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Abstract 

A novel algorithm that can be used to boost the performance of face verification methods that utilize Fisher’s 

criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a 

general solution for overcoming the “small sample size” (SSS) problem, where the lack of sufficient training samples 

causes improper estimation of a linear separation hyper-plane between the classes. Two independent phases 

constitute the proposed method. Initially, a set of weighted piecewise discriminant hyper-planes are used in order to 

provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis 

(LDA) methodology. The expected classification ability of this method is investigated throughout a series of 

simulations. The second phase defines proper combinations for person-specific similarity scores and describes an 

outlier removal process that further enhances the classification ability. The proposed technique has been tested on the 

M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly 

improves the face verification performance. 

 

Index Terms: Face verification, linear discriminant analysis, small sample size problem 
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I.   INTRODUCTION 

Linear discriminant analysis is an important statistical tool for pattern recognition, verification, and, in general, 

classification applications. It has been shown that LDA can be effective in face recognition or verification problems 

[1, 2, 3]. In face recognition systems, the Ν  closest faces, from a set of reference faces, to a test face are found. In 

face verification systems, a test face is compared against a reference face and a decision is made whether the test face 

is identical to the reference face (meaning the test face corresponds to a client) or not (meaning the test face 

corresponds to an impostor). The aforementioned problems are conceptually different. On one hand, a face 

recognition system usually assists a human face-recognition expert to determine the identity of the test face by 

computing all similarity scores between the test face and each human face stored in the system database and by 

ranking them. On the other hand, a face verification system should decide itself if the test face is a client or an 

impostor [4]. 

The evaluation criteria for face recognition systems are different from those applied to face verification systems. 

The performance of face recognition systems is quantified in terms of the percentage of correctly identified faces 

within the Ν  best matches. By varying the rank Ν  of the match, the curve of cumulative match score versus rank is 

obtained [5]. The performance of face verification systems is measured in terms of the false rejection rate (FRR) 

achieved at a fixed false acceptance rate (FAR) or vice versa. By varying FAR, the Receiver Operating Characteristic 

(ROC) curve is obtained. For a face verification system, there is a trade-off between the FAR and the FRR. The 

choice of the performance metric, i.e., FAR or FRR, that should be low depends on the nature of the application [6]. 

If a scalar figure of merit is used to judge the performance of a verification algorithm, it is usually the operating point 

where the FAR and FRR are equal, the so called Equal Error Rate (EER). A third difference is in the requirements 

needed when face recognition/verification systems are trained. Face recognition systems are usually trained on sets 

having one frontal image per person. For example, in face recognition experiments conducted on FERET database 

[7], the fa (regular facial expression) frontal images are used to train the system, while the fb (alternative facial 

expression) frontal images are used to test the system. Face verification systems usually need more images per 

individual for training to capture intra-class variability (i.e., to model the variations of the face images corresponding 

to the same individual). The requirements in the number of images increase dramatically when linear discriminant 

analysis is employed to accomplish feature selection [8]. 
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In many cases, the available facial images are insufficient for carrying out the LDA process in a statistically proper 

manner. In this type of problems, Fisher’s linear discriminant [9] is not expected to be able to discriminate well 

between face pattern distributions that in many cases cannot be separated linearly, unless a sufficiently large training 

set is available. More specifically, in face recognition or verification systems LDA-based approaches often suffer 

from the SSS problem, where the sample dimensionality is larger than the number of available training samples per 

subject [10]. In fact, when this problem becomes severe, traditional LDA shows poor generalization ability and 

degrades the classification performance. 

In recent years, an increasing interest has developed in the research community in order to improve LDA-based 

methods and provide solutions for the SSS problem. The traditional solution to this problem is to apply LDA in a 

lower-dimensional PCA subspace, so as to discard the null space (i.e., the subspace defined by the eigenvectors that 

correspond to zero eigenvalues) of the within-class scatter matrix of the training data set [1]. However, it has been 

shown [11] that significant discriminant information is contained in the discarded space and alternative solutions 

have been sought. Specifically, in [12] a direct-LDA algorithm is presented that discards the null space of the 

between-class scatter matrix, which is claimed to contain no useful information, rather than discard the null space of 

the within-class scatter matrix. This approach was also used in [13], where a subspace of the null space of the within-

class scatter matrix is used to solve the small sample size problem. First the common null space of the between-class 

scatter matrix and the within-class scatter matrix is removed, since it is useless for discrimination. Then, the null 

space of the resulting within-class scatter matrix is calculated in the lower-dimensional projected space. This null 

space, combined with the previous projection, represents a subspace which is useful for discrimination. The optimal 

discriminant vectors of LDA are derived from it. 

The key to the approach in [14] is to use the direct-LDA techniques for dimensionality reduction and meanwhile 

utilize a modified Fisher criterion that is more closely related to the classification error. To obtain this modified 

criterion, weighted schemes should be introduced into the traditional Fisher criterion to penalize the classes that are 

close and can lead to potential misclassifications in the output space. In [14], however, simple weighted schemes are 

introduced into the reconstruction of the between-class scatter matrix in the dimensionality reduced subspace, such 

that the optimization can be carried out by solving a generalized eigenvalue problem without having to resort to 

complex iterative optimization schemes. The method in [15] utilizes a variant of direct-LDA to safely remove the 
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null space of the between-class scatter matrix and applies a fractional step LDA scheme to enhance the 

discriminatory power of the obtained direct-LDA feature space. More recently, the authors in [10] formed a mixture 

of LDA models that can be used to address the high nonlinearity in face pattern distributions, a problem that is 

commonly encountered in complex face recognition tasks. They present a machine-learning technique that is able to 

boost an ensemble of weak learners, operating slightly better than random guessing, to a more accurate learner.  

In [16], a linear feature extraction method which is capable of deriving discriminatory information of the LDA 

criterion in singular cases is used. This is a two-stage method, where PCA is first used to reduce the dimensionality 

of the original space and then a Fisher-based linear algorithm, called Optimal Fisher Linear Discriminant, finds the 

best linear discriminant features on the PCA subspace. One of the major disadvantages of using the Fisher criterion is 

that the number of its discriminating vectors capable to be found is equal to the number of classes minus one. 

Recently, it was shown [17] that alternative LDA schemes that give more than one discriminative dimensions, in a 

two class problem, have better classification performance than those that give one projection. This is done by only 

replacing the original between scatter with a new scatter measure. 

In another attempt to address the SSS problem, the authors in [18] present the regularized LDA method (RLDA) 

that employs a regularized Fisher’s separability criterion. The purpose of regularization is to reduce the high variance 

related to the eigenvalue estimates of the within-class scatter matrix, at the expense of potentially increased bias. By 

adjusting the regularization parameter R , a set of LDA variants are obtained, such as the direct-LDA of [12] for 

0=R , and the DLDA of [15] for 1=R . The trade-off between the variance and the bias, depending on the severity 

of the SSS problem, is controlled by the strength of regularization. The determination of the optimal value for R  is 

computationally demanding as it is based on exhaustive search [18]. 

Similarly, in [19] a new Quadratic Discriminant Analysis (QDA)-like method that effectively addresses the SSS 

problem using a regularization technique is presented. The direct-LDA technique is utilized to map the original face 

patterns to a low-dimensional discriminant feature space, where a regularized QDA is then readily applied. The 

regularization strategy used provides a balance between the variance and the bias in sample-based estimates and this 

significantly relieves the SSS problem. 

In [20] a kernel machine-based discriminant analysis method, which deals with the nonlinearity of the face 

patterns’ distribution is proposed which also attempts to solve the SSS problem. Initially, the original input space is 
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non-linearly mapped to an implicit high-dimensional feature space, where the distribution of face patterns is hoped to 

be linearized and simplified. Then, a new variant of the direct-LDA method is introduced to effectively solve the SSS 

problem and derive a set of optimal discriminant basis vectors in the feature space. Unlike the original direct-LDA 

method of [12], zero eigenvalues of the within-class scatter matrix are never used as divisors in the proposed one. In 

this way, the optimal discriminant features can be exactly extracted from both inside and outside of the within-class 

scatter matrix’s null space. In [21] the kernel trick is applied to transform the linear-domain Foley-Sammon optimal –

w.r.t. orthogonality constraints– discriminant vectors, resulting in a new nonlinear feature extraction method. The 

Foley-Sammon method can obtain more discriminant vectors than LDA, however, it does not show good 

performance when having to deal with nonlinear patterns, such as face patterns. Thus, the kernel trick is employed to 

provide a nonlinear solution. In addition, this method handles the SSS problem effectively by ensuring that most of 

its discriminant solutions lie in the null space of the within-class matrix. In [22] a kernel optimization method is 

presented that maximizes a measure of class separability in the empirical feature space. The empirical feature space is 

a Euclidean space in which the training data are embedded in such a way that their geometrical structure –such as 

pair-wise distance and angle– in this feature space is preserved. This leads to a data-dependent kernel optimization 

capability where the optimized kernel can improve classification performance. 

The feature selection via linear programming (FSLP) method [23] incorporates a feature selection process based 

on margin size, where margin is defined as the minimum distance between two bounding hyper-planes. The FSLP 

method can select features by maximizing the margin, thus circumventing the ‘curse of dimensionality’ problem in 

the small sample case, when the number of features is large. In addition, pair-wise feature selection is employed to 

choose the most relevant features for each pair of classes rather than select a fixed subset of features for each class to 

discriminate it from all other classes. The FSLP technique determines the number of features to select for each pair of 

classes. In [24] a probabilistic model is used to generalize LDA in finding components that are informative of or 

relevant for data classes, thus removing the restrictive assumption of normal distribution with equal covariance 

matrices in each class. The discriminative components maximize the predictability of the class distribution which is 

asymptotically equivalent to maximizing mutual information within the classes and finding principal components in 

the so-called learning or Fisher metrics. In [25] verification performance was increased by employing a divide-and-

conquer technique. Specifically, a support vector machine (SVM) tree is used, in which the size of the class and the 
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members in the class can be changed dynamically. Initially, a recursive data partition is realized by membership-

based locally linear embedding data clustering. Then SVM classification is carried out in each partitioned feature 

subset. Thus, the authors attempt to solve the classification problem by forming multiple easier sub-problems. 

This paper presents a framework of two independent and general solutions that aim to improve the performance of 

LDA-based approaches. This methodology is not restricted to face verification, but is able to deal with any problem 

that fits into the same formalism. In the first step, the dimensionality of the samples is reduced by breaking them 

down, creating subsets of feature vectors with smaller dimensionality, and applying discriminant analysis on each 

subset. The resulting discriminant weight sets are themselves weighted under a normalization criterion, thus making 

the piecewise discriminant functions continuous in this sense, so as to provide the overall discriminant solution. This 

process gives direct improvements to the two aforementioned problems as the non-linearity between the data pattern 

distributions is now restricted, whereas the reduced dimensionality also helps mend the SSS problem. A series of 

simulations that aim to formulate the face verification problem illustrate the cases for which this method outperforms 

traditional LDA. Various statistical observations are made about the discriminant coefficients that are generated. 

Remaining strong nonlinearities between corresponding subsets lead to a bad estimation of a number of discriminant 

coefficients due to the small training set used. These coefficients are identified and re-estimated in an iterative 

fashion, if needed. In the second stage, the set of similarity scores, that correspond to the reference images of each 

person, is used in a second discriminant analysis step. In addition, this step is complemented by an outlier removal 

process in order to produce the final verification decision that is a weighted version of the sorted similarity scores. 

The outline of this paper is as follows: Section II describes the discriminant problem at hand in order to illustrate 

how the proposed framework contributes to tackling a standard face verification problem. Section III presents the two 

aforementioned stages that comprise the novel discriminant solution that is proposed in this paper. Section IV 

describes the structure of a series of simulations that can be used to provide indications on the expected performance 

of the algorithm. Section V describes the implementation of these simulations and provides the corresponding 

experimental results. Moreover, in the same section, the proposed methodology is tested on two well-established 

frontal face databases, the M2VTS and XM2VTS, in order to assess its performance on standard data sets. The 

Brussels protocol, which is used and described in [26], was applied to the M2VTS database and Configuration I of 

the Lausanne protocol [27] to the XM2VTS database training and testing procedures. 
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II.   PROBLEM STATEMENT  

A widely known face verification algorithm is elastic graph matching [28]. The method is based on the analysis of 

a facial image region and its representation by a set of local descriptors (i.e. feature vectors) extracted at the nodes of 

a sparse grid: 

                           ⎟
⎠
⎞

⎜
⎝
⎛=

∧∧

)(,),()( 1 xxxj Μff K                                (1) 

where )(x
∧

if  denotes the output of a local operator applied to image f  at the th−i  scale or the th−i  pair (scale, 

orientation), x  defines the pixel coordinates and Μ denotes the dimensionality of the feature vector. The grid nodes 

are either evenly distributed over a rectangular image region or placed on certain facial features (e.g., nose, eyes, 

etc.), called fiducial points. The basic form of the image analysis algorithm that was used to collect the feature 

vectors j  from each face is based on multiscale morphological dilation and erosion and is described in [26]. All the 

feature vectors j  that have been produced are normalized in order to have zero mean and unit magnitude. Let the 

superscripts r  and t  denote a reference and a test person (or grid) respectively. Then, the 2L  norm between the 

feature vectors at the th−l  grid node is used as a (signal) similarity measure:  

)()( r
l

t
llC xjxj −= .          (2) 

Let tc  be a column vector comprised by the similarity values between a test and a reference person at all L  grid 

nodes, i.e.: 

              [ ]Τ= Lt CC ,,1 Kc ,                          (3) 

In order to make a decision of whether a test vector corresponds to a client or an impostor, the following simple 

distance measure can be used, where i  is an 1×L  vector of ones: 

                      trtD ci Τ=),( .                (4)  

The first phase of the algorithm proposed in this paper introduces a general LDA-based technique that is carried out 

in the training stage and finds weights for each similarity vector tc  in order to enhance the discriminatory ability of 

the distance measure. 

As is the case in most face verification applications, both the M2VTS and XM2VTS databases, and the protocols 

they were evaluated under, allow for the final decision, of whether a test facial image corresponds to a client or an 
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impostor, to be made by processing Τ  different images of the reference face. That is, the test face is compared 

against all the images of the reference person contained in the training set. As a result, we end up with Τ  similarity, 

or matching error, scores; traditionally, the final classification decision is based solely on the lowest error value. The 

second phase of the proposed algorithm provides an alternative score weighting method that improves the final 

classification rate significantly. The two methods are independent from one another and are proposed as general 

solutions for classification problems of analogous form. 

 

III.   BOOSTING LINEAR DISCRIMINANT ANALYSIS 

Let Cr ,m  and Ir ,m  denote the sample mean of the class of similarity vectors tc  that corresponds to client claims 

relating to the reference person r  (intra-class mean) and those corresponding to impostor claims relating to person r  

(inter-class mean), respectively. In addition, let CΝ  and IΝ  be the corresponding numbers of similarity vectors that 

belong to these two classes and Ν  be their sum, i.e., the total number of similarity vectors. Let WS  and BS  be the 

within-class and between-class scatter matrices, respectively [29]. Suppose that we would like to transform linearly 

the similarity vectors:  

                trrtD cw Τ=′ ),( .               (5) 

The most known and plausible criterion is to find a projection, or, equivalently, choose rw  that maximizes the ratio 

of the between-class scatter against the within-class scatter (Fisher’s criterion): 

                     
rWr

rBr
rJ

wSw
wSw

w
Τ

Τ

=)( .               (6) 

For the two-class problem, as is the case of face verification, Fisher’s linear discriminant provides the vector that 

maximizes (6) and is given by: 

)( ,,
1

0, CrIrWr mmSw −= − .          (7) 

A.   Weighted Piecewise Linear Discriminant Analysis (WPLDA) Model 

Our experiments, which are discussed in Section IV, revealed that the traditional Fisher’s linear discriminant 

process not only performs poorly, but, in certain cases, degrades the classification capability of the face verification 
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algorithm, particularly when training data from the M2VTS database was used as can be seen in Table III. That is, 

the distance measure in (4) provided a much better solution than (5) after traditional LDA was used to determine the 

values of rw . This malady can be attributed to the insufficient number CΝ  of client similarity vectors, with respect 

to the dimensionality L  of each vector tc . This is the case for most face verification problems and for the Brussels 

[26] and Lausanne protocols [27] as well.  

The first thing that is done is to provide better estimation to Fisher’s linear discriminant function. The main 

problem is that the class of client claims is very small in relation to the impostor class. This fact may affect the 

training [30]. As a result, a modified Fisher’s linear discriminant is used by redefining (7) to: 

                          ⎟
⎠
⎞

⎜
⎝
⎛ −= −

Ν
Ν

Ν
Ν C

Cr
I

IrWr ,,
1

0, mmSw ,              (8) 

so as to accommodate the prior probabilities of how well the mean of each class is estimated. Secondly, and for 

claims related to each reference person r , grid nodes that do not possess any discriminatory power are discarded. At 

an average 4 nodes, out of 64, are discarded for a 8×8 grid. Simply, each of the L′  remaining nodes in '
tc  must 

satisfy: 

                           Llll CrIr ′=≥ ,,1),(m)(m ,, K .                (9)  

The novelty of our approach is that in order to give remedy to the SSS problem, each similarity vector '
tc  with 

dimensionality L′  is broken down to P  smaller dimensionality vectors, Piit K,1,'
, =c , each one of length Μ , 

where ( )1−≤ CΝΜ , thus forming P  subsets. The more statistically independent the vectors '
,itc  are to each other, 

the better the discriminant analysis is expected to be. As a result, P  separate Fisher linear discriminant processes are 

carried out and each of the weight vectors produced is normalized, so that the within group variance equals to one, by 

applying:  

                 2
1

,0,,,0,,0,
'

,0, )(
−Τ= iriWiririr wSwww ,                 (10) 

where Pi ,,1 K=  is the index of −Μ dimensionality vector '
,itc  corresponding to a subset of similarity vector 

coordinates. This normalization step enables the proper merging of all weight vectors to a single column weight 

vector, '
0,rw , as such: 
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'
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'
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B.   Re-estimating the Defective Discriminant Coefficients 

By meeting condition (9), all discriminant coefficients that correspond to the remaining grid nodes should indicate 

a constructive contribution to the overall discriminatory process. Since the matching error is always positive and 

impostor matching errors should be larger than the client errors, '
0,rw  should be a vector of L′  positive weights only. 

The exception to this is the possibility to have zero-valued weights that would indicate that certain grid nodes do not 

contribute to the classification process. In spite of this, when the set of client similarity data presents overlap with the 

set of impostor similarity data, such that no single linear hyper-plane can separate the two classes, it is likely, 

depending on the amount of overlap and/or how severe the SSS problem is, that a number of the discriminant 

coefficients in 0,rw  may be found to be negative by the discriminant algorithm during the training phase. The 

WPLDA model that is introduced is less susceptible to these occurrences, as it settles the SSS problem. Any negative 

discriminant coefficients that remain in '
0,rw  are caused by large nonlinearities of the separation surface between the 

distribution patterns of corresponding subsets and/or the lack of a sufficiently large number of training samples.  

By having the a-priory knowledge that negative discriminant coefficients are the direct result of a faulty estimation 

process and assuming that rL  is the number of negative weights found in '
0,rw , the following two cases are 

considered: 

Case 1: ΜLr ⋅> 5.0  

In this case, all the grid node training data that correspond to the negative coefficients in '
0,rw  are collected and re-

distributed into P′  −Μ dimensionality vectors where, ideally, each subset again holds Μ similarity values. Now, an 

additional discriminant process can be applied on the data contained in one of the P′  subsets in order to produce Μ  

new discriminant weights. Indeed, P′  separate Fisher linear discriminant operations are carried out by using (8) and 

each of the P′  weight vectors of length Μ  that is produced is normalized by using (10).  

Successively, all positive weights from all P′  vectors are collected and used as the final multipliers of tc  

(discriminant coefficients). On the other hand, all negative weights are collected and once again tested against cases 1 

and 2. This process is carried out in as many iterations as are required for Case 2 to apply. That is, the total number 
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of negative discriminant weights should ideally be zero, or at least smaller or equal to Μ . The number of iterations 

in this procedure should drop if training is carried out on the low ( )Μ  dimensionality similarity vectors, as opposed 

to having been applied on the full −′L dimensional vectors.  

Case 2: ΜLr ⋅≤ 5.0    

All negative weights are set equal to zero and no further processing is required. The factor 0.5 is used to indicate that, 

if the number of similarity values, in the final −Μ dimensionality vector that holds similarity values corresponding to 

negative discriminant coefficients, is not equal to more than half of its full capacity Μ , the corresponding linear 

discriminant equation depends on too few variables and is likely to give large inaccuracies to the overall discriminant 

solution. In order to avoid building the overall discriminant solution by also including these large inaccuracies, which 

will essentially translate to defective discriminant coefficient values, zero weights are assigned to indicate that these 

coefficients no longer have any discriminant significance. 

C.   Weighting the Multiple Classification Scores 

Most, if not all, face verification applications allow for a test person to be classified as an impostor or a client by 

using numerous images of the reference face. Thus, numerous verification tests are carried out whenever a claim is 

considered. As a result, multiple (Τ ) classification scores ),( drtD′ , where Td ,,1K= , are available for each 

claim of an identity ,r  by a test person t . Traditionally, the test person t  is classified as a client if the minimum 

value out of the total Τ  scores, { }TdrtDrtD dTi
,,1),,(min),(

,1min K
K

=′=′
=

, is below a predefined threshold, and as an 

impostor, if it is above this threshold. In this work, training data are used once again to derive person specific weights 

to be used for the combination of the Τ  scores. The motivation behind this process is that, ideally, all Τ  scores 

should contribute to the final classification decision, as, in certain cases, the impostor image that corresponds to a 

minimum score may have accidentally - e.g., due to a particular facial expression or due to similar eyeglasses- had 

close similarity to a certain reference image. In such a case, the remaining reference images can be used in an effort 

to repair the false classification decision. Now the problem becomes: 

                          ∑
=

′=′′
Τ

d
ddr rtDvrtD

1
, ),(),(                               (12) 
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Again, Fisher’s modified linear discriminant (8) is applied to determine the vector rv  which contains the Τ  

weights Tdv dr ,,1,, K= , of the classification scores.  

A much larger number of impostor, rather than client, similarity scores is usually available in the training set of a 

face verification database. This increases the probability that some impostor images may randomly give a close 

match to a reference photo, even closer than some of the client images give. Whenever this happens, the process of 

estimating a separation between the two classes degrades significantly because of the small number of client training 

similarity scores, which equals to the number of training samples in section III-A. Thus, an outlier removal process is 

incorporated, where the minimum impostor similarity scores in the training set of each reference person, i.e. all 

),( 1rtD′  scores that correspond to impostor matches, are ordered and the smallest Q % of these values are discarded. 

As a result, the linear discriminant process gives a more accurate separation that helps increase the classification 

performance. 

 

IV.   SIMULATED AND EXPERIMENTAL RESULTS 

In this section, the efficiency of the proposed discriminant solution is evaluated using both simulated and real data 

sets. The simulated data sets are used in order to deduce experimental evidence on the performance of WPLDA, 

whereas the real data that are taken from the M2VTS and XM2VTS databases are used to test the classification 

ability of the overall discriminant algorithm that is presented in this paper. 

A.   Classification Performance on Simulated Data 

In order to provide relevant background on the expected performance of the proposed WPLDA algorithm in face 

verification, simulations that tackle the 2-class problem are carried out. We intent to investigate the cases where one 

can expect the WPLDA algorithm to outperform the traditional LDA algorithm, with respect to the size of the 

impostor and client classes. For each verification experiment, two classes of matching vectors, one that corresponds 

to the clients and the other to the impostors, are created. Each class contains N  sample vectors of dimensionality L . 

Each of these sample vectors contains entries drawn from a normal (Gaussian) distribution. The L  random entries to 

each sample vector of class jΧ , which is the th−j  client or impostor class, are generated by   
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where ij
j

i rG αμ +=  and ij
j

i rK βσ += . jG  is the expected mean value and jK  the expected standard deviation 

for the th−i  random entry of the th−j  class and ir  is a random number, chosen from a normal distribution with 

zero mean and unit variance. The scalars α  and β  affect the uniformity among the vectors of each class. 

The dimensionality of the sample vectors is set to 64=L  in order to be identical to the dimensionality of the 

feature vectors - or to the number of grid nodes - of the real face verification problem that we are trying to solve in 

section IV-C. Each class contains 2000=N  sample vectors. Let I  be the impostor class and 1C  and  2C  be two 

client classes. Let the random entries to each sample vector of the impostor class I  and the client classes 1C  and  2C  

be generated based on the following normal distributions, respectively:   

( ) .641,525,5100: K=+=+=Ν irrx iiiii σμI             (14) 

       ( ) .641,535,587: K=+=+=Ν irrx iiiii1
σμC             (15) 

         ( ) .641,535,585: K=+=+=Ν irrx iiiii2
σμC                       (16) 

It is clear that the mean of the random entries of 2C  is expected to deviate more, w.r.t. the mean of the entries of 1C , 

from the mean of the entries of I . 

When the elastic graph matching algorithm is applied to face verification tasks, it is expected that certain nodes 

should provide more discriminant information than others. This is also true for most feature-based verification 

methods. For example, in general a node that lies at the location of the nose will be more useful than a node that lies 

at a location on the forehead. In order to simulate a similar situation, we create a subset of BL  nodes (out of the total 

L ), that is expected to be more discriminant than the remaining nodes. We name this set of BL  nodes as ‘most 

discriminant coefficients’. Let a client class 3C  be created, such that the entries at the BL  nodes are taken from the 

2C  client class (since the entries from 2C are more separated from the entries in I  than the entries of  1C  are) and the 

rest of the node entries from the 1C  class. For this first set of experiments we let 5=BL  and the positions of the 5 
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most discriminant coefficients are selected so as to be evenly spaced from one another, e.g. their coefficient index is 

given by { }55,44,33,22,11  for 64=L . 

The data that were created are used to compare the discrimination ability of traditional LDA and the proposed 

WPLDA for various numbers of training sample vectors for the impostor and client class. For each 2-class problem 

that is formulated, one training and one test set are created. The training set of LDA and WPLDA is formed based on 

the random selection out of the complete set of N  sample vectors of each class. The remaining sample vectors of 

each class, obtained by excluding the training set of LDA and WPLDA, form the test set that is used to evaluate the 

classification performance. 

In order to approximate the ideal linear discriminant solution, a third method that will be referred to as Ideal LDA 

(ILDA) will always apply the traditional LDA algorithm making use of the complete sets of N  client sample vectors 

and N  impostor sample vectors, during the training phase. We consider this number of samples to be large enough 

for the traditional LDA algorithm to produce a statistically correct discriminant solution. The test set where the 

performance of ILDA will be evaluated on, is identical to the test set of LDA and WPLDA. Thus, the test set is 

always included in the training set of ILDA, so as to best approximate the ideal linear discriminant solution and 

provide ground-truth results. In addition, and again for comparison purposes, the classification performance of a 

fourth method will be considered, where this method simply computes the mean of the sample vectors (MSV) and 

produces a non-weighted result which can be used to indicate how difficult the 2-class classification problem is.  

In order to evaluate the performance of the four aforementioned methods the equal error rate (EER) is employed. 

Each of the EER values reported has been averaged over 20 independent runs of an identical experiment for more 

accurate results. The simulation data are used in various discriminant processes that aim to separate out the client and 

impostor classes. The 2-class problem that is studied next uses data from I  and 3C . Figures 1-3 show the EER when 

the number of client sample vectors varies from 2 to 100. It is noted that logarithmic scales are used for the y-axis. 

Figure 1 shows the EER results when the number of impostor sample vectors is 10. For the LDA algorithm, the SSS 

is expected to have the most severe effects on the EER when the client class has less than 65)1( =+L  samples. In 

theory, in this case neither the client class nor the impostor class can be properly modelled by traditional LDA and, as 

a result, an appropriate separation between the two classes cannot be found. On the other hand, WPLDA is not 

affected by the SSS problem as can be seen in Figure 1. The small variations in the EER of ILDA indicate the amount 
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of randomness in our results since only the y-axis showing EER is significant for the ILDA results. Figure 2 and 3 

show the EER rates for 100 and 1000 impostor sample vectors respectively. It is clearly seen in these Figures that, 

unless a relatively large number of client and impostor sample vectors are available, WPLDA outperforms LDA.  

Figure 2 shows that, when 100 impostor and 83 client sample vectors are available, the performance of LDA 

becomes better than that of MSV. Figure 3 shows that when the number of impostor sample vectors becomes 1000, 

20 client sample vectors are required for LDA to outperform WPLDA. For most current biometric databases, having 

20, or more, client samples per person is quite uncommon. Figure 3 also shows that when the client and impostor 

class sizes are large enough such that traditional LDA can find a proper estimation of a linear separation hyper-plane 

between the classes, traditional LDA presents a stronger classification performance since the proper higher-

dimensionality solution is more general than the lower-dimensionality solutions offered by WPLDA. For reference, it 

is stated that in simulations we run where the client class consisted only sample vectors from either 1C  or 2C  the 

average drop in the EER rate of LDA when 1000 impostor sample vectors are used instead of 10 is 25.50%, whereas 

for WPLDA 0.37%. Of course, it is expected that a quite large number of impostor sample vectors are required for 

the LDA algorithm to outperform WPLDA when the number of client sample vectors is only 6, as is in the face 

verification problem that we are trying to solve in section IV-C. As a result, we expect that WPLDA should provide 

better verification performance. 

B.   Discriminant Characteristics under the SSS Problem 

The second set of experiments using simulated data involves investigating the statistical behaviour of the 

discriminant coefficients of the LDA and WPLDA processes with reference to ILDA. Moreover, EER rates are 

reported for different numbers of ‘most discriminant coefficients’ contained in each class, that is, for various values 

of BL . The BL  most discriminant coefficients are evenly spread out, as much as possible, in the L -dimensional 

space. In order to determine how efficient each discriminant method is in recognizing the importance of the most 

discriminant coefficients, a separation criterion between the most discriminant and the remaining coefficients is 

defined as: 

               
RB

RB

ss
mm

H
+

−
= ,                (17) 
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where Bm  and Bs  are scalars representing the average mean and the average standard deviation of the set of most 

discriminant coefficients and Rm  and Rs  those of the remaining coefficients. If ,1≥H  the separation criterion is 

satisfied, since then the values of the most discriminant coefficients vary significantly from those of the remaining 

coefficients. 

Based on the practical considerations of the face verification problem at hand, this set of simulations is modelled 

under the SSS problem, where the client class has less sample vectors than the dimensionality of the similarity 

vectors. The M2VTS and XM2VTS face verification test protocols specify for the client class to avail 6 training 

samples and for the impostor class to avail 210 or 1791 training samples for the M2VTS and XM2VTS databases 

respectively. Therefore, in order to correlate the simulation results with the expected performance of the MSV, LDA 

and WPLDA algorithms in these protocols, we randomly select 6 sample vectors from the 3C  client class and 1000 

sample vectors from the I  impostor class to train LDA and WPLDA. The coefficients of ILDA are once again 

generated by a training set of 2000 client and 2000 impostor sample vectors. To observe the statistical behaviour of 

the discriminant coefficients, 1000 independent runs were carried out. The entries at the position of the BL  elements 

are expected to have a larger distance from the corresponding element entries of class I , than the rest. As a result, the 

discriminant process should give larger weights for the element entries at these BL  specific positions, since they are 

expected to be the most useful in producing a meaningful separation between the impostor and the client class.  

Figures 4,5 and 6 show the boxplots [31] that provide statistical information about the calculation of the 64 

discriminant coefficients, 641,' K=iiw , throughout the 1000 independent runs, by ILDA, LDA and WPLDA 

respectively. These three methods processed the 3C , (with 5=BL ), and I  training data. The boxes have lines at the 

lower quartile, median, and upper quartile values.  The whiskers are lines extending from each end of the boxes to 

show the extent of the rest of the data, specified as 1.5 times the inter-quartile range. Outliers are data with values 

beyond the ends of the whiskers and are indicated using ‘+’. It is clear that WPLDA, unlike LDA, provides a 

complete separation to all the most discriminant coefficients from the remaining coefficients, in terms of assigning 

largest weights, while ILDA almost does the same. Results such as the ones shown in Figures 4 through 6 were 

produced for various values of BL  and the corresponding EER and H  values (17) were calculated. These results are 

summarized in Table I. Once again, the case where half the coefficients are the most discriminant provides an 
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exception to our results since, in all other cases, WPLDA is related with the largest H  value. In addition, WPLDA 

provides the EER rate that is closest to the corresponding ILDA rate. The EER of WPLDA and MSV is identical in 

the cases where no ‘most discriminant coefficients’ exist, i.e. when as many as half the coefficients are most 

discriminant ones. As expected, WPLDA always shows a better classification performance than traditional LDA, 

under the SSS problem.  

C. Performance Evaluation on the M2VTS and XM2VTS Databases. 

In this section, experimental tests are carried out by applying the testing protocols of the M2VTS and XM2VTS 

databases. The M2VTS database contains video data of 37 persons. Four recordings/shots of the 37 persons have 

been collected, each containing a frontal-face pose. The Brussels protocol, which is used in [26, 29] requires the 

implementation of four experimental sessions by employing the “leave-one-out” and “rotation” estimates. In each 

session, one shot is left out to be used as the test set. In order to implement test impostor claims, rotations over the 37 

person identities are carried out by considering the frontal face image of each person in the test set as impostor. By 

excluding any frontal face image of the test impostor from the remaining three shots, a training set that consisted of 

36 clients is built. The test impostor pretends to be one of the 36 clients and this attempt is repeated for all client 

identities. As a result, 36 impostor claims are produced. In a similar manner, 36 test client claims are tested by 

employing the client frontal faces from the shot that is left out, and those of the training set. The training procedure is 

analogous to the test procedure that was just described. It is applied to the training set of the 36 clients. Three frontal 

face images are available for each client. By considering all permutations of the three frontal images of the same 

person, taken two at a time, 6 training client claims can be implemented. Moreover, 210 training impostor claims, 

when each of the other 35 persons attempt to access the system with the identity of the person under consideration, 

are implemented. That is, another 6 raw similarity vectors corresponding to all pair-wise comparisons between the 

frontal images of any two different persons taken from different shots are produced. For a more detailed description 

of the Brussels protocol the reader is referred to [26]. 

The XM2VTS database contains four recordings of 295 subjects taken over a period of four months. The 

Lausanne protocol described in [27] splits randomly all subjects into client and impostor groups. The client group 

contains 200 subjects, the impostor group is divided into 25 evaluation impostors and 70 test impostors. Eight images 

from 4 sessions are used. From these sets consisting of face images, a training set, an evaluation set and a test set are 
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built. There exist two configurations that differ in the selection of particular shots of people into the training, 

evaluation and test sets. The training set of the Configuration I contains 200 persons with 3 images per person. The 

evaluation set contains 3 images per client for genuine claims and 25 evaluation impostors with 8 images per 

impostor. The test set has 2 images per client and 70 impostors with 8 images per impostor. The training set is used 

to construct client models. The evaluation set is selected to produce client and impostor access scores, which are used 

to find a threshold that determines if a person is accepted or not as a client (it can be a client-specific threshold or 

global threshold). According to the Lausanne protocol the threshold is set to satisfy certain performance levels (error 

rates) on the evaluation set. Finally the test set is selected to simulate realistic authentication tests where the impostor 

identity is unknown to the system [32]. For a more detailed description of the Lausanne protocol the reader is 

referred to [27]. 

The proposed methodology is now evaluated using the Brussels and Lausanne standard protocols described above 

that, as is the case with most face verification applications, suffer from the SSS problem. Specifically, the number of 

client similarity vectors CΝ  for each individual that were available in the training set was only 6, whereas the 8×8 

grid that was used set the dimensionality of the similarity vector to 64=L . The value of IΝ was set to 210 and 1791, 

when training the algorithm using M2VTS and XM2VTS data respectively. For the XM2VTS database and 

Configuration I of the Lausanne protocol, a total of 600 (3 client shots x 200 clients) client claim tests and 40,000 

(25 impostors x 8 shots x 200 clients) impostor claim tests were carried out for the evaluation set and 400 (2 client 

shots x 200 clients) client claims and 112,000 (70 impostors x 8 shots x 200 clients) impostor claims for the test set. 

For the M2VTS database and the Brussels protocol, a total of 5,328 client claim tests and 5,328 impostor claim tests 

(1 client or impostor x 36 rotations x 4 shots x 37 individuals) were carried out. Face verification decision thresholds 

from the corresponding training process of each database were collected and used to evaluate the verification results, 

except for the evaluation of the XM2VTS test set, where thresholds from the evaluation process were used, as [27] 

suggests.  

The discriminant coefficient vectors w′  derived by the processes described in sub-sections III-A and III-B have 

been used to weigh the normalized similarity vectors c  that are provided by the Morphological Elastic Graph 

Matching procedure applied to frontal face verification, based on the algorithm described in [26]. Our tests revealed 

that the optimum value for  Μ  is 4. Moreover, it was observed that, on the average, 36.54% of the discriminant 
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coefficients in 0,rw  and 6.27% of the discriminant coefficients in '
0,rw  were found to be negative for the M2VTS 

training set. Additionally, 24.39% of the discriminant coefficients in 0,rw  and 0.76% of the discriminant coefficients 

in '
0,rw  were found to be negative, when the larger XM2VTS training set was used. In addition, during the training 

stages of the M2VTS database, 3 to 5 iterations described in sub-section III-B, are usually required when LΜ ′= , 

whereas no more than 2 iterations are required when Μ is set to 4. For the latter value of Μ , one, at the most, 

iteration is needed when processing XM2VTS data. 

The procedure described in Section III-C is used to calculate a more accurate similarity score for each tested 

individual. The testing protocols specify that a test person can be classified to be an impostor or a client by using 

three different images of the reference person ( )3=Τ . Thus, three tests are carried out and three similarity scores are 

available for each individual. Unfortunately, the training data which we can work with to derive these weights only 

provide two combinations, since a total of 6 training client combinations are available for the 3 different images of 

each person. Thus, we are forced to set the largest similarity score to zero and set 2=Τ  in (12). The two weights are 

found using (8). For the outlier removal process, Q   is set to 4, that is, 4% of the minimum impostor similarity scores 

is discarded. 

Let us denote the combination of the morphological elastic graph matching, (MEGM), and the weighting approach 

that makes up for the first phase of the proposed algorithm, as is described in sub-sections III-A and III-B, by, once 

again, WPLDA. Moreover, let MS-WPLDA be the second phase of the algorithm that is applied on WPLDA and is 

described in sub-Section III-C, where ‘MS’ stands for multiple score. In order to evaluate the performance of these 

methods the FAR and FRR rate measures are used. Figure 7 shows a critical region of the ROC curves for the raw 

MEGM data using (4), classical LDA (7) applied on the raw MEGM data, WPLDA and MS-WPLDA evaluated on 

the M2VTS database. Figure 8 shows the same corresponding ROC curves when the algorithms were evaluated on 

the XM2VTS evaluation set and Figure 9 the corresponding ones for the XM2VTS test set. Results are presented in 

logarithmic scales. In addition, Table II shows the EER for each algorithm. 

When the M2VTS data are used, the traditional LDA algorithm degrades the classification performance 

significantly, having a poor generalization ability, which stems from the largely inadequate, in terms of size, training 

set that was available. Traditional LDA underperforms, with respect to WPLDA, at a larger degree on the M2VTS, 
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rather than on the XM2VTS, experiments. This can be attributed to the larger data set that is used in the XM2VTS 

training process. In addition, the experimental results show that the proposed WPLDA algorithm performs better than 

either MEGM or LDA, as was previously indicated by the simulation results of section IV. Furthermore, the 

independent MS-WPLDA process provides additional improvement to the classification ability of WPLDA.  

In order to compare the performance of WPLDA with a state-of-the-art method it is important to select an 

algorithm which is expected to perform well not only under the SSS problem, but also when dealing with the 2-class 

problem. For example, the algorithms in [20] and [23] are designed under the assumption of a multi-class problem. 

On the contrary, the RLDA algorithm that was recently proposed in [18] is not designed around the multi-class 

problem. Thus, we apply the Brussels and Lausanne face verification protocols to evaluate its performance. For 

salient comparisons, we report results generated by the RLDA algorithm after discarding the nodes that do not 

possess any discriminatory power, by making use of (9). The EER performance of RLDA is shown in Table II. These 

results illustrate that WPLDA always gives better classification results that the RLDA algorithm. It is anticipated that 

the bias introduced by the regularization in order to reduce the high variance related to the eigenvalue estimates of 

the within-class scatter matrix limits the classification accuracy of RLDA (essentially due to having insufficient 

samples to represent the client class), whereas WPLDA achieves a better solution since it decomposes the 

discriminant analysis problem into multiple lower-dimensionality problems. 

 

V.   CONCLUSION 

A novel methodology is proposed in this paper that provides general solutions for LDA-based algorithms that 

encounter problems relating to inadequate training and to the SSS problem in particular. This methodology was tested 

on two well-established databases under their standard protocols for evaluating face verification algorithms. 

Moreover, a set of simulations gave indications on when the proposed weighted piecewise linear discriminant 

analysis algorithm outperforms traditional LDA. Results indicate that the processes described in this paper boost the 

performance of the verification algorithm significantly (31.2%, 21.7% and 17.6% drop of the EER rate in the three 

experimental sets). It is anticipated that the performance of other LDA variants may be enhanced by utilizing 

processes that stem from this framework.  
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Figure 1: EER when varying the number of client sample vectors selected from class 3C  and for 10 impostor training 

vectors selected from class I . These sample vectors are used to train LDA and WPLDA whereas ILDA indicates the 

ideal performance and MSV the performance before training is used. 
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Figure 2: EER when varying the number of client sample vectors selected from class 3C  and for 100 impostor 

training vectors selected from class I . These sample vectors are used to train LDA and WPLDA whereas ILDA 

indicates the ideal performance and MSV the performance before training is used. 
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Figure 3: EER when varying the number of client sample vectors selected from class 3C  and for 1000 impostor 

training vectors selected from class I . These sample vectors are used to train LDA and WPLDA whereas ILDA 

indicates the ideal performance and MSV the performance before training is used. 
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Figure 4: Boxplot of 1000 discriminant coefficient sets of ILDA trained by 1000 impostor (class I ) and 6 client 

(class 3C ) vectors. The ‘most discriminant’ coefficients are indexed at 11, 22, 33, 44 and 55 on the x-axis. 
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Figure 5: Boxplot of 1000 discriminant coefficient sets of LDA trained by 1000 impostor (class I ) and 6 client 

(class 3C ) vectors. The ‘most discriminant’ coefficients are indexed at 11, 22, 33, 44 and 55 on the x-axis. 
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Figure 6: Boxplot of 1000 discriminant coefficient sets of WPLDA trained by 1000 impostor (class I ) and 6 client 

(class 3C ) vectors. The ‘most discriminant’ coefficients are indexed at 11, 22, 33, 44 and 55 on the x-axis. 
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Figure 7: ROC curve of M2VTS experiments that are carried out under the Brussels protocol. The relevant training 

procedure for LDA, WPLDA, and MS-WPLDA uses 6 client similarity vectors and 210 impostor similarity vectors. 

MEGM indicates the classification performance before training. 
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Figure 8: ROC curve of XM2VTS – evaluation set experiments that are carried out under the and Lausanne 

protocol. The relevant training procedure for LDA, WPLDA, and MS-WPLDA uses 6 client similarity vectors and 

1791 impostor similarity vectors. MEGM indicates the classification performance before training. 
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Figure 9: ROC curve of XM2VTS – test set experiments that are carried out under the and Lausanne protocol. The 

relevant training procedure for LDA, WPLDA, and MS-WPLDA uses 6 client similarity vectors and 1791 impostor 

similarity vectors. MEGM indicates the classification performance before training. 
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Table I: Mean EER and mean H  for 1000 independent runs for 6 clients and 1000 impostors. 

BL    EER         EER         EER          EER H             H             H  

 ILDA MSV LDA WPLDA ILDA LDA WPLDA 

0 0.0961 0.0989 0.2578 0.0989 - - - 

5 0.0300 0.0798 0.1142 0.0652 3.7908 0.4580 4.5505 

15 0.0255 0.0486 0.1032 0.0318 1.0739 0.1321 4.7119 

25 0.0247 0.0306 0.1008 0.0272 0.3986 0.0489 1.6225 

32 0.0245 0.0260 0.1018 0.0260 0.0959 0.0123 0.0077 

 

 

Table II: EER of the various EGM methods on M2VTS and XM2VTS data.  

EER  (%) 
Experiment 

  MEGM             LDA           RLDA         WPLDA        MS-WPLDA 

M2VTS 6.06 8.94 6.86 4.37 4.17 

XM2VTS 

Evaluation Set 
9.01 8.22 7.50 7.37 7.06 

XM2VTS 

Test Set 
5.75 5.96 8.25 4.99 4.74 

 

 


