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Summary

We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, e.g., 

SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-

control genetic association studies. To boost analysis power, we assume that the SNP-specific 

effects are shared across all secondary phenotypes using a scaled mean model. We estimate 

regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained 

from the weighted pseudolikelihood, which accounts for case-control sampling to prevent 

potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance 

component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for 

selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show 

that the proposed variable selection procedure has the oracle properties and is robust to 

misspecification of the correlation structure among secondary phenotypes. We select the tuning 

parameter using a weighted Bayesian Information-like Criterion (wBIC). We evaluate the finite 

sample performance of the proposed methods via simulations, and illustrate the methods by the 

analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control 

genetic association study.
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1. Introduction

Genome-wide association studies (GWAS) measure common genetic variants in a study 

sample, with the goal of identifying single nucleotide polymorphisms (SNPs) that are 

associated with a disease or a quantitative trait. GWAS often sample subjects using a case-

control design, where disease cases and disease-free controls are genotyped to identify SNPs 

that are associated with disease susceptibility (e.g., Hunter et al., 2007). There is substantial 

interest to take advantage of these existing large case-control GWAS to identify common 

genetic variants that are associated with the secondary traits that are often collected in these 

studies, in addition to the primary disease status. For example, in the motivating lung cancer 

case-control GWAS conducted in Massachusetts General Hospital (MGH), we are interested 

in identifying SNPs that are associated with smoking behavior, measured by a few 

continuous variables. In this paper, we propose statistical methods to study the association of 

a potentially high-dimensional set of SNPs, e.g., SNPs in a gene, genetic pathway, or 

network, with multiple secondary phenotypes that measure the same underlying trait, e.g., 

multiple measures of smoking behavior, in case-control GWAS.

Since subjects from a case-control study are often sampled based on a primary disease 

status, cases are over-represented compared to the underlying population. Thus, careful 

attention is warranted for inference regarding the secondary phenotypes based on case-

control samples. Similar caution is needed in secondary phenotype analysis with trait-

dependent sampling of continuous primary outcomes (Lin et al., 2013). Analysis methods 

that ignore or improperly account for the biased sampling mechanism can lead to biased 

estimates of the population effects. Selection bias is particularly problematic when both the 

SNPs and the secondary phenotypes are associated with the primary disease (Monsees et al., 

2009). Such associations are likely to exist in the lung cancer GWAS, as it is expected that 

both SNPs and smoking behavior will affect lung cancer risk. Our task is thus to (1) study 

the association of interest, while accounting for the case-control sampling scheme. To 

increase statistical power, we additionally wish to (2) utilize the fact that the multiple 

phenotypes represent the same underlying trait, and (3) utilize SNP set association tests to 

borrow strength and information from SNPs within a set. There are no existing methods that 

simultaneously address these three challenges; this paper aims to fill this gap.

While several approaches have been proposed for modeling a single secondary phenotype 

(e.g., Lin and Zeng, 2009; Li et al., 2010; Hernán et al., 2004; Monsees et al., 2009), only a 

few authors have considered multiple secondary phenotypes. He et al. (2012) proposed a 

retrospective likelihood approach in which they use Gaussian copulas to model the 

dependence between disease status and the secondary phenotypes. Schifano et al. (2013) 

proposed a scaled linear regression method to study the effect of a single SNP on multiple 

continuous secondary phenotypes by accounting for case-control ascertainment through 
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Inverse Probability Weighting (IPW). Other methods for multivariate outcomes (e.g., 

Ferreira and Purcell, 2009; Zhou and Stephens, 2014) do not take the sampling mechanism 

into account. Numerous approaches have also been proposed for SNP set analysis of a single 

phenotype in the absence of ascertainment bias (e.g., Gauderman et al., 2007; Zhou et al., 

2013; Han and Pan, 2010; Wu et al., 2010, 2011a).

We propose to first test the association of a SNP set with the secondary outcomes, and then 

select the most highly associated SNPs using penalized estimating equations. First, we 

define an IPW pseudolikelihood based on the scaled linear model proposed by Schifano et 

al. (2013) that assumes the SNP-specific effects are shared across all scaled outcomes. Then, 

we adapt popular statistical methods for this model, and study their properties. Specifically, 

following Wu et al. (2011a) we develop a variance component score test for the SNP set, and 

following Fu (2003); Johnson et al. (2008); Sofer et al. (2014), we develop penalized 

estimating equations based on the proposed IPW pseudolikelihood, together with tuning 

parameter selection procedures. A challenging aspect of studying properties of target 

parameters and equations under biased sampling is that the observations are not identically 

distributed. The novelty of our approach lies in developing an IPW pseudolikelihood based 

on the scaled linear model, and in formulating appropriate IPW pseudolikelihood-based 

testing and selection procedures.

The paper is organized as follows. In Section 2, we describe the lung cancer genetic 

epidemiological study of multiple secondary smoking phenotypes. We present the model in 

Section 3, and propose the weighted variance component pseudo-score test in Section 4. In 

Section 5, we provide the derived penalized estimating equations for variable selection and 

study their asymptotic properties. We evaluate the performance of the proposed methods 

using simulation studies in Section 6. In Section 7, we provide the data analysis results from 

>16K available genes from the motivating study. We conclude with a discussion.

2. Motivating Lung Cancer Case-Control Study

In a lung cancer case-control GWAS conducted at Massachusetts General Hospital (MGH) 

(Schifano et al., 2013, and references therein), four continuous measures of smoking 

behavior (age of smoking initiation, years of smoking duration, average number of cigarettes 

smoked daily, and years of smoking cessation) were collected for both lung cancer cases and 

controls. Demographic and smoking characteristics of the ever-smoker study population of 

self-reported Caucasians are provided in Table 1. Genotyping was performed using the 

Illumina Human610-Quad BeadChip. There were 543,697 SNPs remaining after the quality 

control process, mapping to 16,270 genes (Kent et al., 2002). A total of n0 = 716 control and 

n1 = 673 case ever-smoker subjects have genotypic, covariate and smoking information.

Preliminary data analysis indicates that three of the four secondary smoking behavior 

outcomes (all except years of smoking cessation) are highly associated with the primary 

lung cancer outcome (p < 10−8). Since we do not know a priori which SNPs in the GWAS 

are associated with both the secondary smoking outcomes of interest and the primary lung 

cancer outcome, we are concerned about ascertainment bias in estimating and testing 

variants associated with the secondary smoking outcomes.
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3. The Model

3.1 The Scaled Marginal Model

Suppose m positively correlated continuous outcomes yi = (yi1, …, yim)T that measure the 

same underlying trait, a vector of SNPs gi (d × 1), and a vector of covariates xi (p × 1), are 

observed for the ith of n subjects. For simplicity, we assume an additive genetic model with 

gik representing the number of copies (or dosages for imputed data) of the minor allele for 

the kth SNP (k = 1, …, d). Let

(1)

where var  is the outcome specific scale parameter, βj are the covariate effects 

on scaled outcome j, and αk is the common effect of the kth SNP on all scaled outcomes 

(yi1, ⋯, yim). Note that these effects may vary across SNPs, but are assumed common across 

outcomes. This assumption is plausible, since the outcomes are scaled by σj and are assumed 

to measure the same underlying trait. The model proposed in Schifano et al. (2013) is a 

special case of (1) when d = 1.

3.2 Weighted pseudolikelihood approach

Pseudolikelihood (PL) provides an attractive and simple framework that does not require a 

full specification of the likelihood when it is too complex to specify (Gourieroux et al., 

1984). The PL function specifies only the first and second moments of outcomes, and allows 

the second moment (covariance/correlation structure) to be misspecified. A pseudologlike-

lihood function for  corresponding to model (1), assuming a working 

correlation matrix Rm (m × m) for multiple outcomes, is given by

(2)

where , Ψ = diag(σ2), , , Im is an m 
× m identity matrix, and 1m is a m × 1 vector of ones.

If participants were randomly sampled from the population, estimation of the SNP and 

covariate effects via maximization of (2) would lead to unbiased estimators of the population 

regression coefficients γ provided  is correctly specified. However, under 

case-control sampling, such an estimator may be biased. We correct this selection bias using 

the inverse-probability weighted pseudologlikelihood:

(3)
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where wi = π/p1 if Di = 1 and wi = (1 − π)/(1 − p1) if Di = 0, π is the population disease 

prevalence, Di is a case/control indicator (1/0), and p1 = n1/n is the proportion of cases in the 

case-control sample. The weight wi is proportional to the inverse probability of subject i 
being sampled in the case-control study dataset (Schifano et al., 2013).

3.3 Estimating Equations

To derive the estimating function for the mean parameter γ, we differentiate wpℓ(γ, Rm, Ψ) 

in (3) with respect to γ:

(4)

Equation (4) is unbiased even when Rm is misspecified. It is similar to a generalized 

estimating equation with an identity link, with two notable differences: the weighting, and 

the use of the scaled outcomes y* rather than the actual outcomes y, and as a result, only a 

correlation matrix is specified in the equation without scaling parameters. We estimate an 

unstructured correlation matrix Rm using the weighted method of moments by solving

(5)

Other types of method of moments estimators can be used to estimate a structured working 

correlation matrix Rm. In the simplest case of working independence, Rm is set to be Im. To 

estimate , j = 1, …, m, we use the following estimating equations which are free of Rm, 

following Roy et al. (2003):

(6)

The unpenalized estimators of γ, σ2, and Rm are obtained by jointly solving (4), (5), and (6). 

The resulting estimators of (γ, σ2) are consistent even when Rm is misspecified.

4. Testing for SNP set Effect

Under model (1), testing for a SNP set effect on the outcomes corresponds to H0: α = 0. We 

develop a variance component pseudo-score test under a mixed model formulation of this 

problem. Specifically, we assume the SNP effects αk, k = 1, …, d, arise from an arbitrary 

distribution with mean zero and variance τ. We also assume that the third and higher 

moments of the distribution of αk, k = 1 …, d, are of order o(τ). Under these assumptions, 

testing for SNP set effect reduces to testing the variance component with H0: τ = 0.

The weighted pseudo-score test statistic for H0: τ = 0 is given by
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where , , 

,  are the vectorized data, and W = diag (w11m, …, 

wn1m) is the nm×nm matrix with the weights for each subject (repeated m times for m 

outcomes) as the diagonal elements. The vector  consists of the estimated regression 

parameters under the null model, which is given in equation (1) but with only the covariates 

xi. Note that the outcome-specific variances in , suppressed in the notation as 

, are also estimated under the null model where α = 0. In principle, different 

assumptions on the SNP effects could be incorporated into the matrix GGT. For instance, 

specifying  allows different SNP effects across scaled 

outcomes. We emphasize that even if the common effect assumption does not hold, this test 

is still valid as it controls type I error, since under the null all SNP effects are identical to 0.

Under the null hypothesis, Uτ,0 follows a mixture of independent  distributions of the 

form , where λl are calculated from the data. In Supplementary Materials 

Sections S2.1–S2.3, we provide the full derivation of the variance component pseudo-score 

test for multiple (and a single) secondary outcomes and the details regarding the 

computation of the null distribution of the test statistic. The distribution of this mixture is 

calculated using Davies method (Davies, 1980), implemented in standard software.

5. SNP Selection via Penalized Estimation

To investigate which subset of SNPs are associated with the secondary phenotype(s), we 

provide a weighted penalized estimating equations approach for SNP selection.

5.1 The Penalized weighted pseudologlikelihood

Let Pλ(αk) ⩾ 0, k = 1, …, d denote a penalty function with a tuning parameter λ, where 

Pλ(·) is from a family of penalty functions that are singular at the origin and induce sparsity 

in the estimates; further required conditions on Pλ(·) will be specified later. Such penalties 

include the LASSO (Tibshirani, 1996), and “oracle”-type penalties such as SCAD (Fan and 

Li, 2001) and MCP (Zhang, 2010) penalties that have attractive asymptotic properties of 

consistency and uniform sparsity under weak conditions. The penalized negative weighted 

pseudologlikelihood, in which the penalty is applied on the sub-vector α of γ, can be written 

in the general form: .

5.2 The Penalized Weighted Estimating Equations

To estimate γ with a sparse estimator of α, we incorporate the sparse penalty into the 

estimating function for γ following the approach of Johnson et al. (2008). Thus, the 

estimating equation for γ for a case-control study of n individuals is given by
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(7)

where , and  is the sub-gradient of 

sparsity-inducing penalty function Pλ(·), and ◦ denotes a component-wise product. In our 

application, we penalize only the SNP coefficients α.

5.3 Asymptotic properties of the estimators

Under the regularity conditions provided in the Supplementary Materials (Section S3.1), the 

parameters estimated using the IPW pseudologlikelihood converge to the true parameters as 

the sample size n increases, even if the number of SNPs d diverges to infinity. For the 

following result, we assume that d/n → 0, but the results could easily be extended to 

log(d)/n → 0 if the outcomes are normally distributed, in a similar manner to Sofer et al. 

(2014). Theorem 1 assumes an oracle penalty function, and that the weights wi, i = 1, …, n 
are bounded, i.e., that the disease prevalence is not 0 or 1. Denote by ‖ · ‖F the Frobenius 

norm of a matrix. The proof of Theorem 1 is provided in the Supplementary Materials 

(Section S3.2).

Theorem 1—Let n, d → ∞ such that d/n → 0, and let m, p be fixed. Let A denote the set 

of indices of SNP coefficient vector α that are not zero, i.e., A = {k: αk ≠ 0} and |A| = s < 

∞. Let Zi,A be the ith design matrix with the subset of columns corresponding to the true 

model, and similarly γA the subvector of γ corresponding to the true model. Let the 

regularity conditions in Supplementary Materials Section S3.1 hold. Let RT be the true, 

unknown correlation matrix. The parameters  estimated by solving , , and 

 satisfy:

1. The estimator  is

a.
Consistent for γ, i.e. 

b. Uniformly sparse, i.e. 

c. Asymptotically normal in the true model: Let

then

2.
The estimator  is consistent 
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3. If an unstructured working correlation matrix is specified, then 

 If , then the covariance 

estimator of  is efficient with  asymptotically.

Note that condition (c) applies when the working correlation matrix Rm is misspecified. 

Also note that for a set of non-zero estimated effects Â, we have that the sandwich 

covariance matrix is obtained by subsetting the matrices Zi according to the set of non-zero 

SNP effects to obtain Zi,Â, i = 1, …, n. Then the sandwich covariance matrix is the 

corresponding . Asymptotic normality is only guaranteed for the true, unknown, model, 

as effect estimates of truly zero effects are usually estimated as zero, by asymptotic sparsity.

5.4 Tuning Parameter Selection with wBIC

We propose a weighted Bayesian Information-like Criterion (wBIC) that inverse-probability 

weights each observation’s contribution to the pseudologlikelihood when selecting the 

tuning parameter λ. Let Â denote a set of indices indicating the non-zero coefficients of . 

Let  denote the |Â|-dimensional vector of nonzero regression coefficients, and let ZÂ and 

Zi, Â be the corresponding design matrices for all observations and a single observation, 

respectively. Let ,  and  be the estimates associated with the model indexed by the 

coefficients in Â. For the model indexed by the coefficients in Â, define the wBIC as

(8)

with  as a measure of model complexity (e.g., Gao and Song, 2010) where

In practice, we use the estimate  where

(9)

(10)
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5.5 Computation of the penalized estimators

5.5.1 Computation of estimators for a fixed tuning parameter—We use an MM 

algorithm following Johnson et al. (2008). We begin by fitting the unpenalized model to 

estimate , σ2(0) and . Note that if mp + d > n, then other starting values are 

recommended, as discussed in the Supplementary Materials, Section S3.3.4. We then fix 

σ2(0) and  for the penalized estimation of γ, where the latter is done by using a local 

quadratic approximation (Fan and Li, 2001), so that

(11)

where , Σλ(γ) = diag{0mp, qλ(|α1|)/(ε +|α1|), …, qλ(|αd|)/(ε 

+ |αd|)}, and  and y∗ = Ψ−1/2,(0)y in . The mp zeros along the Σλ(γ) diagonal 

correspond to the unpenalized covariate effects. The updates are repeated until convergence.

5.5.2 Using the wBIC for tuning parameter selection—For small scaled coefficients 

common in GWAS, we recommend comparing wBIC on “re-evaluated data” for different 

choices of λ. By this, we mean (a.) set a λ sequence; (b.) for each λ in the sequence, 

perform the weighted penalized estimation described in Section 5.5.1 to identify the set A of 

nonzero regression coefficients in γ; and (c.) fit weighted, but unpenalized models 

containing only those variables in A from (b.), and select appropriate λ by minimizing the 

criteria using this “re-evaluated” data. This procedure had better finite-sample performance 

than using the penalized version of the effect estimates in calculating wBIC, likely due to the 

bias caused by penalization, which could be high when both effect and sample sizes are 

small.

6. Simulation Studies

We simulated data in which the SNP(s) affect both the primary disease outcome (D), and the 

secondary outcomes of interest, which in turn also affect D. Various scenarios were 

investigated that are reported here and in the Supplementary Materials. The Supplementary 

Materials (Sections S2.4 and S3.3) include results from additional simulations to study the 

power gain resulting from the assumption of SNP-specific common effects across outcomes, 

the effect of different working correlation structures, the effect of using incorrect weights, 

the loss in power caused by using outcomes that are not associated with the SNP set, and the 

effect of a large number of (null) SNPs relative to the sample size n. In Sections S2.4.7 and 

S3.3.3 we also demonstrate scenarios which induce a selection bias towards the null, thus 

reducing the power of the unweighted procedures.

6.1 Data generation

We generated genotypes of a general population of 100,000 people using Hapgen2 based on 

the CEU population for 87 SNPs near or within gene CDH18, and then sample n1 cases and 

n0 controls from the population. We selected “causal” SNPs, and specified their effect sizes 
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α on the scaled secondary outcomes  under the common 

effect assumption. Thus, we had  and , where  is the vector 

(possibly of length 1) of causal genotypes of individual i, 0 is the vector with m zero entries, 

and R is the correlation matrix between m scaled secondary outcomes. The correlation 

matrix R matched the observed (unstructured) correlations in the lung cancer data set. The 

secondary outcomes were then scaled so that y = diag(ψ)y*, where ψ is the vector of 

outcome standard deviations estimated from the data.

The disease probability for each individual was generated from the logistic model 

. Note that either or , depending on the 

simulation setting. Disease status for each individual was sampled from a binary random 

variable using the calculated disease probabilities. The parameter β0 was set so that the 

desired population prevalence was achieved (rare: π ≈ 0.01 or common: π ≈ 0.08). The lung 

cancer data most closely resemble the rare disease setting, but for more general applicability, 

we investigate both the rare and common disease settings.

6.2 Testing

We compared the type I error and power of several tests under the rare and common disease 

settings. The simulations had n0 = n1 = 500 cases and controls. We selected a single causal 

SNP, rs6869352 (minor allele frequency (MAF) = 0.37 in the CEU population; |r2| > 0.5 

with 9 other SNPs), from the gene CDH18 affecting both the primary and secondary 

outcomes (i.e., , both of length 1). Following Monsees et al. (2009) and consistent 

with the effect sizes observed in the lung cancer data, we set the primary disease model 

parameters to be βg= log(1.7)/2, log(1.7), and βyj ∈ {log(2)/2, log(2)}, j = 1,…,m. The 

compared tests for type I error estimation included the ‘unweighted’ pseudo-score test that 

assumed the weights for all cases and controls to be 1 (i.e., ignored disease status), the 

pseudo-score test using controls only (‘controls’), the proposed IPW pseudo-score test 

(‘IPW’), as well as MANOVA, and the method of Conneely and Boehnke (2007) ‘CB’ that 

regresses each outcome against each variant and reports the minimum p-value adjusted for 

multiplicity of both traits and SNPs. Both MANOVA and CB are unweighted. For power 

estimation, we also compare the ‘minP-oracle’ method, which first tests all SNPs in the set 

individually using SMAT (Schifano et al., 2013), and then applies a Bonferroni correction to 

the smallest p-value based on the (oracle) effective number of tests ne, where ne was the 

number such that under the null, min{pk}/ne = 0.001, k = 1,…, 87, (since the p-value 

threshold for power was 0.001). Note that this test cannot be implemented in practice.

Table 2 provides the estimated type I error for p-values thresholds 0.01 and 0.001 over 105 

simulations under the null hypothesis of no SNP set effect on the multiple secondary 

outcomes, and Figure 1 provides power curves of the tests that controlled the type I error for 

βg = log(1.7) when varying the SNP effect on the scaled outcomes α, over 5,000 

simulations; power curves for all investigated tests under additional settings are provided in 

Supplementary Materials Section S2.4.3. As expected, ‘IPW’ and ‘controls’ always have 

estimated type I error rates close the nominal level, with ‘IPW’ being somewhat protective. 

When a disease is rare, they have almost identical power curves, but when the disease is 
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more prevalent ‘IPW’ becomes more powerful, since it takes advantage of the information 

from the cases that now have a higher representation in the population. Here, the minP-

oracle test is always less powerful than IPW. However, this may not be always true, e.g., in 

scenarios with less LD between variants and a stronger effect of the causal SNP, we expect 

the minP-oracle to be more powerful.

In general, all unweighted methods have higher bias when the disease is rare (i.e., when the 

case-control sample is less representative of the population) as compared to common. Bias 

for the unweighted methods also increases when βg and βy increase. In the specific settings 

of common disease and βg = log(1.7),βyj= log(2)/2, MANOVA controlled the type I error. 

However, it also had a very low power. In the Supplementary Materials (Section S2.4.2), we 

also provide the estimates of the size of the ‘IPW’ method for lower type I error levels.

6.3 Variable selection

Data were simulated in the same manner as in the testing simulations except that we 

removed the SNPs with absolute pairwise correlations greater than 0.75 in order to more 

reliably evaluate the performance of the proposed variable selection procedure. Our method 

allows for SNPs that are in LD and hence stringent LD pruning is not needed.

Of the remaining 39 SNPs, we set three SNPs as causal for the secondary outcomes: 

rs4242066 (G1), rs17222312 (G2), and rs12655266 (G3) (MAF between 0.08–0.12), i.e., gc 

= {G1, G2, G3}. These three SNPs were weakly correlated with each other, with absolute 

correlation ranging between 0.051–0.115. In both Scenarios 1 and 2 depicted in Figure 2, 

G1–G3 are associated with the secondary outcomes Y1–Y4, as well as D, and D affects the 

Sampling (S) in the case-control dataset. G1–G3 are moderately correlated with the 

remaining SNPs in the set, G4–G39 (absolute correlation between G1–G3 and G4–G39: 

0.040 – 0.554). In Scenario 2, G4–G6 (rs347743, rs4866042, rs6869352) are associated with 

D, but not Y1–Y4 conditional on G1–G3; thus, . In 

both scenarios we set αk = −clog10(MAFk) where c = 0.25 for each causal SNP k, k = 1,…, 

3, leading to common effect sizes between 0.23–0.28. Following Monsees et al. (2009), the 

disease model parameters were set to βg = (log(1.7),…, log(1.7))T and βy = (log(2),…, 

log(2)). Each simulated dataset has n0 = n1 = 1000. Note that for variable selection, we wish 

to identify SNPs G1–G3 as nonzero; nonzero effects for SNPs G4–G39 would represent 

false positives in the presence of causal SNPs G1–G3.

Across 500 simulations, we compare the performance of the models selected based on wBIC 

with two other criteria: an unweighted BIC (uwBIC) and a control-only BIC (cBIC). For 

uwBIC, the inverse probability weights are not used. For cBIC, we analyze controls-only 

data. Precise definitions of these criteria are provided in the Supplementary Materials 

(Section S3.3). Otherwise, we always used the procedure described in Section 5.5.2 with the 

MCP penalty with fixed parameter a = 3.7. The λ sequence contained 100 values between 

10−5 and 15, equally spaced on the log scale. We used estimates of  and Rm from the full 

unpenalized model containing all covariates.
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We evaluated the performance of the proposed variable selection procedure based on the 

following criteria: # Nonzero: the number of αk estimated as non-zero (averaged over 

simulations; true=3); T: Proportion of simulations selecting the true model; FP: average 

number of zero αk’s that are incorrectly estimated as non-zero (false positives) across 

simulations (max=36); FN: average number of non-zero αk’s that are incorrectly estimated 

as zero (false negatives) across simulations (max=3); and Prediction Error 

, where Znew, ynew designate a dataset with 

nnew = 500 observations generated under the same model as the training data used to 

estimate the model parameters,  and  are estimates of the parameters from the 

training data, and .

The variable selection results are provided in Table 3. Note first that, particularly under a 

low disease prevalence, the wBIC and cBIC perform similarly, but the wBIC performs better 

because it incorporates information from both the controls and the cases (appropriately 

downweighted), and becomes more beneficial as the disease prevalence increases. Consider 

now uwBIC. Under Scenario 1, it outperforms wBIC and cBIC in terms of T, FP, and FN, 

but wBIC performs best in terms of PE. However, the effect estimates are biased with 

uwBIC when we do not account for case-control ascertainment (see Supplementary 

Materials Section S3.3.1, Table S3, and related discussion). Under Scenario 2, uwBIC 

selection performs worse than wBIC and cBIC, particularly using the measures T and FP, 

and more so when the disease is rare. This is because G4–G6 are often selected by uwBIC 

due to the uncontrolled selection bias, and are then false positives. SNP G5 was the most 

common offender, likely due to its somewhat high absolute correlation of 0.55 with G1. 

Note that uwBIC can also cause an increase in FN in settings where the selection bias results 

in weakened estimated effects of the causal SNPs; see Supplementary Materials Section 

S3.3.3.

In Table S3 in the Supplemental Materials, we also report the estimation performance in 

terms of bias, standard deviation (SD), and root-mean-squared error (RMSE) for α1 − α3 

corresponding to G1–G3. These metrics are reported as averages across all simulations, and 

as averages across the simulations in which the corresponding effect was estimated as non-

zero. In all settings, the magnitude of the bias is largest for the uwBIC approach, consistent 

with expectations. The SD for estimates of wBIC are often larger than those of uwBIC. 

When computed conditionally on the SNP being selected, the RMSEs of the wBIC estimates 

are all smaller than their uwBIC counterparts except for G2 under common disease.

7. Analysis of the Lung Cancer Data

We performed a genome-wide SNP set analysis of the 16,270 genes in the MGH smoking 

behavior data set described in Section 2 using the weighted pseudo-score test, assuming a 

disease prevalence of 7.35 × 10−3. The (secondary) outcomes were 

. We adjusted for age, 

gender, college education, and 4 principal components to correct for population substructure. 

The estimated effects (in absolute value) of the outcomes on the primary lung cancer 
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outcome were (0.72, 0.66, 0.39, and 0.05), some of which are larger than the effects 

investigated in the simulations (βyj ∈ {log(2), log(2)/2}). We first fit a “null model” (without 

genotypes); this step took less than 2 minutes. We then scanned the genome and tested the 

effects of each of ~16K available genes. This step took a little under 7 hours when using a 

single processor of an Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz compute node.

We considered only the 11,890 genes with at least 3 variants. Therefore, the type I error 

threshold for declaring the genome-wide significance of the associations between genes and 

smoking behavior is 0.05/11,890 = 4.2 × 10−6. None of the genes passed the significance 

threshold, but we present the top associated genes (as determined by their p-values) in Table 

4. For each gene, we report the number of SNPs it contained, its p-value, and a comparison 

to SMAT in terms of computing time and in terms of p-value. For SMAT we report the 

minimum p-value in the SNP set, both with and without a multiple testing adjustment for the 

number of SNPs.

One can see that the SNP set test is faster by an order of magnitude for various sizes of SNP 

sets, and that the p-value obtained using the SNP set test for these genes is often comparable 

to the unadjusted SMAT p-value, and usually smaller than the adjusted SMAT p-value. The 

CDH18 gene reported in Schifano et al. (2013) (but not a top gene in the present analysis) 

had p-value 0.005 when using the proposed SNP set test, while its minimum SMAT p-value 

was 9.5 × 10−8 (1.4 × 10−5 after applying Bonferroni adjustment testing 150 variants) 

suggesting that in the presence of an extremely strong effect of a few SNPs (stronger than in 

the simulated data) that are in low LD with the remaining SNPs, the variance component test 

may be less powerful than a single-SNP based test.

Next, we performed variable selection for the SNPs in the top associated genes using the 

MCP penalty with the wBIC. The complete list of nonzero SNPs from the top genes, the 

SNPs in LD with these SNPs with |r| > 0.75 (Yi et al., 2015), and also timing results, are 

provided in Supplementary Materials Section S3.4.

8. Discussion

We presented the use of pseudolikelihood methods to test for the effect of a SNP set on 

multiple secondary traits and to perform variable selection in case-control genetic 

epidemiological studies. Specifically, we proposed a variance component test for the SNP 

set effect on multiple secondary outcomes, and a penalized estimation procedure to 

simultaneously estimate the SNP and covariate effects while performing variable selection, 

both based on the IPW pseudolikelihood. We further proposed a weighted BIC to select the 

tuning parameter required for model selection. We provide theoretical justifications for the 

proposed methods. Our simulation study shows that the proposed methods perform well.

We emphasize that our approach does not provide p-values for individual SNPs; we only 

have a p-value for the SNP set test. However, the test controls type I error, and therefore, the 

probability of the event that at least one variant in the associated set is being selected is 

smaller than the probability of rejecting the null of no association between the SNP set and 
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the outcome, which is bounded by this type I error when the null hypothesis is true. It is a 

topic of future work to assign a p-value for a specific SNP post testing and selection.

Our proposed method assumes the secondary outcomes are positively correlated after a 

proper transformation and measure the same underlying trait. An alternative approach is to 

develop a latent variable model for multiple secondary outcomes and regress the latent 

variable on a SNP-set. Latent variable IPW SNP procedures can be developed and possibly 

used in conjunction with the pseudo-score test for a single secondary outcome (see 

Supplementary Materials Section S2.3). Future research along these lines is needed.

In some of our simulations settings (e.g., common disease, small secondary outcome and 

genotype effects on disease), the naive unweighted test protected the type I error, and was 

also more powerful than the IPW test. However, as shown in Tchetgen Tchetgen (2014), the 

association between a genotype and a single secondary outcome is equal to their association 

in the general population, plus a term that can be decomposed into two variationally 

independent functions: a function measuring the disease dependence on the genotype, and a 

so-called selection bias function, describing the difference between the secondary outcome 

mean in the cases and controls. Both functions depend on the genotype, and therefore, a 

data-driven method to estimate such bias is not feasible. It is also less clear how to estimate 

this bias when multiple secondary outcomes are used. Moreover, in some settings the bias 

terms can also “negate” the effect of the SNP on the disease, thereby reducing the power of 

the unweighted estimator and also degrading model selection performance (see 

Supplementary Materials, Sections S2.4.7 and S3.3.3). Therefore, we recommend using the 

weighted procedures.

In the simulations, we compared our proposed test to the “minP-oracle” that tests each 

variant in the set using SMAT, and applies a Bonferroni correction using the effective 

number of tests, as determined by the simulations. Unfortunately, for real data, many 

existing methods that correct for the effective number of tests are based on the LD structure 

of the SNP set, assuming that the test statistics share the same correlation structure. This 

assumption does not hold for IPW tests.

Motivated by the lung cancer GWAS data set, we focused on common variants. However, as 

with other variance component tests, our proposed test can be useful for testing rare variants 

as well. Extending the proposed approach for rare variants, and incorporating the burden test 

via a similar approach as with SKAT-O (Lee et al., 2012) is for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power curves of the SNP set tests, for all tests that controlled the type I error: the IPW and 

controls-only pseudoscore tests, “minP oracle” test that performs association testing for each 

SNP separately, and takes the minimum p-value with Bonferroni adjustment for the (oracle) 

effective number of tests, and MANOVA. The figure compares two disease prevalence 

settings: common (8%) and rare (1%). There is a single causal SNP G, affecting both the 

disease (D) and the secondary outcomes (Y). The effect of G on D is βg = log(1.7), and the 

effect of Y on D (βyj) is either log(2) or log(2)/2. Power was calculated as the proportion of 

simulations with p-value< 0.001.
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Figure 2. 
Variable Selection Simulation Scenarios. In both Scenarios 1 and 2, SNPs G1–G3 are 

associated with the secondary outcomes Y1–Y4, as well as Disease Status (D), and Disease 

Status affects the Sampling (S) in the case-control dataset. SNPs G1–G3 are moderately 

correlated with the remaining SNPs in the set, G6–G39. In Scenario 2, SNPs G4–G6 are 

associated with Disease Status (D), but not the secondary outcomes Y1–Y4 conditional on 

G1–G3.
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Table 1

Demographic Characteristics of MGH Caucasian, ever-smoker study participants, according to current 

smoking status. Entries are Mean (S.D.) for continuous variables and Count (%) for binary.

Control Case

Former
(N=492)

Current
(N=224)

Former
(N=393)

Current
(N=280)

Age 61.87 (10.51) 53.84 (11.48) 68.38 (9.08) 60.79 (10.17)

Gender(M) 256 (52.03%) 81 (36.16%) 220 (55.98%) 144 (51.43%)

College Grad (Y) 171 (34.76%) 46 (20.54%) 133 (33.84%) 62 (22.14%)

Age of Smoking Initiation 16.97 (3.60) 16.83 (4.57) 17.28 (4.38) 16.48 (3.79)

Smoking Duration 26.40 (14.63) 35.64 (11.93) 39.42 (14.45) 43.58 (10.24)

Average CPD 21.26 (15.02) 20.55 (11.53) 28.97 (14.87) 27.56 (13.29)

Years of Smoking Cessation 20.91 (11.90) 0.05 (0.17) 17.25 (11.98) 0.14 (0.22)

Biometrics. Author manuscript; available in PMC 2017 December 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sofer et al. Page 20

Ta
b

le
 2

Ty
pe

 I
 e

rr
or

 c
om

pa
ri

so
ns

, r
ep

or
te

d 
as

 r
at

io
s 

be
tw

ee
n 

th
e 

es
tim

at
ed

 a
nd

 d
es

ir
ed

 le
ve

ls
, o

f 
th

e 
va

ri
ou

s 
co

m
pa

re
d 

te
st

s 
ba

se
d 

on
 1

05  
si

m
ul

at
io

ns
 u

nd
er

 th
e 

nu
ll 

of
 n

o 
SN

P 
se

t e
ff

ec
t o

n 
th

e 
se

co
nd

ar
y 

ou
tc

om
es

: ‘
un

w
ei

gh
te

d,
’-

th
e 

ps
eu

do
-s

co
re

 te
st

 a
ss

um
in

g 
w

ei
gh

ts
 e

qu
al

 to
 1

 f
or

 a
ll 

ob
se

rv
at

io
ns

, w
hi

ch
 is

 

eq
ui

va
le

nt
 to

 a
 te

st
 th

at
 ig

no
re

s 
di

se
as

e 
st

at
us

; ‘
co

nt
ro

ls
 o

nl
y’

-t
he

 p
se

ud
o-

sc
or

e 
te

st
 u

si
ng

 o
nl

y 
co

nt
ro

l p
ar

tic
ip

an
ts

; ‘
IP

W
’-

th
e 

pr
op

os
ed

 in
ve

rs
e 

pr
ob

ab
ili

ty
 w

ei
gh

te
d 

ps
eu

do
-s

co
re

 te
st

, M
A

N
O

V
A

, a
nd

 ‘
C

B
’-

th
e 

m
et

ho
d 

of
 C

on
ne

el
y 

an
d 

B
oe

hn
ke

 (
20

07
) 

fo
r 

ad
ju

st
in

g 
th

e 
m

in
im

um
 p

-v
al

ue
 f

or
 

m
ul

tip
le

 te
st

in
g.

 T
he

se
 s

im
ul

at
io

ns
 s

et
 th

e 
ef

fe
ct

 o
f 

a 
si

ng
le

 c
au

sa
l S

N
P 

G
 o

n 
th

e 
di

se
as

e 
st

at
us

 (
D

) 
as

 β
g 
∈

 {
lo

g(
1.

7)
/2

, l
og

(1
.7

)}
, a

nd
, t

he
 e

ff
ec

t o
f 

th
e 

se
co

nd
ar

y 
ou

tc
om

es
 (

Y
) 

as
 β

g 
∈

 {
lo

g(
2)

/2
, l

og
(2

)}
, j

 =
 1

,…
, 4

. S
ce

na
ri

os
 w

ith
 in

fl
at

ed
 ty

pe
 I

 e
rr

or
 a

re
 m

ar
ke

d,
 w

ith
 a

n 
as

te
ri

sk
. W

e 
de

te
rm

in
ed

 th
at

 a
 te

st
 

ha
s 

in
fl

at
ed

 ty
pe

 I
 e

rr
or

 if
 th

e 
95

%
 c

on
fi

de
nc

e 
in

te
rv

al
 a

ro
un

d 
an

 e
st

im
at

ed
 ty

pe
 I

 e
rr

or
 r

at
e 

do
es

 n
ot

 in
cl

ud
e 

th
e 

de
si

re
d 

va
lu

e 
(w

hi
ch

 is
 th

e 
p-

va
lu

e 

th
re

sh
ol

d 
us

ed
).

 T
he

 c
on

fi
de

nc
e 

in
te

rv
al

s 
us

ed
 th

e 
nu

ll 
st

an
da

rd
 e

rr
or

, s
o 

in
 p

ra
ct

ic
e 

te
st

s 
ar

e 
in

fl
at

ed
 u

nd
er

 th
e 

0.
01

 p
-v

al
ue

 th
re

sh
ol

d 
if

 th
e 

ra
tio

 b
et

w
ee

n 

th
e 

es
tim

at
ed

 a
nd

 d
es

ir
ed

 ty
pe

 I
 e

rr
or

 is
 la

rg
er

 th
an

 1
.0

6,
 a

nd
 u

nd
er

 th
e 

0.
00

1 
p-

va
lu

e 
th

re
sh

ol
d 

if
 th

is
 r

at
io

 is
 la

rg
er

 th
an

 1
.1

9.

p-
va

lu
e 

th
re

sh
ol

d
β y

β g
un

w
ei

gh
te

d
co

nt
ro

ls
 o

nl
y

IP
W

M
A

N
O

V
A

C
B

R
ar

e 
di

se
as

e 
(1

%
 p

re
va

le
nc

e)

0.
01

lo
g(

2)
/2

lo
g(

1.
7)

/2
1.

15
*

0.
95

0.
95

0.
95

1.
02

0.
00

1
lo

g(
2)

/2
lo

g(
1.

7)
/2

1.
24

*
0.

90
0.

89
1.

05
1.

03

0.
01

lo
g(

2)
lo

g(
1.

7)
/2

1.
60

*
0.

96
0.

94
1.

05
1.

31
*

0.
00

1
lo

g(
2)

lo
g(

1.
7)

/2
2.

02
*

0.
91

0.
90

1.
15

1.
43

*

0.
01

lo
g(

2)
/2

lo
g(

1.
7)

1.
71

*
0.

96
0.

95
1.

07
*

1.
26

*

0.
00

1
lo

g(
2)

/2
lo

g(
1.

7)
2.

23
*

0.
91

0.
90

1.
10

1.
35

*

0.
01

lo
g(

2)
lo

g(
1.

7)
4.

06
*

0.
96

0.
95

1.
48

*
3.

14
*

0.
00

1
lo

g(
2)

lo
g(

1.
7)

7.
23

*
0.

92
0.

89
1.

70
*

5.
79

*

C
om

m
on

 d
is

ea
se

 (
8%

 p
re

va
le

nc
e)

0.
01

lo
g(

2)
/2

lo
g(

1.
7)

/2
1.

06
*

0.
96

0.
94

1.
05

0.
98

0.
00

1
lo

g(
2)

/2
lo

g(
1.

7)
/2

1.
09

0.
92

0.
88

0.
80

0.
90

0.
01

lo
g(

2)
lo

g(
1.

7)
/2

1.
23

*
0.

99
0.

90
1.

07
*

1.
09

*

0.
00

1
lo

g(
2)

lo
g(

1.
7)

/2
1.

34
*

0.
95

0.
83

1.
45

1.
10

0.
01

lo
g(

2)
/2

lo
g(

1.
7)

1.
31

*
0.

99
0.

94
1.

02
1.

08
*

0.
00

1
lo

g(
2)

/2
lo

g(
1.

7)
1.

52
*

0.
95

0.
87

1.
00

1.
23

*

0.
01

lo
g(

2)
lo

g(
1.

7)
2.

05
*

1.
05

0.
89

1.
24

*
1.

45
*

0.
00

1
lo

g(
2)

lo
g(

1.
7)

2.
86

*
1.

10
0.

84
1.

05
1.

77
*

Biometrics. Author manuscript; available in PMC 2017 December 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sofer et al. Page 21

Ta
b

le
 3

V
ar

ia
bl

e 
se

le
ct

io
n 

pe
rf

or
m

an
ce

 u
si

ng
 th

e 
pe

na
liz

ed
 p

se
ud

ol
ik

el
ih

oo
d 

m
et

ho
d.

 T
he

 tu
ni

ng
 p

ar
am

et
er

 w
as

 c
ho

se
n 

us
in

g:
 w

B
IC

-w
ei

gh
te

d 
B

IC
; u

w
B

IC
-

un
w

ei
gh

te
d 

B
IC

; c
B

IC
-B

IC
 u

si
ng

 c
on

tr
ol

s 
on

ly
.

π
 =

 0
.0

1
π

 =
 0

.0
8

# 
N

on
ze

ro
T

F
P

F
N

P
E

# 
N

on
ze

ro
T

F
P

F
N

P
E

Sc
en

ar
io

 1

uw
B

IC
   

   
3.

13
0.

84
0.

16
4

0.
03

0
4.

08
2

3.
15

0.
84

0.
16

8
0.

02
0

4.
22

9

w
B

IC
   

   
2.

93
0.

63
0.

19
6

0.
27

0
4.

06
2

3.
02

0.
68

0.
20

6
0.

18
8

4.
05

5

cB
IC

   
   

3.
02

0.
57

0.
29

2
0.

27
6

4.
07

6
3.

03
0.

55
0.

32
4

0.
29

2
4.

09
6

Sc
en

ar
io

 2

uw
B

IC
   

   
3.

70
0.

40
0.

73
8

0.
04

2
4.

11
6

3.
38

0.
66

0.
39

8
0.

01
6

4.
37

9

w
B

IC
   

   
3.

00
0.

68
0.

20
0

0.
20

2
4.

03
1

3.
01

0.
65

0.
21

8
0.

20
6

4.
16

8

cB
IC

   
   

3.
06

0.
60

0.
30

2
0.

24
0

4.
04

7
3.

02
0.

52
0.

33
6

0.
31

8
4.

19
7

Biometrics. Author manuscript; available in PMC 2017 December 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sofer et al. Page 22

Ta
b

le
 4

C
om

pa
ri

so
n 

be
tw

ee
n 

th
e 

co
m

pu
tin

g 
tim

es
 a

nd
 p

-v
al

ue
s 

ob
ta

in
ed

, b
y 

th
e 

va
ri

an
ce

 c
om

po
ne

nt
 p

se
ud

os
co

re
 te

st
 a

nd
 S

M
A

T
 (

ob
ta

in
ed

 o
n 

ea
ch

 S
N

P 
in

 th
e 

SN
P 

se
t)

, f
or

 th
e 

to
p 

ge
ne

s 
id

en
tif

ie
d 

in
 th

e 
ge

ne
-b

as
ed

 G
W

A
S.

 C
om

pu
ta

tio
n 

tim
e 

is
 g

iv
en

 in
 s

ec
on

ds
; f

or
 S

M
A

T,
 it

 is
 th

e 
tim

e 
of

 e
st

im
at

in
g 

th
e 

ef
fe

ct
 o

f 

al
l S

N
Ps

 in
 th

e 
se

t. 
Fo

r 
SM

A
T,

 w
e 

al
so

 r
ep

or
t t

he
 m

in
im

um
 p

-v
al

ue
 in

 th
e 

SN
P 

se
t o

bt
ai

ne
d 

by
 S

M
A

T,
 w

ith
 a

nd
 w

ith
ou

t a
 B

on
fe

rr
on

i m
ul

tip
le

 te
st

in
g 

ad
ju

st
m

en
t f

or
 th

e 
nu

m
be

r 
of

 S
N

Ps
 in

 th
e 

se
t.

G
en

e 
Sy

m
bo

l
C

hr
# 

SN
P

s
ti

m
e 

va
rC

om
p

ti
m

e 
SM

A
T

p 
va

rC
om

p
m

in
-p

 S
M

A
T

 (
un

ad
ju

st
ed

)
m

in
-p

 S
M

A
T

 (
ad

ju
st

ed
)

M
V

P
16

4
1.

44
4.

30
3.

43
E

–0
5

1.
99

E
–0

5
7.

96
E

–0
5

C
C

D
C

73
11

23
1.

67
26

.8
0

9.
23

E
–0

5
2.

01
E

–0
5

4.
62

E
–0

4

A
R

H
G

A
P3

5
19

6
1.

64
6.

95
4.

60
E

–0
4

6.
21

E
–0

4
3.

73
E

–0
3

N
U

P9
3

16
16

1.
41

17
.1

0
4.

80
E

–0
4

6.
01

E
–0

6
9.

62
E

–0
5

SP
R

E
D

1
15

13
1.

42
14

.5
2

5.
94

E
–0

4
2.

11
E

–0
4

2.
74

E
–0

3

N
B

E
A

13
10

5
2.

74
12

4.
61

6.
08

E
–0

4
6.

88
E

–0
5

7.
22

E
–0

3

Biometrics. Author manuscript; available in PMC 2017 December 28.


	Summary
	1. Introduction
	2. Motivating Lung Cancer Case-Control Study
	3. The Model
	3.1 The Scaled Marginal Model
	3.2 Weighted pseudolikelihood approach
	3.3 Estimating Equations

	4. Testing for SNP set Effect
	5. SNP Selection via Penalized Estimation
	5.1 The Penalized weighted pseudologlikelihood
	5.2 The Penalized Weighted Estimating Equations
	5.3 Asymptotic properties of the estimators
	Theorem 1

	5.4 Tuning Parameter Selection with wBIC
	5.5 Computation of the penalized estimators
	5.5.1 Computation of estimators for a fixed tuning parameter
	5.5.2 Using the wBIC for tuning parameter selection


	6. Simulation Studies
	6.1 Data generation
	6.2 Testing
	6.3 Variable selection

	7. Analysis of the Lung Cancer Data
	8. Discussion
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3
	Table 4

