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Abstract

It is well-known that there is a deep interplay between analysis and probability theory. For
example, for a Markovian infinitesimal generator L, the transition density function p(t, x, y) of
the Markov process associated with L (if it exists) is the fundamental solution (or heat kernel)
of L. A fundamental problem in analysis and in probability theory is to obtain sharp estimates
of p(t, x, y). In this paper, we consider a class of non-local (integro-differential) operators L on
Rd of the form

Lu(x) = lim
ε↓0

∫
{y∈Rd: |y−x|>ε}

(u(y) − u(x))J(x, y)dy,

where J(x, y) =
c(x, y)

|x − y|d+α
1{|x−y|≤κ} for some constant κ > 0 and a measurable symmetric

function c(x, y) that is bounded between two positive constants. Associated with such a non-
local operator L is an Rd-valued symmetric jump process of finite range with jumping kernel
J(x, y). We establish sharp two-sided heat kernel estimate and derive parabolic Harnack prin-
ciple for them. Along the way, some new heat kernel estimates are obtained for more general
finite range jump processes that were studied in [BBCK]. One of our key tools is a new form
of weighted Poincaré inequality of fractional order, which corresponds to the one established by
Jerison [J] for differential operators. Using Meyer’s construction of adding new jumps, we also
obtain various a priori estimates such as Hölder continuity estimates for parabolic functions of
jump processes (not necessarily of finite range) where only a very mild integrability condition is
assumed for large jumps. To establish these results, we employ methods from both probability
theory and analysis extensively.

AMS 2000 Mathematics Subject Classification: Primary 60J75 , 60J35, Secondary 31C25 ,
31C05.

Running title: Heat Kernel Estimate for Finite Range Jump Process.

∗Research partially supported by NSF Grant DMS-06000206.
†Research partially supported by the Korea Research Foundation Grant funded by the Korean Government

(MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-C00037).
‡Research partially supported by the Grant-in-Aid for Scientific Research (B) 18340027.

1



1 Introduction and Main Results

The second order elliptic differential operators and diffusion processes take up, respectively, an
central place in the theory of partial differential equations (PDE) and in probability theory, see
[GT] and [IW] for example. There are close relationships between these two subjects. For a large
class of second order elliptic differential operators L on Rd, there is a diffusion process X on Rd

associated with it so that L is the infinitesimal generator of X, and vice versa. The connection
between L and X can also be seen as follows. The fundamental solution (also called heat kernel)
for L is the transition density function of X.

Recently there are intense interests in studying discontinuous Markov processes, due to their
importance both in theory and in application. See, for example, [B, JW, KSZ] and the refer-
ences therein. The infinitesimal generator of a discontinuous Markov process in Rd is no longer
a differential operator but rather a non-local (or, integro-differential) operator. For example, the
infinitesimal generator of a isotropically symmetric α-stable process in Rd with α ∈ (0, 2) is a
fractional Laplacian operator c (−∆)α/2. Recently there are also many interests from the theory of
PDE (such as singular obstacle problems) to study non-local operators; see, for example, [CSS, S]
and the references therein.

In this paper, we consider the following type of non-local (integro-differential) operators L on
Rd with measurable symmetric kernel J :

Lu(x) = lim
ε↓0

∫
{y∈Rd: |y−x|>ε}

(u(y) − u(x))J(x, y)dy,

where
J(x, y) =

c(x, y)
|x − y|d+α

1{|x−y|≤κ} (1.1)

for some constant κ > 0 and a measurable symmetric function c(x, y) that is bounded between
two positive constants. Associated with such a non-local operator L is an Rd-valued finite range
symmetric jump process X with jumping kernel J(x, y). We will be concerned with obtaining sharp
two-sided heat kernel estimates for L (or, equivalently, for X), as well as establishing parabolic
Harnack inequality and a priori joint Hölder continuity estimate for parabolic functions of L. Our
approach employs a combination of probabilistic and analytic techniques.

Two-sided heat kernel estimates for diffusions (or second order elliptic differential operators)
have a long history and many beautiful results have been established. But two-sided heat kernel
estimates for jump processes in Rd have only been studied recently. In [K], Kolokoltsov obtained
two-sided heat kernel estimates for certain stable-like processes in Rd, whose infinitesimal generators
are a class of pseudo-differential operators having smooth symbols. Bass and Levin [BL] used a
completely different approach to obtain similar estimates for discrete time Markov chain on Zd

where the conductance between x and y is comparable to |x − y|−d−α for α ∈ (0, 2). In [CK1],
two-sided heat kernel estimates and a scale-invariant parabolic Harnack inequality for symmetric
α-stable-like processes on d-sets are obtained. (See [HK] for some extensions.) Very recently in
[CK2], parabolic Harnack inequality and two-sided heat kernel estimates are even established for
non-local operators of variable order. But so far the two-sided heat kernel estimates for non-local
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operators have been established only for the case that the jumping kernel has full support on the
state space. See [BBCK] for some result on parabolic Harnack inequality and heat kernel estimate
for non-local operators of variable order on Rd, whose jumping kernel is supported on jump size
less than or equal to 1.

Throughout this paper, d ≥ 1 and α ∈ (0, 2). Let the jump kernel J be defined by (1.1) and let

Q(u, v) :=
1
2

∫
Rd

∫
Rd

(u(x) − u(y))(v(x) − v(y))J(x, y)dxdy, (1.2)

D :=
{

f ∈ L2(Rd, dx) : Q(f, f) < ∞
}

. (1.3)

It is easy to check that (Q,D) is a regular Dirichlet form on Rd and so there is a Hunt process
X associated with it. When the jumping kernel J(x, y) is the unrestricted c(x,y)

|x−y|d+α , the associated

process is the symmetric stable-like process Y on Rd studied in [CK1]. Among other things, it is
shown in [CK1] that Y has Hölder continuous transition density function and so Y can be modified
to start from every x ∈ Rd. Since X can be constructed from Y by removing jumps of size larger
than κ via Meyer’s construction (see [BBCK, BGK]), X is conservative and can be modified to start
from every point in Rd. For this reason, in the sequel, we will call such X a finite range (or truncated)
stable-like process. It is proved in [BBCK, Theorem 3.1] that there is a properly exceptional set
N ⊂ Rd and a positive symmetric kernel p(t, x, y) defined on (0,∞) × (Rd \ N ) × (Rd \ N ) such
that p(t, x, y) is the transition density function of X (starting from x ∈ Rd \N ) with respect to the
Lebesgue measure on Rd, and for each y ∈ Rd \ N and t > 0, x 7→ p(t, x, y) is quasi-continuous.
It is this version of the transition density function of X we will take throughout this paper. Here
a set N ⊂ Rd is called properly exceptional with respect to the process X if it has zero Lebesgue
measure and

Px
(
{Xt, Xt−} ⊂ Rd \ N for every t > 0

)
= 1 for x ∈ Rd \ N .

It is well-known (see [FOT]) that every exceptional set is Q-polar and every Q-polar set is contained
in a properly exceptional set. Later we will show in Theorem 4.3, p(t, x, y) in fact has a Hölder
continuous version and so we can take N = ∅. The purpose of this paper is to obtain sharp upper
and lower estimates on p(t, x, y). The jump size cutoff constant κ in (1.1) plays no special role, so
for convenience we will simply take κ = 1 for the rest of this paper.

When c(x, y) is a constant, X is a finite range (also called truncated) isotropically symmetric
α-stable process in Rd with jumps of size larger than 1 removed. The potential theory of this
Lévy process is studied in [KS1, KS2]. One interesting fact is that, even though scale-invariant
elliptic Harnack principle is true for such a process, the boundary Harnack principle is only valid
for the positive harmonic functions of this process in bounded convex domains (see the last section
of [KS1] for a counterexample). Since the parabolic Harnack principle implies elliptic Harnack
principle, our Theorem 4.1 extends the result on Harnack principle in [KS1] to the case that c(x, y)
is not necessarily constant.

Finite range stable processes, more generally finite range jump processes, are very important
both in theory and in application. Finite range jump processes are very natural in applications
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where jumps only up to a certain size are allowed. Moreover, in some aspects, finite range jump
processes have nicer behaviors and are more preferable than unrestricted jump processes. For
instance, in [CR], to show certain property of Schramm-Loewner evolution driven by symmetric
stable processes, finite range (or truncated) stable process has been used as a tool. However, as
we shall see below, in some other respects, finite range jump processes are much more delicate to
study than unrestricted jump processes.

In the sequel, for two non-negative functions f and g, the notation f ³ g means that there are
positive constants c1, c2, c3 and c4 so that c1g(c2x) ≤ f(x) ≤ c3g(c4x) in the common domain of
definition for f and g. The Euclidean distance between x and y will be denoted as |x − y|. For
a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. We will use µd or dx to denote the Lebesgue
measure in Rd. A statement that is said to be hold quasi-everywhere (q.e. in abbreviation) on a
set A ⊂ Rd if there is an Q-polar set N such that the statement holds for every point in A \ N .

Our theorems on the heat kernel estimate on p(t, x, y) can be stated as follows (in the figure,
R∗ is a constant in (0, 1)):

(i) [Proposition 2.1 and Theorem 3.6] In the regions D1 and D2, we have

p(t, x, y) ³
(

t−d/α ∧ t

|x − y|d+α

)
.

(More precisely, p(t, x, y) ³ t−d/α in D1 and p(t, x, y) ³ t
|x−y|d+α in D2.)

(ii) [Theorem 2.3 and Theorem 3.6] In the region D3, we have

p(t, x, y) ³
(

t

|x − y|

)c|x−y|
= exp

(
−c|x − y| log

|x − y|
t

)
.

(iii) [Theorem 2.3 and Theorem 3.6] In the regions D4 and D5, we have

p(t, x, y) ³ t−d/2 exp
(
−c|x − y|2

t

)
.

(More precisely, p(t, x, y) ³ t−d/2 in D4 and p(t, x, y) ³ t−d/2 exp
(
− c|x−y|2

t

)
in D5.)

t=R
　 2

R=｜x-y｜

t

t=C R

t=R
α

D1

D2

D3

D4

D5

*

   R
α

*

   R
*

1

1

4



As we see, the heat kernel estimate is of α-stable type in (i), of Poisson type in (ii) and of Gaus-
sian type in (iii). Such behavior of the heat kernel, in particular (i) and (iii), may be useful in
applications. For example, in mathematical finance, it has been observed that even though discon-
tinuous stable processes provide better representations of financial data than Gaussian processes
(cf. [HPR]), financial data tend to become more Gaussian over a longer time-scale (see [M] and
the references therein). Our heat kernel estimates show that finite range stable-like processes have
this type of property: they behave like discontinuous stable processes in small scale and behave
like Brownian motion in large scale. Furthermore, they avoid large sizes of jumps which can be
considered as impossibly huge changes of financial data in short time.

In fact, some of our heat kernel estimates for t ≥ 1 will be stated and proved for a more general
class of finite range jump processes that is studied in [BBCK] (see (2.16), Theorems 2.4 and 3.5
below). These heat kernel estimates improve the estimates given in [BBCK, Theorems 1.2 and 1.3]
significantly. They are also used in Section 4 to show the two-sided estimates for Green functions
of these processes for |x − y| ≥ 1.

To get the near diagonal lower bound of the heat kernel p(t, x, y), we introduce and prove a
general scaling version of weighted Poincaré inequality of fractional order (see Theorem 5.1 below).
This inequality may be of independent interest. (For the details on (weighted) Poincaré inequality
and lower bound estimate of heat kernels for diffusions, we refer our readers to [FS, J, SC, SS] and
the references therein.) The proof of our weighted Poincaré inequality is quite long and involved.
To keep the flow of the main ideas of our proof for the heat kernel estimates, we put the proof
of the weighted Poincaré inequality in the last section. We hope that the establishing of such a
scaling version of weighted Poincaré inequality and its usage in getting the heat kernel lower bound
estimate will shed new light on our understanding of the heat kernel behavior of more general
Markov processes.

Using the heat kernel estimates, we derive the parabolic Harnack inequality for the finite range
jump processes. Our proof uses a combination of the techniques developed in [CK1, CK2] and
in [BBK, BBCK]. As a direct consequence of the heat kernel estimates, we derive a two-sided
sharp estimate for Green functions in Rd for d ≥ 3. From the heat kernel estimates and the
parabolic Harnack inequality, we also obtain the Hölder continuity of the parabolic functions of
finite range stable-like processes. In particular, we note that the Hölder continuity for bounded
parabolic functions is a consequence of the local heat kernel estimate, while the parabolic Harnack
inequality at small size scale can be obtained from the local heat kernel estimate and some mild
condition on the jumping kernel for large jumps. This allows us to establish the parabolic Harnack
inequality and the joint Hölder continuity for parabolic functions for a larger class of symmetric
processes that can be obtained from finite range stable-like process by adding larger jumps with
uniformly bounded (total) jumping intensity for those jumps of size larger than 1 through Meyer’s
construction. See Theorem 4.5 for details.

The remainder of this paper is organized as follows. In Section 2, we prove the upper bound
estimates of the heat kernel. Section 3 contains the results on the lower bound estimates of the
heat kernel. In Section 4, we establish parabolic Harnack principle and the two-sided estimates for
Green functions of the finite range jump processes as well as Hölder continuity of heat kernels. In
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the last section, we give the proof of weighted Poincaré inequality of fractional order.

2 Heat Kernel Upper Bound Estimate

In this section, we will state the results on the upper bound estimates of the heat kernel for the
finite range symmetric α-stable-like process X more precisely and present proofs. Most of the heat
kernel estimates in this section and next one are established for quasi-everywhere (q.e.) point in
Rd. However in Theorem 4.3 of Section 4, we will show that the heat kernels of finite range stable
processes are Hölder continuous and therefore these estimates hold for every point in Rd.

Proposition 2.1 (i) For each T ∗ > 0, there exists c1 = c1(T ∗) > 0 such that

p(t, x, y) ≤ c1

(
t−d/α ∧ t

|x − y|d+α

)
for all t ∈ (0, T ∗] and q.e. x, y ∈ Rd.

(ii) There exist 0 < R∗ < 1 and c2 > 0 such that

c2

(
t−d/α ∧ t

|x − y|d+α

)
≤ p(t, x, y)

for all t ∈ (0, T∗] and q.e. x, y ∈ Rd with |x − y| ∈ (0, R∗] where T∗ := Rα
∗ .

Proof. The estimates on these regions can be deduced from the existing results. Let p0(t, x, y) be
the transition density function of stable-like process Y on Rd whose jumping kernel is c(x,y)

|x−y|d+α . Since
X can be constructed from Y by removing jumps of size larger than 1 via Meyer’s construction, by
[BBCK, Lemma 3.6] and [BGK, Lemma 3.1(c)] we have

p(t, x, y) ≤ et‖J ‖∞p0(t, x, y) and p0(t, x, y) ≤ p(t, x, y) + t‖J1‖∞

where
J1(x, y) :=

c(x, y)
|x − y|d+α

1{|x−y|>1} and J (x) :=
∫

Rd

J1(x, y)dy.

Applying the estimates on p0(t, x, y) in [CK1] to the above two inequalities, we have

p(t, x, y) ≤ c1e
t‖J ‖∞

(
t−d/α ∧ t

|x − y|d+α

)
(2.1)

and
1
c1

(
t−d/α ∧ t

|x − y|d+α

)
− t‖J1‖∞ ≤ p(t, x, y). (2.2)

Now (i) follows immediately from (2.1). Since

1
2c1

t−d/α ≤ 1
c1

t−d/α − t‖J1‖∞ if t ≤ (2c1‖J1‖∞)−
α

d+α
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and
1

2c1

t

|x − y|d+α
≤ 1

c1

t

|x − y|d+α
− t‖J1‖∞ if |x − y| ≤ (2c1‖J1‖∞)−

1
d+α ,

we get (ii) from (2.2).

The discrete Markov chain analogue of the following result is established in [BL, Proposition
2.1]. See also [CKS, Section 2] where the following result is discussed when c(x, y) is a constant
and α = 1.

Proposition 2.2 There exist c1, c2 > 0 such that

p(t, x, y) ≤

{
c1t

−d/α for t ∈ (0, 1],
c2t

−d/2 for t ∈ [1,∞).
(2.3)

Proof. By Proposition 2.1(i), we only need to show (2.3) for t ∈ [1,∞).
Let (E0,F0) be the Dirichlet form for the finite range isotropically symmetric α-stable process

with jumps of size larger than 1 removed. That is,

E0(u, u) =
∫

Rd×Rd

(u(x) − u(y))2
c0(d, α)

|x − y|d+α
1{|x−y|≤1}dxdy,

F0 =
{

u ∈ L2(Rd, dx) : E0(u, u) < ∞
}

,

where c0(d, α) > 0 is a constant. Note that D ⊂ F0 and there is a constant κ := κ(d, α) > 0 such
that

E0(u, u) ≤ κQ(u, u) for u ∈ F . (2.4)

By the Fourier transform, we have

E0(f, g) = c0

∫
Rd

ĝ(ξ) ¯̂
f(ξ)φ(ξ)dξ,

where f̂(ξ) := (2π)−d/2
∫

Rd eiξ·yf(y)dy is the Fourier transform of u and

φ(ξ) :=
∫
{|y|<1}

1 − cos(ξ · y)
|y|d+α

dy. (2.5)

By the change of variable y = x/|ξ|, we have from (2.5)

φ(ξ) = |ξ|α
∫
{|x|<|ξ|}

1 − cos( ξ
|ξ| · x)

|x|d+α
dx. (2.6)

Note that 1 − cos
(

ξ
|ξ| · x

)
behaves like |x|2 for small |x|. Moreover, as |ξ| goes to infinity, the

integral in the above equation goes to a positive constant. Thus it is easy to see that there exist
M > 1 and c1 > 0 such that

φ(ξ) ≥

{
c1|ξ|α, for all |ξ| > M,

c1|ξ|2, for all |ξ| ≤ M.
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Thus for every r ≤ 1, we have∫
{|ξ|>r}

|f̂(ξ)|2dξ ≤
∫
{M>|ξ|>r}

(
|ξ|
r

)2

|f̂(ξ)|2dξ +
∫
{|ξ|≥M}

(
|ξ|
r

)α

|f̂(ξ)|2dξ

≤ c2

(
r−2

∫
{M>|ξ|>r}

φ(ξ)|f̂(ξ)|2dξ + r−α

∫
{|ξ|≥M}

φ(ξ)|f̂(ξ)|2dξ

)

≤ c2r
−2

∫
Rd

φ(ξ)|f̂(ξ)|2dξ = c3r
−2E0(f, f) ≤ c3κr−2Q(f, f),

where the last inequality is due to (2.4). Using the above inequality, we get

‖f‖2
2 =

∫
{|ξ|>r}

|f̂(ξ)|2dξ +
∫
{|ξ|≤r}

|f̂(ξ)|2dξ ≤ c4(κ)
(
r−2Q(f, f) + 2 rd‖f‖2

1

)
, r ≤ 1. (2.7)

Note that, if a ≤ b, the function r → h(r) := ar−2 + 2brd has a local minimum at

r =
( a

db

) 1
d+2 ≤ 1.

Thus by minimizing the right-hand side of (2.7) for Q(f, f) ≤ ‖f‖2
1, we get

‖f‖2
2 ≤ c5 E0(f, f)

d
d+2 ‖f‖

4
d+2

1 ≤ c6 Q(f, f)
d

d+2 ‖f‖
4

d+2

1 .

Therefore by Theorem 2.9 in [CKS], we conclude that

p(t, x, y) ≤ c7 t−d/2 for all t ∈ [1,∞).

Theorem 2.3 There exist C∗ < 1 and c1, c2, c3, c4 > 0 such that

p(t, x, y) ≤ c1

(
t

|x − y|

)c2|x−y|
= c1 exp

(
−c2|x − y| log

|x − y|
t

)
(2.8)

for q.e. x, y ∈ Rd with (t, |x − y|) ∈ {(t, R) : R ≥ max{t/C∗, R∗}} and

p(t, x, y) ≤ c3t
−d/2 exp

(
−c4|x − y|2

t

)
(2.9)

for q.e. x, y ∈ Rd with (t, |x−y|) ∈ {(t, R) : R∗ ≤ R ≤ t/C∗}, where R∗ is given in Proposition 2.1.

Proof. Using Proposition 2.3 above, [CKS, Corollary 3.28] and [BBCK, Theorem 3.1], we have

p(t, x, y) ≤ c(t−d/α ∨ t−d/2) exp(−E(2t, x, y)) for q.e. x, y ∈ Rd. (2.10)
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Here E(2t, x, y) is given by the following:

Γ(ψ)(x) =
∫

(eψ(x)−ψ(y) − 1)2J(x, y)dy,

Λ(ψ)2 = ‖Γ(ψ)‖∞ ∨ ‖Γ(−ψ)‖∞,

E(t, x, y) = sup{|ψ(x) − ψ(y)| − tΛ(ψ)2 : ψ ∈ Lip0 with Λ(ψ) < ∞},

where Lip0 is a space of compactly supported Lipschitz continuous functions on Rd.
Fix x0, y0 ∈ Rd and let R = |x0 − y0| ≥ R∗. Define

ψ(x) = λ(R − |x0 − x|)+.

So |ψ(x) − ψ(y)| ≤ λ|x − y|. Note that |et − 1|2 ≤ t2e2|t|. Hence

Γ(ψ)(x) =
∫

(eψ(x)−ψ(y) − 1)2J(x, y)dy ≤ e2λλ2

∫
|x − y|2J(x, y)dy ≤ c1 λ2e2λ.

So we have
−E(2t, x0, y0) ≤ −λR + c1tλ

2e2λ. (2.11)

For each t and R, take λ0 > 0 such that

λ0e
2λ0 =

R

2c1t
. (2.12)

Since xe2x is strictly increasing, it is easy to check that such λ0 exists uniquely. Then the right
hand side of (2.11) is equal to −λ0R/2. Let C∗ = (2c1e)−1 which is less than 1 by taking c1 large.
When R/(2c1t) ≥ e (i.e. t ≤ C∗R), (2.12) holds with λ0 ³ log(R/t), and when R/(2c1t) < e (i.e.
t ≥ C∗R), (2.12) holds with λ0 ³ R/t. Putting these into (2.10), we obtain the following; In the
region {(t, R) : t ≤ C∗R,R ≥ R∗},

p(t, x, y) ≤ c′(t−d/α ∨ t−d/2) exp
(
−c2R log

R

t

)
= c′

(
t−d/α ∨ t−d/2

) (
t

R

)c2R

, (2.13)

and in the region {(t, R) : t ≥ C∗R,R ≥ R∗},

p(t, x, y) ≤ c′t−d/2 exp(−c′′R2/t),

which gives (2.9).
To complete the proof, we need to discuss the former case more. When t ≥ 1, the right hand

side of (2.13) is bounded from above by c′(t/R)c2R, and when t ≤ 1 and R ≥ R∗ for some large
R∗ > 1, it is bounded from above by c′(t/R)c2R−d/α ≤ c′(t/R)c3R, both of which give (2.8). So all
we need is to consider the case t ≤ 1 and R∗ ≤ R ≤ R∗. But in this case, the desired estimate is
already established in Proposition 2.1(i).

Now let’s consider a more general non-local Dirichlet form (E ,F). Set

E(f, f) =
∫

Rd

∫
Rd

(f(y) − f(x))2J(x, y) dx dy , (2.14)

F = C1
c (Rd)

E1
, (2.15)
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where the jump kernel J(x, y) is a symmetric non-negative function of x and y such that J(x, y) = 0
for |x − y| ≥ 1 and there exist α, β ∈ (0, 2), β > α and positive κ1, κ2 such that

κ1|y − x|−d−α ≤ J(x, y) ≤ κ2|y − x|−d−β for |y − x| < 1 . (2.16)

Here E1(f, f) := E(f, f) + ‖f‖2
2, C1

c (Rd) denotes the space of C1 functions on Rd with compact
support, and F is the closure of C1

c (Rd) with respect to the metric E1(f, f)1/2. The Dirichlet form
(E ,F) is regular on Rd and so it associates a Hunt process Z, starting from quasi-everywhere in Rd.
It is proved in [BBCK] that Z is conservative and has quasi-continuous transition density function
q(t, x, y) with respect to the Lebesgue measure on Rd.

When t ∈ [1,∞), only the upper bound of the jumping kernel played a role in the proofs of
Proposition 2.2 and Theorem 2.3. Thus, combining with Theorem 1.2 in [BBCK], the following is
true for Z.

Theorem 2.4 There is a constant c > 0 such that

q(t, x, y) ≤ c (t−d/α ∨ t−d/2) for q.e. x, y ∈ Rd.

Moreover, there exist C1 < 1, R1 ≤ 1
4 and c1, c2, c3, c4 > 0 such that

q(t, x, y) ≤ c1

(
t

|x − y|

)c2|x−y|
= c1 exp

(
−c2|x − y| log

|x − y|
t

)
for q.e. x, y ∈ Rd (2.17)

with (t, |x − y|) ∈ {(t, R) : t ≥ 1, R ≥ max{t/C1, R1}} and

q(t, x, y) ≤ c3t
−d/2 exp

(
−c4|x − y|2

t

)
for q.e. x, y ∈ Rd (2.18)

with (t, |x − y|) ∈ {(t, R) : t ≥ 1, R1 ≤ R ≤ t/C1}.

The above theorem will be used in the next section to prove the near-diagonal lower bound for
q(t, x, y).

3 Heat Kernel Lower Bound Estimate

In this section, we give the proof of the lower bound estimate of the heat kernel. We first
record a simple observation, which sheds lights on the different heat kernel behaviors at small
(stable) and large (Gaussian) scale. Recall that a finite range isotropically symmetric α-stable
process in Rd with jumps of size larger than 1 removed is the Lévy process with Lévy measure
c0(d, α)|h|−d−α1{|h|≤1}dh.

Lemma 3.1 Let X be finite range isotropically symmetric α-stable process in Rd with jumps of
size larger than 1 removed. For λ > 0, define

Y
(λ)
t := Y

(λ)
0 + λ−1/2(Xλt − X0) and Z

(λ)
t := Z

(λ)
0 + λ−1/α(Xλt − X0).

Then the process Y (λ) converges in finite-dimensional distributions to a Brownian motion on Rd

as λ → ∞ and Z(λ) converges in finite-dimensional distributions to the isotropically symmetric
α-stable process as λ → 0.
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Proof. Recall that the Lévy exponent φ of X is given by (2.5). Clearly Y (λ) and Z(λ) are Lévy
processes as well, with

E
[
eiξ·(Y (λ)

t −Y
(λ)
0 )

]
= E

[
eiξ·λ−1/2(Xλt−X0)

]
= eλtφ(λ−1/2ξ), ξ ∈ Rd

and

E
[
eiξ·(Z(λ)

t −Z
(λ)
0 )

]
= E

[
eiξ·λ−1/α(Xλt−X0)

]
= eλtφ(λ−1/αξ), ξ ∈ Rd.

Let φλ(ξ) and ψλ(ξ) denote the Lévy exponents of Y (λ) and Z(λ), respectively. Then we have by
above and (2.6) that

φλ(ξ) = λφ(λ−1/2ξ) = λ1−α/2|ξ|α
∫
{x∈Rd:|x|≤λ−1/2|ξ|}

1 − cos x1

|x|d+α
dx (3.1)

which converges to c|ξ|2 as λ → ∞. Moreover, there is c1 > 0 so that

|φλ(ξ)| ≤ c1|ξ|2 for every ξ ∈ Rd and λ > 0. (3.2)

Similarly,

ψλ(ξ) = λφ(λ−1/αξ) = |ξ|α
∫
{x∈Rd:|x|≤λ−1/α|ξ|}

1 − cos x1

|x|d+α
dx (3.3)

which increases to c2|ξ|α as λ ↓ 0, where c2 =
∫

Rd
1−cos(x1)
|x|d+α dx. This proves the lemma.

Inequality (3.2) will be used later in the proof of Theorem 3.4.
Now let’s consider the more general non-local Dirichlet form (E ,F) in (2.14)-(2.15). Recall that

the jump kernel J(x, y) for (E ,F) is zero for |x − y| ≥ 1 and satisfies the condition (2.16), and
q(t, x, y) is the transition density function for the associated Hunt process Z with respect to the
Lebesgue measure on Rd.

Define
φ(x) = c

(
1 − |x|2

)12/(2−β) 1B(0,1)(x),

where c > 0 is the normalizing constant so that
∫

Rd φ(x)dx = 1.

The following proposition is an immediate consequence of the assumption (2.16) and Theorem
5.1 in Section 5 below. As mentioned earlier, to keep the flow of our proof for heat kernel estimates,
we will postpone its proof to Section 5.

Proposition 3.2 There is a positive constant c1 = c1(d, α, β) independent of r > 1, such that for
every u ∈ L1(B(0, 1), φdx),∫

B(0,1)
(u(x) − uφ)2φ(x)dx

≤ c1

∫
B(0,1)×B(0,1)

(u(x) − u(y))2 rd+2J(rx, ry)
√

φ(x)φ(y) dxdy.

Here uφ :=
∫
B(0,1) u(x)φ(x)dx.

11



Remark 3.3 The above weighted Poincaré inequality in fact holds for more general weight function
φ. See Section 5 for the details.

For δ ∈ (0, 1), set

Jδ(x, y) =

{
J(x, y) for |x − y| ≥ δ;

κ2|y − x|−d−β for |x − y| < δ,
(3.4)

and define (Eδ,Fδ) in the same way as we defined (E ,F) in (2.14)–(2.15).
For δ ∈ (0, 1), let Zδ be the symmetric Markov process associated with (Eδ,Fδ). By [BBCK],

the process Zδ can be modified to start from every point in Rd and is conservative; moreover Zδ has
a quasi-continuous transition density function qδ(t, x, y) defined on [0,∞) × Rd × Rd, with respect
to the Lebesgue measure on Rd.

The idea of the proof of the following theorem is motivated by that of Proposition 4.9 in [BBCK].
For ball B(x0, r) ⊂ Rd, let qδ,B(x0,r)(t, x, y) denote the transition density function of the subprocess
ZB(x0,r) of Z killed upon leaving the ball B(x0, r).

Theorem 3.4 Suppose the Dirichlet form (E ,F) is given by (2.14)-(2.15) with the jumping kernel J

satisfying the condition (2.16) and Jδ is given by (3.4). For each δ0 > 0, there exists c = c(δ0) > 0,
independent of δ ∈ (0, 1) such that for every x0 ∈ Rd, t ≥ δ0 ,

qδ,B(x0,t1/2)(t, x, y) ≥ c t−d/2 for every t ≥ δ0 and q.e. x, y ∈ B(x0,
√

t/2) (3.5)

and
qδ(t, x, y) ≥ c t−d/2 for every t ≥ δ0 and q.e. x, y with |x − y|2 ≤ t. (3.6)

Proof. In view of [BBCK, Theorem 4.10], it suffices to prove that there are t0 < 1/2 and c > 0,
independent of δ ∈ (0, 1), such that (3.5)-(3.6) hold for t ≥ t−1

0 . In fact, if δ0 < t−1
0 and δ0 ≤ t ≤ t−1

0 ,
we let n0 = 1 + [2/

√
t0δ0], where [a] is the largest integer which is no larger than a. By [BBCK,

Theorem 4.10], we have

qδ,B(x0,δ
1/2
0 )(s, x, y) ≥ c0, for every

δ0

n0
≤ s ≤ t−1

0 and x, y ∈ B(x0, 3δ
1/2
0 /4) (3.7)

where the constant c0 is independent of δ and x0 ∈ Rd. Given x, y ∈ B(x0,
√

t/2), let z1 · · · zn0−1

be equally spaced points on the line segment joining x and y such that x ∈ B(z1, 3δ
1/2
0 /4) ⊂

B(z1, δ
1/2
0 ) ⊂ B(x0, t

1/2) and y ∈ B(zn0−1, 3δ
1/2
0 /4) ⊂ B(zn0−1, δ

1/2
0 ) ⊂ B(x0, t

1/2). Using (3.7) and
the semigroup property, we have

qδ,B(x0,t1/2)(t, x, y)

=
∫

B(x0,t1/2)
. . .

∫
B(x0,t1/2)

qδ,B(x0,t1/2)(t/n0, x, w1) . . . qδ,B(x0,t1/2)(t/n0, wn0−1, y)dw1 . . . dwn0−1

≥
∫

B(z1,3δ
1/2
0 /4)

. . .

∫
B(zn0−1,3δ

1/2
0 /4)

qδ,B(z1,δ
1/2
0 )(t/n0, x, w1) . . .

. . . qδ,B(zn0 ,δ
1/2
0 )(t/n0, wn0−1, y)dw1 . . . dwn0−1 ≥ c̃0 ≥ c̃0δ

d/2
0 t−d/2.
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Similar argument gives (3.6) when δ0 < t−1
0 and t ∈ [δ0, t

−1
0 ].

Fix δ ∈ (0, 1) and, for simplicity, in this proof we sometimes drop the superscript “δ” from Zδ

and qδ(t, x, y). For ball Br := B(0, r) ⊂ Rd, let qBr(t, x, y) denote the transition density function
of the subprocess ZBr of Z killed upon leaving the ball Br. Then by the proof of Proposition 4.3
in [BBCK], there is a constant c1 = c1(δ, r) > 0 such that

qBr(t, x, y) ≥ c1(r − |x|)β(r − |y|)β for every t ∈ [r2/8, r2/4] and x, y ∈ Br.

Define
ϕr(x) =

(
r2 − |x|2

)12/(2−β) 1Br(x).

It follows from Lemmas 4.5 and 4.6 of [BBCK] that for every t > 0 and y0 ∈ Br, qBr(t, x, y0) ∈ FBr

and ϕr(·)/qBr(t, x, y0) ∈ FBr , where (E ,FBr) is the Dirichlet form for the killed process ZBr .
Note that the Dirichlet form of

{
r−1Zr2t, t ≥ 0

}
is (E(r),F (r)), where

E(r)(u, u) =
∫

Rd×Rd

(u(x) − u(y))2rd+2Jδ(rx, ry)dxdy (3.8)

F (r) =
{

u ∈ L2(u, u) : E(r)(u, u) < ∞
}

= W β/2,2(Rd).

By (2.16) and (3.2), there are constants c2, c3 > 0 independent of r ≥ 1 and δ ∈ (0, 1) such that for
every u ∈ W 1,2(Rn) ⊂ W β/2,2(Rd),

E(r)(u, u) ≤ c2

∫
Rd

φr(ξ)|û(ξ)|2dξ ≤ c3

∫
Rd

|∇u(x)|2dx. (3.9)

Here û denotes the Fourier transform of u.
Define

qB
r (t, x, y) := rdqBr(r2t, rx, ry). (3.10)

It is easy to see qB
r (t, x, y) is the transition density function for process r−1ZBr

r2t
. The latter is the

subprocess of {r−1Zr2t, t ≥ 0} killed upon leaving the unit ball B(0, 1), whose Dirichlet form will
be denoted as (E(r),F (r),B). It follows from above there is a constant c4 = c4(δ, r) > 0 such that

qB
r (t, x, y) ≥ c4(1 − |x|)β(1 − |y|)β for every t ∈ [1/8, 1/4] and x, y ∈ B(0, 1).

Recall that
φ(x) = c5

(
1 − |x|2

)12/(2−β) 1B(0,1)(x),

where c5 is a normalizing constant so that
∫

Rd φ(x)dx = 1. Let x0 ∈ B(0, 1) and Define

u(t, x) := qB
r (t, x, x0), v(t, x) := qB

r (t, x, x0)/φ(x)1/2,

H(t) :=
∫

B(0,1)
φ(y) log u(t, y)dy,

G(t) :=
∫

B(0,1)
φ(y) log v(t, y)dy =

∫
B(0,1)

φ(y) log u(t, y)dy − 1
2

∫
B(0,1)

φ(x) log φ(x)dx

= H(t) − c6.
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By Lemma 4.7 of [BBCK],

G′(t) = −E(r)
(
u(t, ·), φ

u(t, ·)

)
. (3.11)

(The reason we work with Jδ rather than J is so that we can use [BBCK, Lemma 4.7] to obtain
above (3.11). The remainder of the argument does not use the condition on Jδ, and in particular
the constants can be taken to be independent of δ ∈ (0, 1).)

Write J (r)(x, y) := rd+2Jδ(rx, ry) and κ
(r)
B (x) := 2

∫
Rd\B(0,1) J (r)(x, y)dy for x ∈ B := B(0, 1).

Then we have from (3.8) and (3.11),

G′(t) = −
∫

B

∫
B

[u(t, y) − u(t, x)]
u(t, x)u(t, y)

[u(t, x)φ(y) − φ(x)u(t, y)]J (r)(x, y) dy dx

−
∫

B
φ(x)κ(r)

B (x)dx.

The main step is to show that for all t in (0,1] one has

G′(t) ≥ −c7 + c8

∫
B

(log u(t, y) − H(t))2φ(y) dy . (3.12)

for positive constants c7, c8.

Setting a = u(t, y)/u(t, x) and b = φ(y)/φ(x), we see that

[u(t, y) − u(t, x)]
u(t, x)u(t, y)

[u(t, x)φ(y) − φ(x)u(t, y)]

= φ(x)
(
b − b

a
− a + 1

)
= φ(x)

[(
(1 − b1/2

)2
− b1/2

( a

b1/2
+

b1/2

a
− 2

)]
. (3.13)

Using the inequality

A +
1
A

− 2 ≥ (log A)2, A > 0,

with A = a/
√

b, the right hand side of (3.13) is bounded above by

(φ(x)1/2 − φ(y)1/2)2 −
√

φ(x)φ(y) (log v(t, y) − log v(t, x))2.

Substituting in the formula for G′(t) and using Proposition 3.2,

H ′(t) = G′(t) ≥ −c9 +
∫

B

∫
B

(log v(t, y) − log v(t, x))2
√

φ(x)φ(y)J (r)(x, y) dx dy

≥ −c9 + c10

∫
B

(log v(t, y) − G(t))2φ(y) dy

≥ −c11 + c12

∫
B

(log u(t, y) − H(t))2φ(y) dy ,

which gives (3.12). Note that in the first inequality we used the fact that∫
B

∫
B

(φ(x)1/2 − φ(y)1/2)2J (r)(x, y) dx dy +
∫

B
φ(x)κ(r)

B (x)dx = E(r)(φ1/2, φ1/2) < ∞,
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which follows from (3.9) and in the last inequality we used the fact that∫
B

(log u(t, y) − H(t))2φ(y) dy

=
∫

B

(
log v(t, y) − G(t) + 1

2 log φ(y) − c6

)2
φ(y) dy

≤ 2
∫

B
(log v(t, y) − G(t))2 φ(y) dy + 2

∫
B

(
1
2 log φ(y) − c6

)2
φ(y) dy

= 2
∫

B
(log v(t, y) − G(t))2 φ(y) dy + c13.

Let qr(t, x, y) := rdq(r2t, rx, ry), which is the transition density function with respect to the
Lebesgue measure on Rd for the process Z

(r)
t := r−1Zr2t, whose non-local Dirichlet form is given

by the jumping intensity measure rd+2J(rx, ry). Using Theorem 2.4 and the fact that R1 ≤ 1
4 ≤ r

4

where R1 is given in Theorem 2.4, for r2t ≥ 1,

Px

(
Z

(r)
t /∈ B(x, 1/4)

)
=

∫
B(x,1/4)c

rdq(r2t, rx, ry)dy

=
∫

B(rx,r/4)c

q(r2t, rx, z)dz

≤ c14

∫
{z∈Rd:C1|z−rx|≥max{C1r/4, r2t}}

e−c15|z−rx| dz

+c16

∫
{z∈Rd:r2t≥C1|z−rz|≥C1r/4}

r−dt−d/2 exp
(
−c17|z − rz|2

r2t

)
dz

≤ c18

∫
{w∈Rd:|w|≥r/4}

e−c15|w| dw + c19

∫ r2t/C1

r/4
r−dt−d/2 exp

(
−c17s

2

r2t

)
sd−1ds

≤ c18

∫
{w∈Rd:|w|≥r/4}

e−c15|w| dw + c19

∫ ∞

1/(4
√

t)
exp

(
−c17u

2
)
ud−1du.

Let t0 ∈ (0, 1/2) be small so that

c19

∫ ∞

1/(4
√

t0)
exp

(
−c17u

2
)
ud−1du < 1/16

and
c18

∫
{w∈Rd:|w|≥1/(4

√
t0)}

e−c15|w| dw < 1/16.

We then have

Px

(
Z

(r)
t /∈ B(x, 1/4)

)
< 1/16 + 1/16 = 1/8 for every r ≥ t

−1/2
0 and 0 < t ≤ t0.

By Lemma 3.8 of [BBCK], we have for every r ≥ t
−1/2
0 ,

Px

(
sup

s∈[0,t0]
|Z(r)

s − Z
(r)
0 | > 1/4

)
≤ 1/4.
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Therefore, with r ≥ t
−1/2
0 , for every t ≤ t0,∫

B(0,1/4)
u(t, x) dx ≥ P0

(
sup

s∈[0,t0]
|Z(r)

s − Z
(r)
0 | < 1/4

)

= 1 − P0

(
sup

s∈[0,t0]
|Z(r)

s − Z
(r)
0 | ≥ 1/4

)
≥ 3

4 .

Here the conservativeness of Z
(r)
t is used in the first equality.

Choose K such that µd(B(0, 1/4))e−K = 1
4 and define

Dt := {x ∈ B(0, 1/4) : u(t, x) ≥ e−K}.

By Proposition 2.2, if t ≤ t0

3
4
≤

∫
B(0,1/4)

u(t, x)dx =
∫

Dt

u(t, x) dx +
∫

B(0,1/4)\Dt

u(t, x) dx

≤ c20t
−d/αµd(Dt) + µd(B(0, 1/4))e−K = c20t

−d/αµd(Dt) +
1
4
.

Therefore

µd(Dt) ≥ td/α

c21
≥ c22 > 0 if t ∈ [ε/4, t0].

Note that the positive constant c22 = c22(ε) can be chosen to be independent of r ≥ t
−1/2
0 and

x0 ∈ B(0, 1/2).
Jensen’s inequality tells us that if t ≤ t0

H(t) =
∫

B

(
log u(t, x)

)
φ(x) dx ≤ log

∫
B

u(t, x)φ(x) dx ≤ log ‖φ‖∞ := H.

On Dt, log u(t, x) ≥ −K so there are only four possible cases:

(a) If log u(t, x) > 0 and H(t) ≤ 0, then (log u(t, x) − H(t))2 ≥ H(t)2.

(b) If log u(t, x) > 0 and 0 < H(t) ≤ H, then

(log u(t, x) − H(t))2 ≥ 0 ≥ H(t)2 − H
2
.

(c) If −K ≤ log u(t, x) ≤ 0 and |H(t)| ≥ 2K, then (log u(t, x) − H(t))2 ≥ 1
4H(t)2.

(d) If −K ≤ log u(t, x) ≤ 0 and |H(t)| < 2K, then

(log u(t, x) − H(t))2 ≥ 0 ≥ 1
4
H(t)2 − K2.
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Thus we conclude

(log u(t, x) − H(t))2 ≥ 1
4
H(t)2 − (H ∨ K)2 on Dt.

Since φ is bounded below by c23 > 0 on B(0, 1/4), then

−c11 + c12

∫
B

(log u(t, x) − H(t))2φ(x)dx ≥ c12

∫
Dt

(log u(t, x) − H(t))2φ(x)dx − c11

≥ c24µd(Dt)
(

1
4H(t)2 − (H ∨ K)2

)
− c11.

We therefore have
H ′(t) ≥ FH(t)2 − E, t ∈ [ε/4, t0]

for some positive constants E and F that are independent of r ≥ t
−1/2
0 .

Now we do some calculus. Let t2 ∈ [ε/2, t0 ∧ 2] and let Q := max(16E, (16E/F )1/2). Suppose
H(t2) ≤ −Q. Since H ′(t) ≥ −E and t2 − t < t0 ∧ 2 ≤ 2,

H(t2) − H(t) ≥ −2E for t ∈ [ε/4, t2]. (3.14)

This implies H(t) ≤ −Q/2. Since FQ2/4 ≥ 4E, E < F
2 H(t)2 and hence

H ′(t) ≥ F

2
H(t)2.

Integrating H ′/H2 ≥ F/2 over [ ε
4 , t2] yields

1
H(t2)

− 1
H(ε/4)

≤ −F

2
(t2 − ε/4) ≤ −Fε

8
.

Since H(ε/4) ≤ −Q/2 < 0, we have 1/H(t2) ≤ −Fε/16, that is,

H(t2) ≥ − 16
Fε

.

This proves that either H(t2) ≥ −Q or H(t2) ≥ −16/(Fε). Thus in either case, H(t2) ≥ −U ,
where U = U(ε) := max{Q, 16/(Fε)} > 0, and so G(t2) = H(t2) − c6 ≥ −U − c6.

Now for every x0, x1 ∈ B(0, 1/2), applying the above first with x0 and then with x0 replaced
by x1, we have

log qB
r (2t2, x0, x1) = log

∫
B

qB
r (t2, x0, z)qB

r (t2, x1, z) dz

≥ log
∫

B
qB
r (t2, x0, z)qB

r (t2, x1, z)φ(z) dz − log ‖φ‖∞

≥
∫

B
log

(
qB
r (t2, x0, z)qB

r (t2, x1, z)
)
φ(z) dz − log ‖φ‖∞

=
∫

B
log qB

r (t2, x0, z)φ(z)dz +
∫

B
log qB

r (t2, x1, z)φ(z)dz − log ‖φ‖∞

≥ −2(U + c26),
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that is, qB
r (2t2, x0, x1) ≥ e−2(U+c26). A repeated use of the semigroup property (but at most 2/t2

more times) then shows qB
r (t, x0, x1) ≥ c27(ε) for every t ∈ [ε/2, 2] and x0, x1 ∈ B(0, 1/2). Taking

ε = 1/4, we have for every r ≥ t
−1/2
0 , x, y ∈ B(0, 1/2) and t ∈ [1/4, 2],

rdqBr(r2t, rx, ry) = qB
r (t, x, y) ≥ c28,

in particular,
qBr(r2, rx, ry) ≥ c28r

−d.

Thus we have

qB(0,
√

t)(t, x, y) ≥ c28t
−d/2 for t ≥ t−1

0 and x, y ∈ B(0,
√

t/2).

Clearly the above inequality holds with B(0,
√

t) and B(0,
√

t/2) being replaced by any other ball
B(x0,

√
t) and B(x0,

√
t/2) of the same radius, respectively. Consequently,

q(t, x, y) ≥ qB(x0,
√

t)(t, x, y) ≥ c28t
−d/2 for t ≥ t−1

0 and |x − y|2 ≤ t.

This proves the theorem.

For any ball B ⊂ Rd, let (Eδ,B,Fδ,B) denote the Dirichlet form of the subprocess Zδ,B of Zδ

killed upon leaving the ball B. It is shown in [BBCK, Theorem 1.5 and Theorem 2.6] that (Eδ,Fδ)
and (Eδ,B,Fδ,B) converge as δ → 0 to (E ,F) and (EB,FB), respectively in the sense of Mosco,
where B is a ball in Rd. Therefore the semigroup of Zδ and Zδ,B converge in L2 to that of Z and
ZB, respectively. By the same proof as that for [BBCK, Theorem 1.3], we deduce from Theorem
3.4 the following lower bound estimate for the heat kernel of Z, which extends Theorem 1.3 in
[BBCK].

Theorem 3.5 Suppose the Dirichlet form (E ,F) is given by (2.14)-(2.15) with the jumping kernel
J satisfying the condition (2.16). For each t0 > 0, there exists c1 = c1(t0) > 0, such that for every
x0 ∈ Rd, t ≥ t0,

qB(x0,t1/2)(t, x, y) ≥ c1t
−d/2 for q.e. x, y ∈ B(x0,

√
t/2)

and
q(t, x, y) ≥ c1t

−d/2 for q.e. x, y with |x − y|2 ≤ t.

Now we return to the case for the Dirichlet form (Q,D) given by (1.2)-(1.3).

Theorem 3.6 There exist c0, c1, c2, c3, c4 > 0 such that

p(t, x, y) ≥


c0 t−d/2 when t ≥ Rα

∗ , |x − y|2 ≤ t,

c1

(
t

|x − y|

)c2|x−y|
when |x − y| ≥ max{t/C∗, R∗},

c3t
−d/2 exp

(
−c4|x − y|2

t

)
when C∗|x − y| ≤ t ≤ |x − y|2,

(3.15)

where R∗ and C∗ are the constants given in Proposition 2.1 and in Theorem 2.3, respectively.
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Proof. By Theorem 3.5, we only need to show the second and third inequalities in (3.15). We
first prove the second inequality in (3.15). Let R := |x − y| and c+ := (4/R∗) ∨ (C∗/T∗) ≥ 1. Let
l ≥ 2 be a positive integer such that c+R < l ≤ c+R+1 and let x = x0, x1, · · · , xl = y be such that
|xi − xi+1| ≤ 2R/l ≤ 2/c+ for i = 1, · · · , l − 1. (Here we used the fact that Rd is a geodesic space.)
Since t/l ≤ C∗R/l ≤ C∗/c+ ≤ T∗ and 2R/l ≤ 2/c∗ ≤ R∗/2, by Proposition 2.1(ii), we have for all
(yi, yi+1) ∈ B(xi, R∗/4) × B(xi+1, R∗/4)

p(t/l, yi, yi+1) ≥ c0

(
(t/l)−d/α ∧ (t/l)

(R/l)d+α

)
≥ c1

(
(t/l)−d/α ∧ (t/l)

)
= c1t/l, (3.16)

since t/l ≤ T∗ ≤ 1. Let Bi = B(xi, R∗/4). Using (3.16), we have

p(t, x, y) ≥
∫

B1

. . .

∫
Bl−1

p(t/l, x, y1) . . . p(t/l, yl−1, y)dy1 . . . dyl−1

≥ c1(t/l)Πl−1
i=1c2(t/l) = (c3t/l)l ³ (c4t/R)c+R+1 ≥ c5(t/R)c6R,

and the proof is completed.
We next prove the third inequality in (3.15). Take maximum l ∈ N such that t/l ≤ (R/l)2; then

R2/t − 1 < l ≤ R2/t. Since t ≥ C∗R, we can take t/l ≥ C2
∗ . Let x = x0, x1, · · · , xl = y be such

that |xi − xi+1| ³ R/l for i = 1, · · · , l − 1. Since (R/l)2 ³ t/l ≥ C2
∗ , by Theorem 3.5, we have

p(t/l, xi, xi+1) ≥ c1(t/l)−d/2. (3.17)

Using (3.17), we have

p(t, x, y) ≥
∫

B1

. . .

∫
Bl−1

p(t/l, x, y1) . . . p(t/l, yl−1, y)dy1 . . . dyl−1

≥ c1(t/l)−d/2Πl−1
i=1

(
c2(t/l)−d/2(R/l)d

)
≥ c1(t/l)−d/2cl−1

2

≥ c1(t/l)−d/2 exp(−c3l)

≥ c4t
−d/2 exp

(
−c5|x − y|2

t

)
.

This completes the proof.

Remark 3.7 In [CK2], the following two-sided transition density function estimate was obtained
for the relativistic α-stable-like process where J(x, y) ³ |x − y|−d−αe−|x−y|: for t ≤ 1:

c1

(
t−d/α ∧ t

|x − y|d+α

)
e−c2|x−y| ≤ p(t, x, y) ≤ c3

(
t−d/α ∧ t

|x − y|d+α

)
e−c4|x−y|.

Theorem 2.3 and 3.6 show that when |x − y| → ∞, the behavior of the heat kernel for finite range
α-stable-like process is different from that of relativistic α-stable-like process.
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We will use the following near diagonal lower bound for the killed process in the next section.
Recall that R∗ ∈ (0, 1) is the constant given in Proposition 2.1(ii).

Proposition 3.8 For every c1 ∈ (0, 1), c2, c3 > 0, there is a constant c4 > 0 such that for every
x0 ∈ Rd and r ≤ R∗,

pB(x0,r)(t, x, y) ≥ c4 t−d/α for q.e. x, y ∈ B(x0, c1r) and t ∈ [c2r
α, c3r

α]. (3.18)

Proof. Let κ := c2/(2c3) and Br := B(x0, r). We first show that there is a constant c5 ∈ (0, 1) so
that (3.18) holds for every r ≤ R∗, quasi-every x, y ∈ B(x0, c1r) and t ∈ [κ c5r

α, c5r
α]. We will use

the following Dynkin-Hunt formula, which is easy to establish using the strong Markov property,
since we know the existence of the heat kernels:

pBr(t, x, y) = p(t, x, y) − Ex[1{τBr≤t}p(t − τBr , XτBr
, y)]. (3.19)

For r ≤ R∗ and t ∈ [κ c5r
α, c5r

α], and x, y ∈ B(x0, c1r), by (3.19) and Proposition 2.1(i) and (ii)
(|x − y| ≤ 2c1r ≤ 2c1(κc5)−1/αt−1/α), we have

pBr(t, x, y) ≥ c6c
1+d/α
5 t−d/α − c7Ex

[
1{τBr≤t}

(
(t − τBr)

−d/α ∧ t − τBr

|XτBr
− y|d+α

)]
, (3.20)

where constants c6, c7 are independent of c5 ∈ (0, 1]. Observe that

|XτBr
− y| ≥ (1 − c1)r, t − τBr ≤ t ≤ c5r

α

and so
t − τBr

|XτBr
− y|d+α

≤ t − τBr

((1 − c1)r))d+α
≤ c

1+d/α
5

(1 − c1)d+α
t−d/α. (3.21)

Note that if c5 < ((1 − c1)/2)α, by Proposition 2.1 (i), for t ≤ c5r
α

Px (Xt /∈ B(x, (1 − c1)r/2)) =
∫

B(x,(1−c1)r/2)c

p(t, x, y)dy

≤ c7

∫
B(x,(1−c1)r/2)c

t

|x − y|d+α
dz ≤ c8

t

rα
≤ c8c5

where c8 is independent of c5. Now applying [BBCK, Lemma 3.8], we have

Px

(
τB(x,(1−c1)r) ≤ t

)
≤ 2c8c5. (3.22)

Consequently, we have from (3.20), (3.21) and (3.22)

pBr(t, x, y) ≥

(
c6c

1+d/α
5 − c7

c
1+d/α
5

(1 − c1)d+α
Px (τBr ≤ t)

)
t−d/α

≥

(
c6c

1+d/α
5 − c7

c
1+d/α
5

(1 − c1)d+α
Px

(
τB(x,(1−c1)r) ≤ t

))
t−d/α

≥ c
1+d/α
5

(
c6 − 2c8c7

c5

(1 − c1)d+α

)
t−d/α.
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Clearly we can choose c5 < ((1 − c1)/2)α small so that pBr(t, x, y) ≥ c9t
−d/α. This establishes

(3.18) for any x0 ∈ Rd, r ≤ R∗ and t ∈ [κ c5r
α, c5r

α].
Now for r ≤ R∗ and t ∈ [c2r

α, c3r
α], define k0 = [2c3/c5] + 1. Here for a ≥ 1, [a] denotes the

largest integer that does not exceed a. Then t/k0 ∈ [κ c5r
α, c5r

α]. Using semigroup k0 times, we
conclude that for q.e. x, y ∈ B(x0, c1r) and t ∈ [c2r

α, c3r
α],

pB(x0,r)(t, x, y)

=
∫

B(x0,r)
. . .

∫
B(x0,r)

pB(x0,r)(t/k0, x, w1) . . . pB(x0,r)(t/k0, wn−1, y)dw1 . . . dwn−1

≥
∫

B(x0,(t/k0)1/α/2)
. . .

∫
B(x0,(t/k0)1/α/2)

pB(x0,r)(t/k0, x, w1) . . . pB(x0,r)(t/k0, wn−1, y)dw1 . . . dwn−1

≥ c9(t/k0)−d/α
(
c9(t/k0)−d/α c1r

d
)k0−1

≥ c10t
−d/α,

where c10 := ck0
9 k

d/α
0

(
c1c9c

−d/α
5

)k0−1
. The proof of (3.18) is now completed.

4 Applications of Heat Kernel Estimates

4.1 Parabolic Harnack Inequality

We first introduce a space-time process Zs := (Vs, Xs), where Vs = V0 − s. The filtration generated
by Z satisfying the usual condition will be denoted as {F̃s; s ≥ 0}. The law of the space-time
process s 7→ Zs starting from (t, x) will be denoted as P(t,x).

We say that a non-negative Borel measurable function h(t, x) on [0,∞) × Rd is parabolic (or
caloric) on D = (a, b) × B(x0, r) if for every relatively compact open subset D1 of D, h(t, x) =
E(t,x)[h(ZτD1

)] for every (t, x) ∈ D1 ∩ ([0,∞) × Rd), where τD1 = inf{s > 0 : Zs /∈ D1}.
For each r > 0, we define

ψ(r) := rα ∨ r2.

Theorem 4.1 For every δ ∈ (0, 1), there exists c = c(α, δ) > 0 such that for every x0 ∈ Rd, t0 ≥ 0,
R > 0 and every non-negative function u on [0,∞) × Rd that is parabolic on (t0, t0 + 6δψ(R)) ×
B(x0, 4R),

sup
(t1,y1)∈Q−

u(t1, y1) ≤ c inf
(t2,y2)∈Q+

u(t2, y2), (4.1)

where Q− = (t0 + δψ(R), t0 +2δψ(R))×B(x0, R) and Q+ = (t0 +3δψ(R), t0 +4δψ(R))×B(x0, R).

To prove the theorem, we need one notion and one lemma. According to [BBK], we say (UJS)
holds if

J(x, y) ≤ c

rd

∫
B(x,r)

J(x′, y)dx′ whenever r ≤ 1
2 |x − y|, x, y ∈ Rd. (UJS)

For R > 0, we say (UJS)≤R holds if the above holds for all x, y ∈ Rd and r ≤ |x−y|
2 ∧ R.
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It is easy to check that finite range jump process satisfies (UJS)≤1.

The following lemma corresponds to [CK1, Lemma 4.9] (also [CK2, Lemmas 6.1]). The state-
ment is changed (in the sense that the size of two space-time balls are different and the initial
points are also different) and the proof requires major changes from the original ones.

Lemma 4.2 Let R ≤ R∗ and δ < 1. Q1 = [t0 + 2δRα/3, t0 + 5δRα] × B(x0, 3R/2), Q2 = [t0 +
δRα/3, t0 +6δRα]×B(x0, 2R) and define Q− and Q+ as in Theorem 4.1. Let h : [0,∞)×Rd → R+

be bounded and supported in [0,∞) × B(x0, 3R)c. Then there exists C1 = C1(δ) > 0 such that the
following holds:

E(t1,y1)[h(ZτQ1
)] ≤ C1E(t2,y2)[h(ZτQ2

)] for (t1, y1) ∈ Q− and (t2, y2) ∈ Q+.

Proof. Without loss of generality, assume that t0 = 0. Denote BcR = B(x0, cR). Using the Lévy
system formula,

E(t2,y2)[h(ZτQ2
)] = E(t2,y2)[h(t2 − (τB2R

∧ (t2 − δRα/3)), XτB2R
∧(t2−δRα/3))]

= E(t2,y2)

[∫ t2−δRα/3

0
1{t≤τB2R

}dt

∫
Bc

3R

h(t2 − t, v)J(Xt, v)dv

]

=
∫ t2−δRα/3

0
h(t2 − t, v)dt

∫
Bc

3R

E(t2,y2)[1{t≤τB2R
}J(Xt, v)]dv

=
∫ t2

δRα/3
h(s, v)ds

∫
Bc

3R

E(0,y2)
[
1{t2−s≤τB2R

}J(Xt2−s, v)
]
dv

=
∫ t2

δRα/3
ds

∫
Bc

3R

h(s, v)dv

∫
B2R

pB2R(t2 − s, y2, z)J(z, v)dz (4.2)

≥
∫ t1

δRα/3
ds

∫
Bc

3R

h(s, v)dv

∫
B2R

pB2R(t2 − s, y2, z)J(z, v)dz.

≥
∫ t1

δRα/3
ds

∫
Bc

3R

h(s, v)dv

∫
B3R/2

pB2R(t2 − s, y2, z)J(z, v)dz. (4.3)

Since 6δRα ≥ t2 − s ≥ t2 − t1 ≥ δRα for s ∈ [δRα/3, t1], by Proposition 3.8, we have that the right
hand side of (4.3) is greater than or equal to

c1

Rd

∫ t1

δRα/3
ds

∫
Bc

3R

h(s, v)dv

∫
B3R/2

J(z, v)dz.

So, the proof is complete once we obtain

E(t1,y1)[h(ZτQ1
)] ≤ c2

Rd

∫ t1

δRα/3
ds

∫
Bc

3R

h(s, v)dv

∫
B3R/2

J(z, v)dz. (4.4)

Analogous to (4.2), we have by using the Lévy system,

E(t1,y1)[h(ZτQ1
)] =

∫ t1

2δRα/3
ds

∫
Bc

3R

h(s, v)dv

∫
B3R/2

pB3R/2(t1 − s, y1, z)J(z, v)dz.
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Since ∫
B3R/2

pB3R/2(t1 − s, y1, z)
∫

Bc
3R

J(z, v)h(s, v)dvdz

=
∫

B5R/4

pB3R/2(t1 − s, y1, z)
∫

Bc
3R

J(z, v)h(s, v)dvdz

+
∫

B3R/2\B5R/4

pB3R/2(t1 − s, y1, z)
∫

Bc
3R

J(z, v)h(s, v)dvdz = I1 + I2.

When z ∈ B3R/2 \ B5R/4, we have |y1 − z| ≥ R/4, so by Proposition 2.1(i), p
B3R/2
s (y1, z) ≤ c3R

−d

for some constant c3 > 0 and
∫ t1
0 I2 ds is less than or equal to the right hand side of (4.4). For

z ∈ B5R/4 by UJS≤1,∫
Bc

3R

J(z, v)h(s, v)dv ≤ c4

Rd

∫
B(z,R/6)

∫
Bc

3R

J(z′, v)h(s, v)dvdz′

≤ c4

Rd

∫
B3R/2

∫
Bc

3R

J(z′, v)h(s, v)dvdz′

since B(z,R/6) ⊂ B3R/2. Since the right hand side of the above inequality does not depend on z

anymore, multiplying both sides by pB3R/2(t1 − s, y1, z) and integrating over z ∈ B5R/4 (and further
integrating over

∫ t1
2δRα/3 ds), we obtain

∫ t1
0 I1ds is less than or equal to the right hand side of (4.4).

This proves the lemma.

Proof of Theorem 4.1. Let R∗ denote the constant given in Proposition 2.1. We first
consider the case that u is non-negative and bounded on [0,∞) × Rd.

(1) Suppose R ≤ R∗/2. When t ∈ (0, Rα
∗ ] and |x− y| ≤ R∗, one can prove [CK1, Lemmas 4.11]

(also see [CK2, Lemmas 6.2]) from our heat kernel estimates in Proposition 2.1. Given our Lemma
4.2 and the lemmas corresponding to [CK1, Lemmas 4.11, and 4.13], the proof of the parabolic
Harnack inequality is similar to those in [CK1, CK2] with some modification. We skip the details
here. Interested reader can find its full proof in [CKK].

(2) Suppose R ∈ (R∗/2, 1] and let (t1, x1) ∈ Q− and (t2, x2) ∈ Q+. Without loss of generality,
we may assume x0 = 0 and t0 = 0. We further assume that |x1 −x2| ≤ R∗/8. If not, we just repeat
the argument below at most 16[R/R∗] times.

For notational convenience, denote R∗/2 by r∗ and let B1 = B(x1, r∗), B2 = B(x1, r∗/2). Define

Q1 =
(
t1 + δ

2ψ(r∗), t1 + 3δ
4 ψ(r∗)

)
×

(
B1 \ B2

)
and Q2 = [0, t2] × B2.

Since u is parabolic, by the case (1) but with(
t1 − δ

4ψ(r∗), t1 + δ
4ψ(r∗)

)
× B1 and

(
t1 + δ

2ψ(r∗), t1 + 3δ
4 ψ(r∗)

)
× B1

in place of Q− and Q+ respective, we have

u(t2, x2) = E(t2,x2)
[
u(ZτQ2

)
]

≥ E(t2,x2)
[
u(ZτQ2

) : ZτQ2
∈ Q1

]
≥ c1 u(t1, x1) P(t2,x2) (ZτQ2 ∈ Q1) .
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Since |y − z| < 2r∗ = R∗ < 1 for every (y, z) ∈ B2 × B1, we have by the Lévy system formula for
X that

P(t2,x2)
(
ZτQ2

∈ Q1

)
= Px2

(
XτB2 ∈ B1, t2 − t1 − 3δ

4 ψ(r∗) < τB2 < t2 − t1 − δ
2ψ(r∗)

)
≥ c2

∫ t2−t1− δ
2ψ(r∗)

t2−t1−3δ
4 ψ(r∗)

∫
B2

(∫
B1\B2

pB2
(s, x2, y)

|y − z|d+α
dz

)
dyds

≥ c3

∫ t2−t1− δ
2ψ(r∗)

t2−t1−3δ
4 ψ(r∗)

∫
B2

pB2
(s, x2, y)dyds

for some positive constants c2 = c2(α, d) and c3 = c3(α, d,R∗). Note that

δ
4ψ(r∗) ≤ t2 − t1 − 3δ

4 ψ(r∗) ≤ t2 − t1 − δ
2ψ(r∗) ≤ 3δψ(2r∗).

Applying Proposition 3.8 to pB2
(s, x2, y), we have

P(t2,x2)
(
ZτQ2

∈ Q1

)
≥ c4

∫ t2−t1− δ
2ψ(r∗)

t2−t1−3δ
4 ψ(r∗)

∫
B(x1,ψ(r∗/8))

s−d/αµd(dy)ds ≥ c5
δ
4ψ(r∗) > 0.

This proves that u(t2, x2) ≥ c6u(t1, x1) for some positive constant c6 = c6(d, α,R∗, δ).
(3) Now let’s consider the case R ≥ 1. We will use balayage; see [BG, Chapter VI] for details,

and see [BBCK, Theorem 1.7] and [BBK, Proposition 3.3] for similar arguments. Without loss
of generality, we may assume x0 = 0 and t0 = 0. Let B = B(0, 4R), B′ = B(0, 3R), E =
(0, 6δψ(R))×B′, Q = (0, 6δψ(R))×B. As in the proof of [BBCK, Theorem 1.7], we define uE , the
réduite of u with respect to E by

uE(s, x) = E(s,x)[u(VTE
, XTE

) : TE < τQ],

where TE = inf{s ≥ 0 : Zs ∈ E}; then u = uE on E. By the balayage formula, there exists a
measure νE supported on Ē such that

uE(t, x) =
∫

E
pB(t − r, x, z)νE(dr, dz) for all (t, x) ∈ Q, (4.5)

where pB(s, x, y) = 0 if s < 0.
Let (t1, x1) ∈ Q− and (t2, x2) ∈ Q+ and observe that

3δψ(R) ≥ t2 − r ≥ t2 − t1 ≥ δψ(R) for every r ∈ [0, t1].

It follows from Theorem 3.5 and semigroup property that

pB(t2 − r, y, z) ≥ c1R
−d, for all y, z ∈ B′, r ∈ [0, t1].

The above gives us that

uE(t2, x2) ≥
∫

[0,t1]×B′
pB(t − r, x, z)νE(dr, dz) ≥ c1

Rd
νE([0, t1] × B′).
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Thus in order to prove the parabolic Harnack inequality, it suffices to show the following for each
(t1, x1) ∈ Q−;

uE(t1, x1) =
∫

[0,t1]×B′
pB(t1 − r, x1, z)νE(dr, dz) ≤ c2

Rd
νE([0, t1] × B′). (4.6)

Since the jumps of the process X are bounded by 1 and R ≥ 1, uE is parabolic (caloric) on
(0, 6δψ(R))×B(0, 2R). It follows that the support of νE is contained in Ē \ (0, 6δψ(R))×B(0, 2R).
Thus, we can write

uE(t1, x1) =
∫

F1(t1)∪F2

pB(t1 − r, x1, z)νE(dr, dz),

where F1(t) := [0, t] × (B′ \ B(0, R)), F2 = {0} × B′. If (r, z) ∈ F1(t1), then |x1 − z| ≥ R, so
by (2.3) when t1 − r ≥ δψ(R) and by Proposition 2.1 (i) and Theorem 2.3 otherwise, we have
pB(t1 − r, x1, z) ≤ c3R

−d. If (r, z) ∈ F2, then t1 − r ≥ δψ(R) and by (2.3) again, we have
pB(t1 − r, x1, z) ≤ c3R

−d. Thus,

uE(t1, x1) ≤
c3

Rd
νE(F1(t1) ∪ F2) ≤

c2

Rd
νE([0, t1] × B′)

and (4.6) is established.
Finally, we will prove (4.1) when u is not necessarily bounded on [0,∞) × Rd. Let U be a

bounded domain such that Q− ∪ Q+ ⊂ U ⊂ U ⊂ (t0, t0 + 6δψ(R)) × B(x0, 4R). For any n ∈ N,
define un(t, x) = E(t,x)[(u∧n)(ZτU )]. Then un is non-negative and bounded on [0,∞)×Rd, parabolic
on U and limn→∞ un(t, x) = u(t, x) for x ∈ [0,∞) × Rd. From the above arguments, we see that
(4.1) holds for un with the constant c independent of n. Letting n → ∞, we obtain (4.1) for u.

By the same proof as that for [CK1, Theorem 4.14] or [CK2, Proposition 4.14], we have the
following Hölder continuity for parabolic functions.

Theorem 4.3 For every R0 ∈ (0, 1], there are constants c = c(R0) > 0 and κ > 0 such that for
every 0 < R ≤ R0 and every bounded parabolic function h in Q(0, x0, 2R) := (0, (2R)α)×B(x0, 2R),

|h(s, x) − h(t, y)| ≤ c ‖h‖∞,R R−κ
(
|t − s|1/α + |x − y|

)κ
(4.7)

holds for (s, x), (t, y) ∈ Q(0, x0, R), where ‖h‖∞,R := sup(t,y)∈[0, (2R)α]×Rd |h(t, y)|. In particular, for
the transition density function p(t, x, y) of X, for any t0 ∈ (0, 1), there are constants c = c(t0) > 0
and κ > 0 such that for any t, s ∈ [t0, 1] and (xi, yi) ∈ Rd × Rd with i = 1, 2,

|p(s, x1, y1) − p(t, x2, y2)| ≤ c t
(−d+κ)/α
0

(
|t − s|1/α + |x1 − x2| + |y1 − y2|

)κ
. (4.8)

Remark 4.4 (i) Since the heat kernel p(t, x, y) is Hölder continuous, the estimates derived in
previous sections for p(t, x, y) hold for every x, y ∈ Rd.
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(ii) Note that the proof of Theorem 4.3 needs only the short time heat kernel estimates in Propo-
sition 2.1 on p(t, x, y) for t ∈ (0, T ∗] and for q.e. x, y ∈ Rd having |x − y| ≤ R∗ for some
T∗ ∈ (0, 1) and R∗ ∈ (0, 1]. Therefore as long as a pure jump symmetric strong Markov
process Y has a transition density function p(t, x, y) that has the two sided short time finite
range estimates as that in Theorem 4.3 for t ∈ (0, t0) and (x, y) ∈ Rd × Rd with |x − y| ≤ r0

for some t0 and r0 > 0, it can be established directly from these heat kernel estimate that
every bounded parabolic functions of Y is Hölder continuous. If in addition we have (UJS)≤1

and the lower bound on the heat kernel pB(t, x, y) as in Proposition 3.8, then the parabolic
Harnack inequality (Theorem 4.1) can be proved for R ≤ R∗/2.

(iii) In fact, (UJS)≤1 is necessary for the parabolic Harnack inequality for R ≤ 1. This is proved in
[BBK, Proposition 4.7] for the discrete space setting, and the proof for the continuous space
case can be found in [CKK].

(iv) There is a minor gap in the proof of [CK2, Lemma 6.1]. Condition (UJS)≤1 should be
imposed on the jumping kernel J for this lemma and consequently for the main results (such
as Theorems 1.2 and 4.12) of [CK2]. Note that (UJS)≤1 is automatically satisfied if ψ ≡ 1
in (1.12) of [CK2] (corresponds to the case γ1 = γ2 = 0). A sufficient condition for J to
satisfy condition (UJS)≤1 is that the function ψ in (1.12) of [CK2] has the property that
ψ(r + 1) ≤ c0 ψ(r) for every r ≥ 1.

Suppose that Y is the Hunt process associated with Dirichlet form (Q,D) given by (1.2)-(1.3)
whose jumping intensity kernel J(x, y) has the property that J(x, y)1{(x,y): d(x,y)>κ} is bounded and

J(x, y) =
c(x, y)

|x − y|d+α
for |x − y| ≤ 1 and sup

x∈Rd

∫
{y∈Rd: |y−x|>1}

J(x, y)dy < ∞, (4.9)

where c(x, y) is a function that is bounded between two positive constants and is symmetric in x

and y. Then by the Meyer’s construction method (see [BBCK, Lemma 3.6] and [BGK, Lemma
3.1(c) and (3.18)]), the process Y can be constructed from the finite range α-stable-like process X

having jump intensity kernel c(x,y)
|x−y|d+α 1{|x−y|≤1} and so Y has a transition density function q(t, x, y)

with respect to µd. Moreover, for any ball B ⊂ Rd,

q(t, x, y) ≥ e−t‖J ‖∞p(t, x, y) and qB(t, x, y) ≥ e−t‖J ‖∞pB(t, x, y), (4.10)

and
q(t, x, y) ≤ p(t, x, y) + t‖J1‖∞ (4.11)

where p(t, x, y) is the transition density function of X,

J1(x, y) := J(x, y)1{d(x,y)>1} and J (x) :=
∫

Rd

J1(x, y)µd(dy).

Thus using the heat kernel estimate for p(t, x, y) in Proposition 2.1 and Proposition 3.8, by the
same line of argument as that in the Remark 4.4(ii) we have the following.
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Theorem 4.5 The Hölder continuity estimate (4.7) holds for bounded parabolic functions of Y .
In particular, all these applies to the transition density function q(t, x, y) of Y . Moreover, if we
assume (UJS)≤R1 in addition, then the parabolic Harnack inequality (4.1) holds for non-negative
parabolic functions of Y with R ≤ R1/2.

The full detail of the above theorem will be given in more general format in [CKK].

Remark 4.6 Very recently, Kassmann [Ka, Theorem 1.1] proved by a quite different analytic
method the Hölder continuity for bounded harmonic functions of symmetric pure jump processes
whose jumping intensity kernel J satisfies the condition

J(x, y) = c(x, y)|x − y|−d−α for |x − y| ≤ 1 and J(x, y) ≤ c|x − y|−d−η for |x − y| > 1,

where η > 0 and c > 0 are two positive constants. Clearly, such type of jumping kernel is a special
case of those given by (4.9). Since every harmonic function is parabolic, our Theorem 4.5 recovers
and extends the main result of [Ka]. See [S] for some related work on the Hölder continuity of
bounded harmonic functions for a class of non-local operators.

4.2 Two-sided Green Function Estimates

When d = 1, 2, the finite range α-stable-like processes are all recurrent. So in this subsection, we
assume d ≥ 3 and give two-sided sharp estimates the Green function for G(x, y) of finite range
stable-like process X in Rd where

G(x, y) :=
∫ ∞

0
p(t, x, y)dt, x, y ∈ Rd.

Theorem 4.7 There exists c = c(α, d) > 1 such that

c−1

(
1

|x − y|d−α
+

1
|x − y|d−2

)
≤ G(x, y) ≤ c

(
1

|x − y|d−α
+

1
|x − y|d−2

)
, x, y ∈ Rd.

Proof. We first note that for every T,M ∈ [0,∞)

∫ ∞

T
t−

d
2 e−

M|x−y|2
2t dt =

1
|x − y|d−2

∫ |x−y|2
T

0
u

d−4
2 e−

1
2
Mudu. (4.12)

Recall that R∗ < 1 and T∗ = Rα
∗ are the constants from Proposition 2.1(ii). Using (4.12), it is easy

to see that, if |x − y| ≤ R∗, by Proposition 2.1 (i) and Theorem 2.3

G(x, y) ≤ c1

∫ |x−y|α

0

t

|x − y|d+α
dt + c2

∫ T∗

|x−y|α
t−d/αdt + c3

∫ ∞

T∗

t−
d
2 e−

c4|x−y|2
2t dt

≤ c5

|x − y|d−α
+

c3

|x − y|d−2

∫ |x−y|2
T∗

0
u

d−4
2 e−

1
2
c4udu ≤ c6

|x − y|d−α
.
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On the other hand if |x − y| > R∗, by Theorem 2.3 and (4.12)

G(x, y) ≤ c7

∫ C∗|x−y|

0
exp

(
−c8|x − y| log

|x − y|
t

)
dt + c9

∫ ∞

C∗|x−y|
t−

d
2 e−

c4|x−y|2
2t dt

≤ c7

∫ C∗|x−y|

0
exp (−c10|x − y|) dt +

c9

|x − y|d−2

∫ |x−y|
C∗

0
u

d−4
2 e−

1
2
c4udu

≤ c7C∗|x − y| exp (−c10|x − y|) +
c11

|x − y|d−2
≤ c12

|x − y|d−2

where C∗ < 1 is given in Theorem 2.3.
The lower bounded is easier. If |x − y| ≤ R∗, by Proposition 2.1(ii)

G(x, y) ≥ c13

∫ |x−y|α

0

t

|x − y|d+α
dt =

c13

2|x − y|d−α
.

If |x − y| ≥ R∗, by Theorem 3.6 and (4.12)

G(x, y) ≥ c14

∫ ∞

|x−y|2
t−

d
2 dt =

c14

|x − y|d−2

∫ 1

0
u

d−4
2 du.

Remark 4.8 Under some mild assumptions on bounded open set D, when c(x, y) is a constant,
Green function GD(x, y) for X in D is comparable to the one for isotropically symmetric stable
process in D (see [GR, KS2]). Theorem 4.7 shows that, unlike bounded open sets, the behavior of
the Green function for X in Rd is different from the behavior of the Green function for isotropically
symmetric stable process in Rd.

Now let’s consider the more general non-local Dirichlet form (E ,F) in (2.14)-(2.15) with the
jumping kernel J satisfying the condition (2.16). Recall that q(t, x, y) is the transition density
function for the associated Hunt process Z with respect to the Lebesgue measure on Rd. For d ≥ 3,
let

V (x, y) :=
∫ ∞

0
q(t, x, y)dt, x, y ∈ Rd.

Using Theorems 2.4 and 3.5 instead of Theorems 2.3 and 3.6 respectively in the proof of Theorem
4.7, we get the Green function estimate for the process Z for |x − y| ≥ 1.

Theorem 4.9 There exists c = c(α, d) > 1 such that

c−1 1
|x − y|d−2

≤ V (x, y) ≤ c
1

|x − y|d−2
for |x − y| ≥ 1.
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4.3 Differentiability of Spectral Functions

In [TT, TT2, Ts], the differentiability of spectral functions for symmetric stable processes are
studied.

Recall that X is a finite range stable-like process considered in this paper whose Dirichlet form
(Q,D) is given by (1.2)-(1.3) whose jumping intensity kernel J(x, y) = c(x,y)

|x−y|d+α 1{|x−y|≤1}. Let µ

be a signed measure in Kato class K∞(X) as introduced in [C]. The associated spectral function
C(λ) is defined to be

C(λ) = − inf
{
Q(u, u) + λ

∫
Rd

u(x)2µ(dx) : u ∈ D with
∫

Rd

u(x)2dx = 1
}

.

Using the heat kernel estimates established in this paper, by an almost same argument as that in
[TT, TT2] and [Ts], it can be shown that if d ≤ 4 and if the extended Dirichlet space (Q,De) is
compactly embedded into L2(Rd, |µ|)), then λ 7→ C(λ) is differentiable on R. But we will not go
into details about it.

5 Weighted Poincaré Inequality of Fractional Order

Throughout this section, r ≥ 1, σ ∈ (0,∞) and α ∈ (0, 2). Recall that µd denotes the Lebesgue
measure in Rd. In this section, the exact values of the constants c’s are always independent of r

and they might change from one appearance to another. Let M(σ) be the set of all non-increasing
function Ψ from [0, 1] to [0, 1] such that Ψ(s) > Ψ(1) = 0 for every s ∈ [0, 1) and

Ψ(s + 1
2((1 − s) ∧ 1

2)) ≥ σ Ψ(s), s ∈ (0, 1). (5.1)

We will use N (σ) to denote all the functions Φ of the form cΨ(|x|) for some Ψ ∈ M(σ) having∫
Rd Φ(x)dx = 1. Note that, when β ∈ (0, 2), c(1 − |x|2)12/(2−β)1B(0,1)(x) is in N ((1/8)12/(2−β)).

Condition (5.1) says that for each Φ ∈ N (σ), values of Φ at points with comparable distance from
the unit sphere ∂B(0, 1) are comparable. This implies that values of Φ in balls in Whitney-type
covering, which will be discussed below, are universally comparable to each other. This property
will be used in many places below.

For Φ ∈ N (σ), define

uΦ :=
∫

B(0,1)
u(x)Φ(x)dx.

This section is devoted to prove the following form of weighted Poincaré inequality.

Theorem 5.1 For every d ≥ 1, 0 < α < 2 and σ ∈ (0,∞), there exists a positive constant
c1 = c1(d, α, σ) independent of r ≥ 1, such that for every Φ ∈ N (σ) and u ∈ L1(B(0, 1), Φ(x)dx),∫

B(0,1)
(u(x) − uΦ)2Φ(x)dx

≤ c1

∫
B(0,1)×B(0,1)

(u(x) − u(y))2
r2−α

|x − y|d+α
1{|x−y|≤1/r}(Φ(x) ∧ Φ(y)) dxdy.

Moreover, the constant c1 stays bounded for α ∈ (0, 2).
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The exponent 2 − α of r in the integral above is quite delicate to get. We will prove the above
theorem through several lemmas. For the remainder of this section, we fix σ ∈ (0,∞) and Φ ∈ N (σ).

We first prove the following simple lemma. Let

uB(x,s) :=
1

µd(B(x, s))

∫
B(x,s)

u(y)dy.

Lemma 5.2 For every B(z, s) ⊂ B(0, 1) and every u ∈ L1(B(z, s), dx),∫
B(z,s)

(u(x) − uB(z,s))
2dx ≤ 1

µd(B(z, s))

∫
B(z,s)

∫
B(z,s)

(u(x) − u(y))2dxdy.

Proof. By Cauchy-Schwartz inequality,∫
B(z,s)

(u(x) − uB(z,s))
2(x)dx =

∫
B(z,s)

(
1

µd(B(z, s))

∫
B(z,s)

(u(x) − u(y))dy

)2

dx

≤ 1
µd(B(z, s))

∫
B(z,s)

∫
B(z,s)

(u(x) − u(y))2dxdy.

Recall Whitney-type coverings (see [SC, Section 5.3.3] for details): We first let

W :=
{

B : the center of the ball B is in B(0, 1) and r(B) =
1

103
ρ(B)

}
where r(B) is the radius of the ball B and ρ(B) denotes the Euclidean distance between the ball
B and B(0, 1)c. In the sequel, for λ > 0 and a ball B = B(x, r) centered at x with radius r, we
denote λB the concentric ball B(x, λ r) with radius λ r.

Start W by picking a ball B0 ∈ W with the largest possible radius. Pick the next ball B1

to be a ball in W which does not intersect B0 and has maximal radius. Assuming that k balls
B0, · · · , Bk−1 have already been picked, pick the next ball Bk to be a ball in W which does not
intersect ∪k−1

j=0Bj and has maximal radius. Though this procedure, we get a sequence of disjoint
balls W := {B0, · · · , Bk−1, Bk, · · · } from W. Moreover, the Whitney-type decomposition of the
unit ball B(0, 1) has the following properties (see, for example, page 135 of [SC]).

(1)
B(0, 1) =

∪
B∈W

2B.

(2) There exists a positive constant K such that

sup
y∈B(0,1)

#{B ∈ W : y ∈ 102B} ≤ K (5.2)

where #S is the number of elements in the set S.
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There exists a ball B(0) ∈ W such that 0 ∈ 2B(0). We pick an fix such a ball B(0) and call it
the central ball of W. For any B ∈ W, let γB be the straight line segment between the center of B

and the origin. Let
W(B) := {A ∈ W : 2A ∩ γB 6= ∅}.

Now we define the chain W(B) := (B0, B1, · · · , Bl(B)−1) with B0 = B(0) and Bl(B)−1 = B as
follows; Starting from the origin, let y0 be the first point along γB which does not belong to 2B0.
Define B1 to be (any) one of balls in W(B) such that y0 ∈ 2B1. Inductively, having B0, B1, · · · , Bk

constructed, let yk be the first point along γB which does not belong to ∪k
j=02Bj . Define Bk+1 to

be (any) one of balls in W(B) such that yk ∈ 2Bk+1. When the last chosen is not B, we simply
add B as the last ball in W(B).

Using Lemma 5.2, the next lemma can be proved easily.

Lemma 5.3 There exists a positive constant c = c(d) such that for every B ∈ W, Bi, Bi+1 ∈ W(B)
and for every u ∈ L1(B(0, 1), Φdx),

|u4Bi − u4Bi+1 | ≤
1∑

j=0

c

µd(Bi+j)

(∫
4Bi+j

∫
4Bi+j

(u(x) − u(y))2dxdy

)1/2

.

Proof. Note that

(µd(4Bi ∩ 4Bi+1))1/2|u4Bi − u4Bi+1 |

=

(∫
4Bi∩4Bi+1

|u4Bi − u4Bi+1 |2µd(dx)

)1/2

≤
(∫

4Bi

|u(x) − u4Bi |2µd(dx)
)1/2

+

(∫
4Bi+1

|u(x) − u4Bi+1 |2µd(dx)

)1/2

.

Now the lemma follows from our Lemma 5.2 and the fact that

µd(4Bi ∩ 4Bi+1) ≥ c max{µd(Bi), µd(Bi+1)}

(see Lemma 5.3.7 in [SC]).

Lemma 5.4 There exists a positive constant c = c(d, σ) such that for every B ∈ W, Bi, Bi+1 ∈
W(B) and for every u ∈ L1(B(0, 1), Φdx),

√
ΦB |u4Bi − u4Bi+1 | ≤

1∑
j=0

c

µd(Bi+j)

(∫
4Bi+j

∫
4Bi+j

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

.
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Proof. Since the values of Φ are universally comparable to each other on 4B for every B ∈ W, we
have from Lemma 5.3

|u4Bi − u4Bi+1 | (5.3)

≤
1∑

j=0

c

(µd(Bi+j))1/2(
∫
Bi+j

Φ(y)dy)1/2

(∫
4Bi+j

∫
4Bi+j

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

.

Note that

ρ(A) = 103r(A) ≥ 103

4
r(B) =

1
4
ρ(B) for every A ∈ W(B). (5.4)

(See Lemma 5.3.6 in [SC].) Using (5.1), (5.4) and the fact that Ψ is non-increasing, there exists a
positive constant c independent of B such that

max
y∈B

Φ(y) ≤ c min
y∈A

Φ(y) for every A ∈ W(B).

Thus we have

ΦB =
1

µd(B)

∫
B

Φ(y)dy ≤ c
1

µd(Bi)

∫
Bi

Φ(y)dy for every Bi ∈ W(B). (5.5)

The lemma follows from (5.3) and (5.5).

The proof of the next lemma is similar to that of Theorem 5.3.4 on page 141-143 of [SC]. For
reader’s convenience, we nevertheless spell out the details of the proof here.

Lemma 5.5 There exists a positive constant c = c(d, σ) such that for every u ∈ L1(B(0, 1),Φdx),∫
B(0,1)

(u(x) − uΦ)2Φ(x)dx ≤ c
∑
A∈W

1
µd(A)

∫
4A×4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy.

Proof. Note that ∫
B(0,1)

(u(x) − uΦ)2Φ(x)dx

≤ 2
∫

B(0,1)
(u(x) − u4B(0))

2Φ(x)dx + 2

(∫
B(0,1)

Φ(x)dx

)
(uΦ − u4B(0))

2

≤ 2
∫

B(0,1)
(u(x) − u4B(0))

2Φ(x)dx + 2
∫

B(0,1)
(u(x) − u4B(0))

2Φ(x)dx

≤ 4
∑

B∈W

∫
4B

(u(x) − u4B(0))
2Φ(x)dx

≤ 8
∑

B∈W

∫
4B

(u(x) − u4B)2Φ(x)dx + 8
∑

B∈W
(u4B − u4B(0))

2

∫
4B

Φ(x)dx

≤ c
∑

B∈W

1
µd(B)

∫
4B×4B

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

+ c
∑

B∈W

∫
1B(z)

(
|u4B − u4B(0)|(ΦB)1/2

)2
dz,
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where in the last inequality, we used the fact that the values of Φ are universally comparable to
each other on 4B for every B ∈ W. To establish the lemma, it suffices to deal with the second
summation above.

By Lemma 5.4, we get

|u4B − u4B(0)|(ΦB)1/21B(z)

≤
l(B)−2∑

i=0

|u4Bi − u4Bi+1 |(ΦB)1/21B(z)

≤ c

l(B)−1∑
i=0

1
µd(Bi)

(∫
4Bi

∫
4Bi

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

1B(z)

= c

l(B)−1∑
i=0

1
µd(Bi)

(∫
4Bi

∫
4Bi

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

1104Bi
(z)1B(z)

≤ c
∑
A∈W

1
µd(A)

(∫
4A

∫
4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

1104A(z)1B(z).

In the first equality above, we have used the fact that B ⊂ 104Bi (Lemma 5.3.8 in [SC]). Since the
balls in W are disjoint, summing both sides over B ∈ W and taking the square, we get∑

B∈W
1B(z)

(
|u4B − u4B(0)|(ΦB)1/2

)2

≤ c

( ∑
A∈W

1
µd(A)

(∫
4A

∫
4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

1104A(z)

)2

.

Integrating over z ∈ B(0, 1), and using Lemma 5.3.12 in [SC] and the fact the balls in W are
disjoint, we have∑

B∈W

∫
1B(z)

(
|u4B − u4B(0)|Φ

1/2
B

)2
dz

≤ c

∫ ( ∑
A∈W

1
µd(A)

(∫
4A

∫
4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

1104A(z)

)2

dz

≤ c

∫ ( ∑
A∈W

1
µd(A)

(∫
4A

∫
4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)1/2

1A(z)

)2

dz

≤ c

∫ ∑
A∈W

1
(µd(A))2

(∫
4A

∫
4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)
1A(z)dz

≤ c
∑
A∈W

1
µd(A)

(∫
4A

∫
4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

)
.

This completes the proof for the lemma.
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Lemma 5.6 There exists a positive constant c = c(d, σ) such that for every u ∈ L1(B(0, 1),Φdx),∫
B(0,1)

(u(x) − uΦ)2Φ(x)dx

≤ c

102α

∫
B(0,1)×B(0,1)

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

102
}(Φ(x) ∧ Φ(y))dxdy.

Proof. Since |x − y| ≤ 8r(A) ≤ 1
102 if x, y ∈ 4A, we have for every A ∈ W

1
µd(A)

∫
4A×4A

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

≤ c

(r(A))d

∫
4A×4A

(u(x) − u(y))2|x − y|d+α

|x − y|d+α
1{|x−y|≤ 1

102
}(Φ(x) ∧ Φ(y))dxdy

≤ c

102α

∫
4A×4A

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

102
}(Φ(x) ∧ Φ(y))dxdy.

It then follows from Lemma 5.5 and (5.2) that∫
B(0,1)

(u(x) − uΦ)2Φ(x)dx

≤ c

102α

∑
A∈W

∫
4A×4A

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

102
}(Φ(x) ∧ Φ(y))dxdy

≤ c

102α

∫
B(0,1)×B(0,1)

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

102
}(Φ(x) ∧ Φ(y))dxdy.

Due to Lemma 5.6, we have Theorem 5.1 for 1 ≤ r ≤ 102. So, from now we may assume r > 102.

Lemma 5.7 There exists a positive constant c = c(d, σ) such that for every r > 102 for every
u ∈ L1(B(0, 1), Φdx),∫

B(0,1)
(u(x) − uΦ)2Φ(x)dx

≤ c

∫
B(0,1)×B(0,1)

(u(x) − u(y))2
r−α

|x − y|d+α
1{|x−y|<1/r}(Φ(x) ∧ Φ(y))dxdy

+ c

∫
B(0,1− 10

r
)×B(0,1− 10

r
)

(u(x) − u(y))2

|x − y|d
1{|x−y|< 1

102
}(Φ(x) ∧ Φ(y))dxdy.

Proof. By Lemma 5.5, we have∫
B(0,1)

(u(x) − uΦ)2Φ(x)dx ≤ c
∑
A∈W

∫
4A×4A

(u(x) − u(y))2

|x − y|d

(
|x − y|
r(A)

)d

(Φ(x) ∧ Φ(y))dxdy

≤ c

 ∑
A∈W: r(A)≤ 1

10r

+
∑

A∈W: r(A)> 1
10r

 ∫
4A×4A

(u(x) − u(y))2

|x − y|d
(Φ(x) ∧ Φ(y))dxdy

=: I + II.
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If A ∈ W and r(A) ≤ 1
10r , then |x − y| ≤ 8r(A) < 1

r for every x, y ∈ 4A. So using (5.2), we have

I ≤ c
∑

A∈W: r(A)≤ 1
10r

∫
4A×4A

(u(x) − u(y))2
r−α

|x − y|d+α
1{|x−y|≤1/r}(Φ(x) ∧ Φ(y))dxdy

≤ c

∫
B(0,1)×B(0,1)

(u(x) − u(y))2
r−α

|x − y|d+α
1{|x−y|<1/r}(Φ(x) ∧ Φ(y))dxdy.

On the other hands, if A ∈ W and r(A) > 1
10r , then for every pair of points x, y in 4A, we have

|x − y| ≤ 8r(A) < 1
102 and

dist(x, ∂B(0, 1)) ≥ ρ(A) − 4r(A) > 102r(A) ≥ 10
r

.

Therefore, using (5.2) we have

II ≤ c
∑

A∈W: r(A)> 1
10r

∫
4A×4A

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

102
}(Φ(x) ∧ Φ(y))dxdy

≤ c

∫
B(0,1− 10

r
)×B(0,1− 10

r
)

(u(x) − u(y))2

|x − y|d
1{|x−y|< 1

102
}(Φ(x) ∧ Φ(y))dxdy.

For our purpose, we need to construct another covering; For each r > 102, we let V = Vr :=
{B1, · · · , Bk(r)} be a maximum sequence of disjoint balls with radius 1

400r that we can put inside
B(0, 1 − 10

r ). Note that

B(0, 1 − 10
r

) ⊂
∪

B∈V
2B ⊂

∪
B∈V

102B ⊂ B(0, 1 − 9
r
).

For every y ∈ B(0, 1), since
∪

B∈V:y∈2B B ⊂ B(y, 3
400r ),

#{B ∈ V : y ∈ 2B} · µd(B(0, 1
400r )) ≤ µd(B(y, 3

400r )).

Therefore we have
sup

y∈B(0,1)
#{B ∈ V : y ∈ 2B} ≤ 3d. (5.6)

Recall that ρ(B) denotes the Euclidean distance between the ball B and B(0, 1)c. For balls A

and B in V with dist(A,B) > 1
40r and ρ(B) ≥ ρ(A), we construct the path γA,B starting from A

in the following way. Let xA be the center of A and xB be the center of B. If |xB| ≥ 1/(400r),
then let yB := |xA|

|xB |xB so that xB is in the straight line segment from yB to 0. Let γ2
A,B be the

straight line segment from yB to xB. We also let γ1
A,B be the shortest path from xA to yB with

γ1
A,B ⊂ ∂B(0, |xA|). In this case, γA,B is the union of γ1

A,B and γ2
A,B starting from xA and ending

at xB via yB. If |xB| < 1/(400r), let γA,B be simply a straight line segment between 0 and xA.
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For A,B ∈ V with ρ(B) ≥ ρ(A), let

V(A,B) := {C ∈ V : 2C ∩ γA,B 6= ∅}

and define the chain V(A,B) := (C0, C1, · · · , Cl(A,B)−1) with C0 = A and Cl(A,B)−1 = B similar to
the chain in the Whitney-type coverings; Starting from the center of A, let y0 be the first point along
γA,B which does not belong to 2C0. Define C1 to be one of balls in V(A,B) such that y0 ∈ 2C1.
Inductively, having C0, C1, · · · , Ck constructed, let yk be the first point along γA,B which does not
belong to ∪k

j=02Cj . Define Ck+1 to be one of balls in V(A,B) such that yk ∈ 2Ck+1. When the last
chosen is not B, we add B as the last ball in V(A, B).

In the sequel, for every path γ in Rd we denote by |γ| the length of γ.

Lemma 5.8 There exists a positive constant c = c(d) such that for every r > 102 and every
A,B ∈ V with ρ(B) ≥ ρ(A), |γA,B| > 1

4r and dist(A, B) ≤ 1
50 ,

|x − y| ≥ c

r
#V(A,B) ≥ c

r
#V(A,B) ≥ |γA,B|, for every (x, y) ∈ 2A × 2B. (5.7)

In particular,
#V(A,B) ≤ #V(A,B) ≤ cr. (5.8)

Proof. It is easy to see that the length of γA,B is less than or equal to 4|x−y| for every (x, y) ∈ A×B.
Thus by using the fact that balls C’s in V(A,B) are disjoint and that ∪C∈V(A,B)C is within the

1
100r -neighborhood of γAB, we have

#V(A,B) · ( 1
400r

)d = c
∑

C∈V(A,B)

µd(C) ≤ c|x − y| r1−d

and so #V(A,B) ≤ cr |x − y|.
On the other hand, since 2C’s in V(A,B) covers γA,B, it is easy to see that

E := {x ∈ B(0, 1) : dist(x, γA,B) <
1

400r
} ⊂

∪
C∈V(A,B)

3C

and that
µd(E) ≥ c |γA,B|(

1
r
)d−1.

Thus
c|γA,B|r1−d ≤ µd(E) ≤

∑
C∈V(A,B)

µd(3C) = #V(A,B) · ( 3
400r

)d

and so |γA,B| ≤ c
r#V(A,B). The lemma is proved.

The proof of the next lemma is similar to the one of Lemma 5.3. So we skip its proof.
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Lemma 5.9 Let A,B ∈ V with ρ(B) ≥ ρ(A). There exists a positive constant c = c(d) such that
for every Ci, Ci+1 ∈ V(A,B) and for every u ∈ L1(B(0, 1), Φdx),

|u2Ci − u2Ci+1 |2 ≤
1∑

j=0

c

(µd(2Ci+j))2

∫
2Ci+j

∫
2Ci+j

(u(x) − u(y))2dxdy.

Lemma 5.10 There exist positive constants c = c(d, σ) and c1 = c1(d) such that for every r > 102

and every A,B ∈ V with ρ(B) ≥ ρ(A) and |γA,B| ≥ 1
4r ,

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|< 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤ c cα
1 (#V(A,B))1−d−α

∑
C∈V(A,B)

∫
2C

∫
2C

(u(x) − u(y))2

|x − y|d+α
(Φ(x) ∧ Φ(y)) dxdy.

Proof. Let l := #V(A,B) ≥ 2. For every y ∈ A and x ∈ B,

(u(x) − u(y))2(Φ(x) ∧ Φ(y))

≤ (l + 2)(Φ(x) ∧ Φ(y))

(
|u(x) − u2A|2 + |u(x) − u2B|2 +

l−1∑
i=0

|u2Ci − u2Ci+1 |2
)

≤ 2l
(
(Φ(x) ∧ Φ(y))|u(y) − u2A|2 + (Φ(x) ∧ Φ(y))|u(x) − u2B|2

+
l−1∑
i=0

(Φ(x) ∧ Φ(y))|u2Ci − u2Ci+1 |2
)

.

Note that from the construction of the chain V(A,B), it is easy to see that there exists a constant
c independent of r such that for every A,B ∈ V and C ∈ V(A,B),∫

2A

∫
2B

(Φ(x) ∧ Φ(y))dxdy ≤ c

∫
2Ci

∫
2Ci+1

(Φ(x) ∧ Φ(y)) dxdy.

Obviously ∫
2A

∫
2B

|u(x) − u2B|2(Φ(x) ∧ Φ(y))dxdy ≤ µd(2B)
∫

2B
|u(x) − u2B|2Φ(x)dx

and ∫
2A

∫
2B

|u(y) − u2A|2(Φ(x) ∧ Φ(y))dxdy ≤ µd(2A)
∫

2A
|u(y) − u2A|2Φ(y)dy.
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Thus we have, for every y ∈ A and x ∈ B,∫
2A

∫
2B

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy

≤ 2l

(∫
2A

∫
2B

(Φ(x) ∧ Φ(y))|u(y) − u2A|2dxdy +
∫

2A

∫
2B

(Φ(x) ∧ Φ(y))|u(x) − u2B|2dxdy

+
l−1∑
i=0

∫
2A

∫
2B

(Φ(x) ∧ Φ(y))|u2Ci − u2Ci+1 |2dxdy

)

≤ cl

(
µd(2A)|

∫
2A

|u(y) − u2A|2Φ(y)dy + µd(2B)
∫

2B
|u(x) − u2B|2Φ(x)dx

+
l−1∑
i=0

|u2Ci − u2Ci+1 |2
∫

2Ci

∫
2Ci+1

(Φ(x) ∧ Φ(y)) dxdy

)
.

We apply Lemma 5.2 to the first two integrals in the above and apply Lemma 5.9 to the integrals
in the summation above. Then using the fact that the values of Φ are universally comparable on
each A,B,Ci, we get that∫

2A

∫
2B

(u(x) − u(y))2(Φ(x) ∧ Φ(y))dxdy ≤ c l
∑

C∈V(A,B)

∫
2C

∫
2C

(u(x) − u(y))2(Φ(x) ∧ Φ(y)) dxdy.

(5.9)
Note that, using (5.7), we have that for x ∈ B and y ∈ A with |x − y| < 1

100

1
100

≥ |x − y| ≥ c
l

r
≥ c l |z − w|, ∀z, w ∈ C ∈ V(A,B). (5.10)

Therefore, from (5.9)-(5.10), we conclude that∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
(Φ(x) ∧ Φ(y))1{|x−y|< 1

100
}dxdy

≤ 1
102α

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d+α
(Φ(x) ∧ Φ(y))1{|x−y|< 1

100
}dxdy

=
1

102α

(
c
r

l

)d+α
∫

2A

∫
2B

(u(x) − u(y))2(Φ(x) ∧ Φ(y))1{|x−y|< 1
100

}dxdy

≤ ccα
1 l1−d−α

∑
C∈V(A,B)

∫
2C

∫
2C

(u(z) − u(w)))2

|z − w|d+α
(Φ(z) ∧ Φ(w)) dzdw.

Recall that [a] denote the largest integer which is no larger than a and define for C ∈ V

C(V) := {(A,B) : A,B ∈ V with ρ(B) ≥ ρ(A) and C ∈ V(A,B)}.

The following is a key lemma to count the number of chains containing each C ∈ V.
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Lemma 5.11 There exists a positive constant c = c(d) such that for every r > 102, 30 ≤ l ≤ [16r]
and C ∈ V,

#
{

(A,B) ∈ C(V) :
100 + l

400r
< |γA,B| ≤

101 + l

400r

}
≤ c ld. (5.11)

Proof. Without loss of generality, we assume d ≥ 2. (The case of d = 1 is easier.) Fix r > 102,
30 ≤ l ≤ [16r] and C ∈ V. We will order (A,B) ∈ C(V) so that ρ(B) ≥ ρ(A). Let xC be
the center of the ball C. If |xC | ≤ 4/(400r), then |xB| ≤ 6/(400r), so the number of possible
choice for B is less than c2d. Since (100 + l)/(400r) ≤ |γA,B| ≤ (101 + l)/(400r), the number of
possible choice for A is cld−1, so (5.11) holds in this case. We thus assume |xC | > 4/(400r). Define
HxC := B(0, |xC | + 2/(400r)) \ B(0, |xC | − 2/(400r)). Since 2C ∩ γA,B 6= ∅, HxC ∩ γA,B 6= ∅. Let
y′B be the first point along γA,B (starting from xB) which belongs to HxC ∩ γA,B. Also, let zA,B be
the first point along γA,B (starting from xB) which belongs to 2C, and let γB be the sub-path of
γA,B starting from zA,B ending at xB.

Let m/(400r) ≤ |γB| < (m + 1)/(400r) where 0 ≤ m ≤ l + 100 and consider the following two
cases:

Case (i) |y′B − zA,B| ≤
5

400r
, Case (ii) |y′B − zA,B| >

5
400r

.

For Case (i), the number of possible choices for y′B and B is less than c2d when C is given and
m is fixed. Once y′B is fixed, the number of possible choice for A is c(l − m + 106)d−1, since the
arclength between zA,B and xA along the curve γA,B is at most 101+l−m

400r and |y′B−zA,B| ≤ 5/(400r).
Summing over m, the number of possible choices for A and B is less than

c′
l+100∑
m=0

(l − m + 106)d−1 ≤ c′′ld.

For Case (ii), let i ≤ m be such that i/(400r) ≤ |zA,B−yB| < (i+1)/(400r) where yB := |xA|
|xB |xB.

In this case, |yB − y′B| ≤ 4/(400r) and i ≥ 1. Since yB ∈ ∂B(0, |xA|) ⊂ HxC , given C, the number
of possible choices for yB and B is less than cid−2 when m and i are fixed. Observe that given C

and B, y′B and xB are determined. Since xA ∈ ∂B(0, |xA|) ⊂ HxC , given C and B, the number of
possible choice for xA is less than c((l−m + i + 101)/i)d−2 when m and i are fixed. Summing over
m and i, the number of possible choices for A and B is less than

c′
l+100∑
m=1

m∑
i=1

id−2

(
l − m + i + 101

i

)d−2

= c′
l+100∑
m=1

m∑
i=1

(l − m + i + 101)d−2 ≤ c′′ld.

We thus obtain (5.11).

Lemma 5.12 There exist positive constants c = c(d, σ) and c1 = c1(d) such that for every r ≥ 102∑
A,B∈V

dist(A,B)> 1
3r

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤ c cα
1

∫
B(0,1)×B(0,1)

(u(x) − u(y))2
r2−α

|x − y|d+α
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y)) dxdy.
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Proof. For (x, y) ∈ 2A × 2B with |x − y| ≤ 1
100 , it is elementary to check that |γA,B| < 1

25 . Thus,
by Lemma 5.10, we have∑

A,B∈V
dist(A,B)> 1

3r

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤ c cα
1

∑
A,B∈V:ρ(B)≥ρ(A)
130
400r <|γA,B |< 1

25

(#V(A,B))1−d−α
∑

C∈V(A,B)

∫
2C

∫
2C

(u(x) − u(y))2

|x − y|d+α
(Φ(x) ∧ Φ(y)) dxdy

≤ c cα
1

∑
C∈V


[16r]∑
l=30

∑
(A,B)∈C(V)

100+l
400r <|γA,B |≤ 100+l+1

400r

(#V(A,B))1−d−α


×

∫
2C

∫
2C

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y)) dxdy.

Applying (5.7), we see that

∑
A,B∈V

dist(A,B)> 1
3r

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤ c cα
1

∑
C∈V

[16r]∑
l=30

l1−d−α · #
{

(A, B) ∈ C(V) :
100 + l

400r
< |γA,B| ≤

101 + l

400r

}
×

∫
2C

∫
2C

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y)) dxdy.

By Lemma 5.11,

[16r]∑
l=30

l1−d−α · #
{

(A,B) ∈ C(V) :
100 + l

400r
< |γA,B| ≤

101 + l

400r

}
≤ c

[16r]∑
l=30

l1−α ≤ cr2−α.

Thus we conclude that∑
A,B∈V

dist(A,B)> 1
3r

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤ c cα
1 r2−α

∑
C∈V

∫
2C

∫
2C

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y)) dxdy

≤ c cα
1

∫
B(0,1)×B(0,1)

(u(x) − u(y))2
r2−α

|x − y|d+α
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y)) dxdy.

In the last inequality above, we have used (5.6).
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Proof of Theorem 5.1: By Lemma 5.7, it is enough to show the following claim; there exist
constants c = c(d, σ) > 0 and c1(d) > 0 such that for every r > 102 and u ∈ L1(B(0, 1), Φdx)∫

B(0,1− 10
r

)×B(0,1− 10
r

)

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤ c cα
1

∫
B(0,1)×B(0,1)

(u(x) − u(y))2
r2−α

|x − y|d+α
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y))dxdy. (5.12)

Note that ∫
B(0,1− 10

r
)×B(0,1− 10

r
)

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤
∑

A,B∈V

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤
∑

A,B∈V
dist(A,B)≤ 1

3r

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y))dxdy

+
∑

A,B∈V
dist(A,B)> 1

3r

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy

≤ c r2−α

∫
B(0,1)×B(0,1)

(u(x) − u(y))2

|x − y|d+α
1{|x−y|≤ 1

r
}(Φ(x) ∧ Φ(y))dxdy

+
∑

A,B∈V
dist(A,B)> 1

3r

∫
2A

∫
2B

(u(x) − u(y))2

|x − y|d
1{|x−y|≤ 1

100
}(Φ(x) ∧ Φ(y))dxdy.

In the last inequality above, we have used (5.6) and the fact r2−α ≥ 1. Thus (5.12) follows from
Lemma 5.12.
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[B] J. Bertoin. Lévy Processes. Cambridge University Press, 1996.

[BG] R.M. Blumenthal and R.K. Getoor. Markov processes and potential theory. Academic Press,
Reading, MA, 1968.

[CSS] L. A. Caffarelli, S. Salsa and Luis Silvestre. Regularity estimates for the solution and the free
boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171(1) (2008)
425–461.

[CKS] E.A. Carlen, S. Kusuoka and D.W. Stroock. Upper bounds for symmetric Markov transition
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Theor. Appl. Finance 3(1) (2000), 143–160.

[SC] L. Saloff-Coste. Aspects of Sobolev-type inequalities. Cambridge University Press, Cambridge,
2002.
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