀i = 1, . . . , n)µ(σi) = 1
n
} ∼= V2(R

3).

The test map. Fix a six-tuple (α1, α2, α3, α1, α2, α3) ∈ N6 such that α1 +
α2+α3 = n

2 . Let Wn denote the hyperplane {x ∈ Rn | x1+x2+. . .+xn = 0}.
The test map Φ : Xµ,n → Wn is defined by

Φ((x; t1, . . . , tn)) = (θ1 −
2π
n

, . . . , θn − 2π
n

),

where θi = ∡(ti, ti+1) (assuming tn+1 = t1).
The action. The dihedral group D2n = 〈j, ε | εn = j2 = 1, εj = jεn−1 〉 acts
both on the configuration space Xµ,n and on the hyperplane Wn in such a
way that Φ becomes a D2n-map Precisely,

ε(x; t1, . . . , tn) = (x; tn, t1, . . . , tn−1)
j(x; t1, . . . , tn) = (−x; t1, tn, . . . , t2)

ε(x1, . . . , xn) = (x2, . . . , xn, x1)
j(x1, . . . , xn) = (xn, . . . , x2, x1)

,

for (x; t1, . . . , tn) ∈ Xµ and (x1, . . . , xn) ∈ Wn.
The test space. The test space is the union

⋃
An ⊂ Wn of the smallest

D2n-invariant arrangement An, which contains the linear subspace L ⊂ Wn

given by equalities

x1 + . . . + xn

2
= xα1+1 + . . . + xα1+

n

2
= xα1+α2+1 + . . . + xα1+α2+n

2
= 0.

The following basic proposition of the CS / TM scheme holds.

Proposition 2. Let (α1, α2, α3, α1, α2, α3) ∈ N6 be such that α1 +α2 +α3 =
n
2 . If there is no D2n-equivariant map V2(R

3) → Wn \
⋃
An then for every

proper Borel probability measure on the sphere S2 there exist three planes in
the fan position such that

(∀i∈ {1, .., 6}) µ(σi) = αi

n
.

As in the [1], the problem of the existence of the D2n-equivariant map
V2(R

3) → Wn \
⋃
An can be substituted with the following equivalent prob-

lem.

Proposition 3. The following maps exist or do not exist together:

D2n-map V2(R
3) → Wn \

⋃
An and Q4n-map S3 → Wn \

⋃
An.
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Therefore, to prove Theorem 1 it is enough to prove the following statement.

Theorem 4. There is no Q4n-map S3 → Wn \
⋃
An, where An is the

minimal Q4n(=D2n) arrangement containing subspace L defined
(A) for n = 8 and (α1, α2, α3, α1, α2, α3) = (1, 1, 2, 1, 1, 2), by equalities:

x1 + x2 + x3 + x4 = x2 + x3 + x4 + x5

= x3 + x4 + x5 + x6;

(B) for n = 10 and (α1, α2, α3, α1, α2, α3) = (1, 1, 3, 1, 1, 3), by equalities:

x1 + x2 + x3 + x4 + x5 = x2 + x3 + x4 + x5 + x6

= x3 + x4 + x5 + x6 + x7 = 0.

3. Proof of Theorem 4

3.1. The primary obstruction problem. Both problems of the existence
of Q32 and Q40 maps, respectively,

S3 → W8 \
⋃

A8 and S3 → W10 \
⋃

A10

are problems depending only on the primary obstruction. Indeed, the sphere
S3 is free 3-dimensional complex while both complements are 1-connected
spaces. Therefore the relevant obstruction elements live, respectively, in the
following equivariant cohomology groups

H3
Q32

(X, H2(W8 \
⋃

A8, Z)) and H3
Q40

(X, H2(W10 \
⋃

A10, Z)).

To identify the obstruction element, as in the papers [4],[1],[3] we use general
position map scheme. Briefly, the procedure can be divided in four steps.

(1) The sphere S3 become a free Q4n cell complex. The description of
concrete Q4n cell structures of sphere S3 can be found in [5] pp. 250-254,[3]
and [4].

(2) Definition of a general position Q4n-map f : S3 → Wn (in the respect
of the arrangement An). The requirement of the general position means that:

(a) the 2-skeleton image does not intersect the arrangement
⋃
An,

(b) intersection f(S3) ∩
⋃
An is finite,

(c) all intersections of f(S3) and
⋃
An are transversal,

(d) f−1
(
f(S3) ∩

⋃
An

)
⊂

⋃
e∈S3

(3)
relint(e).

(3) Computing the obstruction cocycle

OQ4n
(f) ∈ C3

Q4n
(X, H2(Wn \

⋃
An, Z)).

The obstruction cocycle is computed via ”intersection counting” formula

(1) OQ4n
(f)(e) =

∑

x∈f−1(f(e)∩(
⋃

An))

I(e, Lf(x)) ‖f(x)‖
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where e is a 3-cell of S3. Here I(e, Lf(x)) denotes the appropriate intersection
number, while class ‖f(x)‖ is a point or a broken point class. For notion of
point and broken point classes consult [4], [3].

(4) Describing of the obstruction cocycle in H3
Q4n

(X, H2(Wn \
⋃

An, Z)).

As the contrast to the paper [1] the identification of the obstruction element
becomes much more difficult. The following decomposition and its geometric
interpretation will be of the outmost importance for the testing whether the
obstruction element vanishes or not.
Assume that the obstruction cocycle OQ4n

(f) is computed. Since there is
an isomorphism

H3
Q4n

(X, H2(Wn \
⋃

An, Z)) ∼= H2(Wn \
⋃

An; Z)Q4n

the objective is to identify the obstruction element inside the group of coin-
variants H2(Wn\

⋃
An; Z)Q4n

. Particularly, when we prove that the obstruc-
tion element does not vanish, we are not compelled to completely describe
the obstruction element. The isomorphism (assuming Z coefficients)

(2)

H2(Wn \
⋃
An) ∼= H(n−1)−2−1(

⋃
Ân)

∼= Hom(Hn−4

(⋃
Ân

)
; Z) ⊕ Ext(Hn−5

(⋃
Ân

)
, Z)

(where Ân denotes the one-point compactification of the arrangement An),
and the decomposition

Hn−4(
⋃

Ân) ∼=
⊕

V ∈P

Hn−4

(
∆(P<V ) ∗ Sdim V

)
(3)

∼=

n−4⊕

d=0

⊕

V ∈P :dim V =d

H̃n−5−d(∆(P<V ))(4)

allow the use of the homology of the arrangement instead of the appropriate
homology of the complement. When the Ext part of the isomorphism (2)
vanishes the isomorphism

χ : H2(Wn \
⋃

An; Z) → Hom(Hn−4

(⋃
Ân

)
; Z)

has the geometric interpretation in the notion of the linking number. One
should be very careful in using decompositions (2) and (4). The action of
the group does not respect any of above isomorphisms. Particularly, the
Poincaré duality map is an equivariant map up to the orientation character.

3.2. Three steps. The proof of both cases will follow the stages of the
general position map algorithm.

(1) Definition of the general position map f : S3 → Wn. The sphere S3 is

a Q4n simplicial complex P
(1)
2n ∗P

(2)
2n where P

(i)
2n is a simplicial representation

of the sphere S1 as an 2n-gon. It is enough to define the image of the single
vertex t and everything extends equivariantly.
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(2) Computation of the singular set, i.e. the intersection of the image of
the maximal cell (for details [5], [4], [3],)

e = [t, ǫt] ∗ [jt, ǫjt] ∪ [ǫt, ǫ2t] ∗ [jt, ǫjt] ∪ ... ∪ [ǫn−1t, ǫnt] ∗ [jt, ǫjt]

and the union of the arrangement
⋃
An. Then

OQ4n
(f)(e) =

∑

x∈f−1(f(e)∩(
⋃

An))

I(e, Lf(x)) ‖f(x)‖

(3) Identification of the cohomology class of the obstruction cocycle
OQ4n

(f)(e) in the group of coinvariants

H2(Wn \
⋃

An; Z)Q4n

∼= Hn−4(
⋃

Ân; Z)Q4n
.

The action of the group Q4n on Hn−4(
⋃
Ân; Z) is defined by

(∀x ∈ Hn−4(
⋃

Ân; Z)) (∀g ∈ Q4n) g ∗ x = deg(g) g−1 · x

where · is the Q4n-action induced by the Q4n-action on the arrangement An.

3.3. Case (1, 1, 2, 1, 1, 2). (1) Let us define a map f : S3 → W8 on the
vertex t by f(t) = (−3, 3,−1, 1, 1,−2, 2,−1) and extend it equivariantly.
Then f(jt) = (−1, 2,−2, 1, 1,−1, 3,−3).

(2) A8 is the minimal Q32 arrangement containing the subspace L defined
by

x1 + x2 + x3 + x4 = x2 + x3 + x4 + x5 = x3 + x4 + x5 + x6

=
8∑

i=1

xi = 0.

The arrangement A8 has four maximal elements L, ǫL, ǫ2L and ǫ3L. That
follows from set equalities ǫ4L = L and ǫ2L = jL. The intersection I =
L∩ ǫL∩ ǫ2L∩ ǫ3L is a subspace of the codimension one in each of subspaces
L, ǫL, ǫ2L, ǫ3L. Thus, the Hasse diagram of the arrangement A8 is as in
the figure 1.

Figure 1. The Hasse diagram of the arrangement.

We intersect the f image of the maximal cell

e =
(
[t, ǫt] ∪ [ǫt, ǫ2t] ∪ [ǫ2t, ǫ3t] ∪ [ǫ3t, ǫ4t] ∪ [ǫ4t, ǫ5t] ∪ [ǫ5t, ǫ6t]

∪ [ǫ6t, ǫ7t] ∪ [ǫ7t, ǫ8t]
)

∗[jt, ǫjt]
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with the test space
⋃
A8 = L ∪ ǫL ∪ ǫ2L ∪ ǫ3L. Results of 8 × 4 = 32

intersections

f
(
[ǫit, ǫi+1t] ∗ [jt, ǫjt]

)
∩ ǫrL

can be summed in the following table:

f
(
[ǫit, ǫi+1t] ∗ [jt, ǫjt]

)
∩ ǫrL

i r preimage of the intersection point intersection point in W8

1 2 3
7jt + 1

14ǫjt + 1
14ǫt + 3

7ǫ2t
(
−2

7 ,−2
7 ,−1

2 , 15
14 ,−2

7 ,−2
7 , 15

14 ,−1
2

)
= p1

2 2 20
51jt + 23

153ǫjt + 62
153ǫ2t + 8

153ǫ3t
(
− 25

153 ,−1
3 ,− 77

153 , 1,− 25
153 ,−1

3 , 16
17 ,−4

9

)
= p2

2 1 8
153jt + 63

153ǫjt + 23
153ǫ2t + 20

51ǫ3t
(
− 77

153 ,−1
3 ,− 25

153 ,−4
9 , 16

17 ,−1
3 ,− 25

1531,
)

= p3

4 1 1
20jt + 11

40ǫjt + 1
10ǫ4t + 23

40ǫ5t
(

1
4 ,−1

5 , 1
2 , 6

5 ,−3
2 ,−1

5 , 1
2 ,−11

20

)
= p4

4 0 23
40jt + 1

10ǫjt + 11
40ǫ4t + 1

20ǫ5t
(
−3

2 , 6
5 , 1

2 ,−1
5 , 1

4 ,−11
20 , 1

2 ,−1
5

)
= p5

5 0 1
3jt + 1

6ǫjt + 1
6ǫ5t + 1

3ǫ6t
(
−5

3 , 1, 1
3 , 1

3 , 1,−5
3 , 1

3 , 1
3

)
= p6

7 3 1
14jt + 3

7ǫjt + 3
7ǫ7t + 1

14 t
(

1
7 ,−25

14 , 3
2 , 1

7 , 1
7 , 3

2 ,−25
14 , 1

7

)
= p7

These are results of the Mathematica 5.0 code and can be obtained from [2].
Then

(5) OQ32(f)(e) =
7∑

i=1

αi ‖pi‖

for some αi ∈ {1,−1}. The obstruction cocycle can be described as in the
Figure 2, (A). Orientations which correspond to intersection numbers αi are
not computed and so not indicated in the Figure.

+

eLL e
2

L e
3

L

eL Le
2

Le
3

L

p1

p2 p3

p4
p5

p6

p7

+

eL
+

L
+

e
2

L
+

e
3

L
+

e
5

L
+

e
4 +

Le
6

L
+

e
7

L
+

(A)                                             (B)

Figure 2. The obstruction cocycle.

Let us denote by L+ and L− the halfspaces of L defined by

L+ = {x ∈ L | x4+x5+x6+x7 > 0} and L− = {x ∈ L | x4+x5+x6+x7 < 0}.

The action of the cyclic subgroup generated by ǫ is described in the Figure
2,(B). Following relations hold

(6) ǫ4L = L, ǫ4L+ = L−, ǫ2jL = L, ǫ2jL+ = L+.
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Moreover, the element ǫ acts on the subspace I by changing its orientation.
From these relations one can read following equalities

‖p1‖ = β1 ‖p2‖ = β2ǫ
−1 ‖p3‖ = β3ǫ

−5 ‖p4‖

= β4ǫ
−6 ‖p5‖ = β5ǫ

−6 ‖p6‖ = β6ǫ
−7 ‖p7‖

where βi ∈ {1,−1}.The obstruction element lives in the group of coinvariants
H2(Wn \

⋃
An; Z)Q4n

. Therefore, instead of the obstruction cocycle (5) we
can use the cohomologues one

(7) O′
Q32

(f)(e) = ρ ‖p1‖

where ρ ∈ Z is odd.
(3) Let us first determine the ambient where the obstruction element

lives.

Lemma 5. (A) H4(
⋃

Â8; Z) ∼= Z4 (B) H4(
⋃
Â8; Z)Q32

∼= Z8.

Proof. (A) The statement from Goresky-MacPherson formula 4 can be ap-
plied on this arrangement. We are going to do a little bit more. Let k

denote an element of H4(
⋃

Â8; Z) geometrically represented by the union

of halfspaces L+ and ǫL+. Then the group H4(
⋃
Â8; Z) is generated by

elements

k, ǫ · k, ǫ2 · k, ǫ3 · k, ǫ4 · k, ǫ5 · k, ǫ6 · k, ǫ7 · k

which satisfy the following relation

(8) k − ǫ · k + ǫ2 · k − ǫ3 · k + ǫ4 · k − ǫ5 · k + ǫ6 · k − ǫ7 · k = 0.

The alternation of signs comes from the fact that ǫ changes the orientation
of the intersection I = L+ ∩ ǫ · L+.

(B) The relation (8) transforms in the following one for ”∗”-action

k + ǫ ∗ k + ǫ2 ∗ k + ǫ3 ∗ k + ǫ4 ∗ k + ǫ5 ∗ k + ǫ6 ∗ k + ǫ7 ∗ k = 0.

In ”∗”-coinvariant H4(
⋃
Â8; Z)Q32 the relation becomes

8[k] = 0.

�

The image of the cocycle (7) in the group Hom(H4(
⋃

Â8; Z) ∼= H4(
⋃
Â8, Z)

is identified by the means of the geometric interpretation of the map χ. Let
us fix the basis {k, −ǫ · k, ǫ2 · k, −ǫ3 · k, ǫ4 · k, −ǫ5 · k, ǫ6 · k} of the group

H4(
⋃

Â8; Z). Then

χ(‖p1‖)((−1)iǫi · k) =

{
±1 , i = 0
0 , otherwise

.

This implies that χ(‖p1‖) can be identified by ±k and consequently
O′

Q32
(f)(e) can be identified by ±ρk. After passing to coinvariants we obtain

[O′
Q32

(f)(e)] = ±ρ[k] 6= 0
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since ρ is an odd integer and [k] is a generator of the group

H4(
⋃

Â8; Z)Q32
∼= Z8. Thus the obstruction element

[OQ32(f)(e)] = [O′
Q32

(f)(e)]±ρ[k] 6= 0

is not zero and we have proved the case (A) of the Theorem 4.

3.4. Case (1, 1, 3, 1, 1, 3). Since the proof goes in footsteps of the previous
case, we just outline the computational parts which differs.
(1) Let f : S3 → W10 be given by f(t) = (1− 1

10000 , 2, 3, 4, 5, 6, 7, 8, 9,−45+
1

10000).
(2) The arrangement A10 is now minimal Q40 arrangement containing the
subspace L defined by

x1 + x2 + x3 + x4 + x5 = x2 + x3 + x4 + x5 + x6 = x3 + x4 + x5 + x6 + x7

=
8∑

i=1

xi = 0.

The arrangement A10 has four maximal elements L, ǫL, ǫ2L, ǫ3L and
ǫ4L. This follows from the set equality L = ǫ5L. Let us determine the
intersection of the f image of the maximal cell

e =
(
[t, ǫt] ∪ [ǫt, ǫ2t] ∪ [ǫ2t, ǫ3t] ∪ ... ∪ [ǫ8t, ǫ9t]

)
∗ [jt, ǫjt]

with the test space
⋃
A10 = L∪ǫL∪ǫ2L∪ǫ3L∪ǫ4L. The results of 10×5 = 50

intersections f
(
[ǫit, ǫi+1t] ∗ [jt, ǫjt]

)
∩ ǫrL can be summed in the following

way:

f
(
[ǫ3t, ǫ4t] ∗ [jt, ǫjt]

)
∩ L = {q1}, f

(
[ǫ5t, ǫ6t] ∗ [jt, ǫjt]

)
∩ ǫL = {q2},

f
(
[ǫ5t, ǫ6t] ∗ [jt, ǫjt]

)
∩ ǫ2L = {q3}

and consequently

card
(
f(e) ∩

⋃
A10

)
= 3.

The exact coordinates of intersection points as well as barycentric coordi-
nates of its preimages can be found in [2]. Thus

(9) OQ40(f)(e) = α1 ‖q1‖ + α2 ‖q2‖ + α3 ‖q3‖

where αi ∈ {1,−1}.
The more precise description of the point classes requires detection of half-
spaces which contain intersection points. Let

L+ = {x ∈ L | x4 + x5 + x6 + x7 + x8 > 0}

and

L− = {x ∈ L | x4 + x5 + x6 + x7 + x8 < 0}.

Then q1 ∈ L+, q2 ∈ ǫL− and q3 ∈ ǫ2L+. The element ǫ5 stabilizing L

interchanges halfspaces L+ and L−. Thus for some β1, β2 ∈ {−1, 1},

‖q1‖ = β1ǫ
−6 ‖q2‖ = β3ǫ

−2 ‖q3‖ .
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As in the case (A), instead of the cocycle (9) we analyze the cocycle

(10) O′
Q40

(f)(e) = δ ‖q1‖

where δ is an odd integer.
(3) The structure of the intersection poset of the arrangement A10 is de-

scribed in Figure 3. Let k be the element of H6(
⋃
Â10; Z) geometrically

represented by the union of halfspaces L+ and ǫL+. The set {ǫi · k|i ∈ Z}

is a bases of a Q40 submodule H of H6(
⋃
Â10; Z). Let l ∈ H denote the

element of H6(
⋃
Â10; Z) geometrically represented by the subspace L such

that

(11) l = k − ǫ · k + ǫ2 · k − ǫ3 · k + ǫ4 · k.

The decomposition of Q40 modules, or the exact sequence

0 → H ′ → H6(
⋃

Â8; Z)
ξ
→ H → 0

provides the following exact sequence of coinvarian groups (the coinvarian
functor is right exact)

H ′
Q40

→ H6(
⋃

Â8; Z)Q40

ξ∗
→ HQ40 → 0

Lemma 6. (A) HQ40 = Z10 (B) ξ∗([δ ‖q1‖]) 6= 0 (C) [OQ40(f)(e)] 6=
0.

Proof. (A) The relation (11) written in term of ”∗”-action is

(12) l = k + ǫ ∗ k + ǫ2 ∗ k + ǫ3 ∗ k + ǫ4 ∗ k.

The element ǫ5 acts on W10 by changing its orientation. On the orthogonal
complement L⊥ of L the operator ǫ5, for the basis {e1 + .. + e5, e2 + .. +
e6, e3 + .. + e7, e1 + ... + e10} of L⊥, has the matrix

Ξ =




−1 0 0 1
0 −1 0 1
0 0 −1 1
0 0 0 1


 .

Since det Ξ = −1, the element ǫ5 changes the orientation of L⊥ and conse-
quently does not change the orientation on L. Thus

(13) ǫ−5 ∗ l = det(ǫ−5) ǫ5l = −ǫ5l = −l.

The relations (12) and (13) imply that in coinvariants

[l] = 5[k] and 2[l] = 0.

(B) The map χ helps to identify the ξ∗ image of [δ ‖q1‖]. Keeping in mind the
geometric interpretation of the map χ and the definition of the submodule
H, we get

ξ∗([δ ‖q1‖]) = ±δ[k] 6= 0.

(C) This is the direct consequence of (10), (B) and the equality [OQ40(f)(e)] =
[O′

Q40
(f)(e)]. �
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The obstruction element [OQ40(f)(e)] is not zero, and the Q40 map S3 →
W10 \

⋃
A10 can not exist. The case (B) of Theorem 4 is proved

Figure 3. The Hasse diagram of the arrangement.

Concluding Remarks. The computational approach reviels the complexity
of the problem and gives the opportunity of testing various hypothesis. We
are free to conjecture the following statement.

Conjecture 7. Let µ be a proper Borel probability measure on the sphere
S2. Then there are three planes in the fan position such that the ratio of
measure µ in angular sectors cut by planes is (a, b, c, a, b, c), for arbitrary
a, b, c ∈ N.
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