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Abstract 

This paper introduces a “weighted” matching algorithm to 
estimate a robot’s planar displacement by matching two- 
dimensional range scans. The influence of each scan point on 
the overall matching error is weighted according to its uncer- 
tainty, We develop uncertainty models that account for effects 
such as measurement noise, sensor incidence angle, and corre- 
spondence error. Based on models of expected sensor uncer- 
tainty, our algorithm computes the appropriate weighting for 
each measurement so as to optimally estimate the displacement 
between two consecutive poses. By explicitly modeling the var- 
ious noise sources, we can also calculate the actual covariance 
of the displacement estimates instead of a statistical approxi- 
mation of it. A realistic covariance estimate is necessary for 
further combining the pose displacement estimates with addi- 
tional odometric and/or inertial measurements within a local- 
ization framework [l]. Experiments using a Nomad 200 mobile 
robot and a Sick LMS-200 laser range finder illustrate that the 
method is more accurate than prior techniques. 

1 Introduction and Preliminaries 

A robot’s ability to determine and maintain knowledge of its ab- 
solute position is a basic requirement for long term autonomous 
navigation and operation. Consequently, the subjects of local- 
ization and mapping have received considerable attention (e.g., 
see [2,3,4,5,6]). Two-dimensional range finders, such as laser 
range finders [7] or rings of ultrasonic range sensors [SI, are 
commonly used as a part of many mobile robot localization and 
mapping procedures. This paper introduces a “weighted” range 
sensor matching algorithm to estimate a robot’s displacement 
between the configurations where range scans are obtained. 
This novel algorithm takes into account several important physi- 
cal phenomena that affect range sensing accuracy, and that have 
been neglected in prior work. Our experiments (Section 6)  show 
that this algorithm is not only efficient, but more accurate than 
non-weighted matching methods, such as that of Ref. [9]. In 
addition, by computing the actual covariance of the displace- 
ments, the weighted matching algorithm provides the basis for 
optimal fusion of these estimates with odometric andor iner- 
tial measurements [ 11 and subsequently support localization and 
mapping tasks. 

To best understand the content of this paper and its contribu- 
tions, we fust describe the basic problem, and how our solution 
approach differs from previous ones. We focus on mobile robots 
operating in planar environments. Our method is best suited to 
indoor environments, though it can be extended to structured 
outdoor environments. We assume that the robot is equipped 
with odometry and a steerable range sensor. These distance 
measurements can come from sensors such as sonars, infrareds, 
cameras, radars etc. The basic principle behind our approach of 
incorporating sensor noise models into the displacement estima- 
tion algorithm generally applies to any case of dense range data 
matching processes. Different sensor noise/uncertainty mod- 
els, which will be based on the particular characteristics of each 
sensor, are needed for different applications. 

J 
Figure 1: Geometry of the range sensing process 

The robot starts at an initial configuration, 91, and moves 
through a sequence of configurations, or poses, gi, i = 
2 , .  . . , m. Here gi E SE(2) denotes the robot’s position and 
orientation relative to a fixed reference frame, go. We assume 
that at each pose, the robot measures the range to the boundary 
of its nearby environment along rays which are separated by a 
uniform angle,’ ,B (see Fig. 1). Let the set of ni scan points in 
the 2% pose be denoted by {U:}, k = 1, . . . , ni. The scan point 
coordinates are described in the robot’s body frame, and the kth 
scan point in pose i takes the form: 

‘The extension to non-uniform angle p is straight forward. 
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where 
ary in the direction denoted by 8; (see Fig. 1). 

Our main goal is to accurately estimate the robot’s displace- 
ment between poses by matching range data. First, assume 
that the range scans at poses i and j have a sufficient number 
of corresponding points to be successfully matched (see Sec- 
tion 4). Let {U:, u i }  for IC = 1,. . . , nij be the set of cor- 
responding scan point pairs. From these pairs we first want 
to estimate the relative displacement between poses i and j: 
gij = giT1gj = (&j,pij) where 

is the measured distance to the environment’s bound- 

i.e., the displacement is described by a translation (As,, Ayij) 
and a rotation, A$,j. We next wish to estimate the covariance, 
P j ,  of the displacement estimate. This covariance is necessary 
mainly for two reasons. First, it i s  an indicator of the quality of 
the displacement estimates. Large diagonal elements of the co- 
variance matrix indicate increased uncertainty. Any localization 
process should be aware of the level of confidence in the com- 
puted pose estimates. Second, the covariance is also required 
when combining the displacement estimates with measurements 
provided by other sensors. For example, within a Kalman filter 
framework, the contribution of different sensor measurements 
to the state estimate is weighted by the Kalman gains. The val- 
ues of these gains depend on the covariances of all the;sources 
of information contributing to the filter. 

Our approach differs from prior work in that we incorporate, 
within the estimation algorithm, models of the uncertainty asso- 
ciated with the sensor measurements as well as with the match- 
ing process itself. This can be better understood by examining 
Fig. 1. This diagram shows a set of adjacent scan points that 
would be obtained when a range sensor samples points on a 
nearby wall. The boundary points sampled in pose i are in- 
dicated by circles, and labeled by U; ,  and The 
boundary points sFp led  in pose j are indicated by X’s and are 
labeled by u;-~ ,  U;, and u;+~. Prior range matching methods 
(e.g., [lo, 91) have made the simplifying assumption that the 
range scans of different poses sample the environment’s bound- 
ary at exactly the same points-i.e., point U; corresponds ex- 
actly to ul, etc. This is generally not true. In this paper, we 
model this correspondence error, which has been neglected in 
prior work, and incorporate this effect into our matching algo- 
rithm. As described in Sections 3.1 and 3.3, the range measure- 
ments are corrupted by noise and a bias term that is a function 
of the range sensing direction, e;, and the incidence angle, ai 
(see Fig. 1). While the existence of these sources of uncertainty 
has previously been suggested [I l ,  12, 7, IO], our algorithm 
is the first to model their effect and account for it withfn the 
estimation process. Finally, by explicitly incorporating these 
models of uncertainty, our algorithm computes a realistic co- 
variance estimate that accurately reflects the true uncertainty in 
the displacement estimates. Previous displacement estimation 
algorithms have neglected these effects in the covariance esti- 
mate, and thus their results may be overly optimistic [13]. 

Section 2 describes the general weighted point feature match- 
ing problem and its solution. Section 3 develops the corre- 
spondence and range measurement error models, and derives 
the associated weighting terms. Sections 4 and 5 summarize 
the point pairing selection and sensor incidence angle estima- 
tion procedures. The experiments in Section 6 demonstrate the 
accuracy, robustness and convergence range of our algorithm. 
Direct comparisons between this algorithm and previous meth- 
ods (e.g. [9]) validate the effectiveness of our approach. 
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2 The Weighted Range Sensor Matching Problem 

This section describes a general point feature matching problem 
and its formulation. The weighted matching solution for any 
specific implementation will depend upon models of a given 
range sensor’s operation, which are subsequently developed. 

Consider the range data from poses i and j :  {U:} and.{ui}. 
The actual range measurements will be imperfect. Let { r f  } and 
( r i }  be the “true” range measurements. The actual measure- 
ments will consist of: 

where 6ui and dui represent range measurement “process 
noise,” while bi and 8 denote the range measurement “bias.” 
These terms are discussed in Sections 3.1 and 3.3. The term 
6211, is generally well modelled as a zero-mean Gaussian noise 
process. The bias bk in this case is an unknown offset. It can 
be approximated by a nonzero constant ok (estimated based on 
a statistical model derived by measurement data), corrupted by 
a zero-mean additive Gaussian noise 6bk [12]. The covariance 
of this noise component reflects the level of confidence in the 
choice of the value ok. Contigent on this approximation, bi and 
$ take the form: 

We will ignore the offsets for now (i.e., assume that 0: = 4 = 
0), but will consider their effect in Section 3.3. 

Let (U;,  U;)  be corresponding points from the range scans at 
poses i and j. Accounting for the fact that scan data is measured 
in a robot-fixed frame, the error between the two corresponding 
points is . .  . 

&? = .f - 3 .U3 k -Pij (5 )  

for a given value of %j and pij. Substituting from Eq.s (3) and 
(4) into Eq. ( 5 )  results in 



set of all correspondences. If the range scans do sample the ex- 
act same boundary points, then T: - - pi j  = 0 when &j  

and pij  assume their proper values. However, ri and 4 gen- 
erally do not correspond to the same boundary point. Hence, 
term (i) in Eq. (6) is the correspondence error, denoted by cLJ: 
cy = rf - &jr: - pi j .  The matching error E? for the kth cor- 
responding point is also a function of: (i) the error due to the 
actual measurement noise, and (iii) the measurement bias error. 

We first make the realistic assumption that the correspondence 
errors, noise, and bias errors are mutually independent. The act 
of taking range measurements in the ith pose will generally be 
independent of the measurement process in the j t h  pose, q d  
thus 6u; will be independent of Sui (similarly for 66; and 6d . 
Hence, the covariance of the matching error at the kth polnt 
correspondence of poses i and j is: 

'c) 

where E[.] is the expectation operation, and 

cPf = covariance due to correspondence error 

P; = noise covariance in the ith pose scan points 
N ~ i  = noise covariance in the j t h  pose scan points 

k = bias covariance in the ith pose scan points 
Pi = bias covariance in the j t h  pose scan points 

Q? C p f + N p i + B p i  k 

s? 5 NpL+BpL. 

The matrices Q? and SF represent the configuration indepen- 
dent and dependent terms of P f .  As shown below, the cor- 
respondence and bias errors depend on the sensor's incidence 
angle. The noise covariances are functions of the variables OL, 
e:, lk ,  and l i .  In summary, the covariance matrix PF varies 
significantly for each scan point pair. Hence, it i s  not suitable to 
assume, as in prior work (e.g. [14, 9]),  that PiJ is the identity 
matrix for all scan point pairs. 

Maximum Likelihood Formulation. We use a maximum like- 
lihood (ML) approach to formulate a general strategy for es- 
timating the robot's displacement from a set of nonuniformly 
weighted point correspondences. Let L ( { ~ k ~ } l g i j )  denote the 
likelihoodfunction ,@at captures the likelihood of obtaining the 
matching errors { E Y }  given a displacement g i j .  Assuming the 
independence of the k = 1, . . . , nij measurements, the likeli- 
hood can be written as a product: 

Recall that the measurement noise is considered to be a zero- 
mean Gaussian process. Also the bias is approximated as a 

zero-mean Gaussian noise superimposed on a contant offset. Fi- 
nally, as it is shown in Section 3.2, the correspondence noise can 
be approximated as a zero-mean Gaussian process, ,Neglecting 
the bias offset for the moment (see Section 3.3), cLJ is the sum 
of zero-mean Gaussian random variables. Thus, , C ( { & c } J g i j )  

takes the form: 

(10) 

The <optimal estimate of the displacement maximizes 
C ( { E K } I ~ ~ ~ )  with respect to displacement. One can use 
any numerical optimization scheme to obtain this displacement 
estimate. Note however that maximizing Eq. (8) is equivalent 
to maximizing the log-likelihood function: 

~ n [ ~ ( { ~ ? } l g i j ) l =  - ~ t j  - ln(oij) (1 1) 

and from the numerical point of view, it is often preferable to 
work with the log-likelihood function. 

This problem's inherent structure allows for efficiency in the 
maximization procedure. Appendix A proves that the optimal 
estimate of the robot's translation can be found as follows. 

Proposition 1 The weighted scan match translational dis- 
placement estimate, f i i j ,  is: 

where &j = R i j  (4;) is the rotational matrix calculated with 
the current estimate of the absolution orientation &j before it- 
eration, and 

There is not an exact closed form formula to estimate A&. 
However, there are two efficient approaches to this problem. In 
the first approach, the estimate of A#Q can be found by numer- 
ically maximizing Eq. (8) (or Eq. (11)) with respect to A&j 
for a constant l j i j  calculated according to Prop. 1. This pro- 
cedure reduces to numerical maximization over a single scalar 
variable A&, for which there are many efficient algorithms. 
Altematively, one can develop the following second order iter- 
ative solution to this non-linear optimization problem (see [I51 
for details): 
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Proposition 2 The weighte< scan ,match lmtatwnal displace- 
ment estimate is updated as &j = 4; + d&, where: 

with Qk as above, and 

Using experimental data, this approximation agrees with the ex- 
act numerical solution up to 5 significant digits. 

Pr0p.s 1 and 2 suggest an itefative algorithm for estimating dis- 
placement. An initial guess 0, for q&j is chosen (usually based 
on the odometry estimate). A translation estimate f ~ i j  is com- 
puted using Prop. 1. This estimate is employed by Prop. 2,’o 
update the current rotational estimate 4,. The improved 4: 
is the basis for the next iteration. The iterations stop when a 
convergence criterion is reached. We prefer an iterative algo- 
rithm for two reasons. First, nonlinear ML problems are suited 
to iterative computation. Second, the correct correspondence 
between point pairs cannot be guaranteed, especially in the first 
few algorithm iterations, where some inaccurate initial pairings 
are unavoidable. 

Letting 5 j j  = p i j  + i j ,  d i ,  = d j j  -& (i.e, p i j ,  4 i j  are transla- 
tional and the rotational displacement error estimates), a direct 
calculation yields the following. 

- 

Proposition 3 13te covariance of the displacement estimate is: 

with Ppp as above and 

1 P++ = - 
TT 

k=l  

For a given sensor, one must derive appropriate uncertainty 
models which are the substituted into the above procedure. 

3 Scan Matching ErroriNoise Models 

In order to derive explicit expressions for the covariances of Eq. 
(7), this section develops models for the errors inherent in the 
range scan matching process. 

3.1 Measurement Process Noise 
Many range sensing methods are based on the time of flight 
(e.g.. ultrasound and some laser scanners) or modulation of 
emitted radiation [12, 71. The circuits governing these mea- 
surement methods are subject to noise. These effects often can 
be well modelled in a simple way, enabling the computation of 
NPi and NPi .  We focus on the computation of NPi ,  as the 
one for N P ~  is completely analogous. 

Recall the polar representation of scan data, Eq. (1). Let the 
range measurement, l ; ,  be comprised of the “true” range, Li ,  
and an additive noise term, Et: Zk = Li + ~ 1 .  The noise Et 

is assumed to be a zero-mean Gaussian random variable with 
variance a; (see e.g., [I21 for justification). Also assume that 
error exists in the measurement e:, i.e. the actual scan angle 
differs (slightly) from the reported or assumed angle. Thus, 
6; = 0; + EO, where 0: is the “true” angle of the kth scan 
direction, and €0 is again a zero-mean Gaussian random vari- 
able with variance a: . Hence: 

If we assume that << 1 (which is a good approximation for 
most laser scanners), expanding Eq. (1 6) and using the relation- 
ship dui = U; - T; yields 

. .  

Assuming that and Et are independent, then: 

For practical computation, we can use 0; and 1; as a good esti- 
mates for the quantities 0: and L:. 

3.2 Correspondence Error 
Here we analyze the correspondence error for the general point 
correspondence method of Section 4. We then derive a sec- 
ond order probabilistic approximation to this error. While our 
derivation assumes that the sensor beam strikes a locally straight 
line segment (Fig. l), the derivation can be extended to other 
boundary geometries, or serve as a good approximation for 
modestly curved boundaries. 

We first develop a formula for the maximum correspondence 
error. Consider .how points will be matched in the vicinity of 
points U: and u i  in Fig. 1. Let 

sp = 11u:+1 -U;]], 65 = I].: - u:-J (18) 

denote the distance to the adjacent scan points (from pose i ’ s  
scan) near the candidate matching point U; (see Fig. 1). Simi- 
larly, let d$ = I - U{ I 1 and d t  = 1 tu; - a{- I 1 denote the 
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distances to the adjacent scan points (from pose j’s  scan) near 
the candidate matching point U;. The maximum distance (or 
error) between any pair of points that are chosen to be in corre- 
spondence will be half of the mini“  distance between adja- 
cent scan points. If the error is greater than this value, the point 
will be matched to another point, or it will not be matched at all. 
On average, this error will be the minimum of (6; + 65)/4 or 
(6: + 6L)/4. Simple geometric analysis of Fig. 1 shows that 

- = -[ 
(19) 

6$ + 65 1: sin ,8 1 
4 4 sin(ai + p) + sin(ab - p> 

Substituting j for i yields a formula for ( S i  + 6{)/4. 

We now derive the first two moments of the correspondence 
error distribution. For simplicity, let the robot be situated so that 
6; + 6 i  < 6: + 6; (i.e., the correspondence error is defined 
by pose i). Recall the correspondence error formula of Eq. (6): 
ct j  = T k  i - &jri - pij . The correspondence error is collinear 
with the boundary’s tangent. Hence, let p? = c;’ . t k  be the 
projection of c? onto the unit boundary tangent vector, t k ,  at 
U!: The vector t k  is positive pointing from U; to Hence, 
pi’ is a signed quantity, and c? = P f t k .  Letting z be the 
position along the boundary relative to uL,  the correspondence 
error is locally a function of 2. The expected value (mean) of 
the error in the interval z E [ -64, a:] is: 

where P ( z )  is the probability that the kth scan point from pose 
j will be located at z We reasonably assume that P(z )  has an 
a priori uniform probability. Hence P(z )  = l/(6; + 64). Re- 
alizing that &(.) = z in the interval 1-64, a$], evaluation of 
Eq. (20) yields: 

Note that when the incidence angle is not normal (CY: # go”), 
the mean is non-zero. However, since the mean is proportional 
to sin2p, this term is negligible when p is small. Hence, we 
can practically consider the correspondence error to be a zero- 
mean quantity when /3 is small (this holds for the experiments 
described in Section 6). To compute the variance of the corre- 
spondence error (using the zero-mean assumption), 

Letting vi = ai + e:, and keeping the above results in mind, 
the covariance P k  of Eq. (7)  can be found as P i  

3.3 Measurement Bias Effects 
Range measurement bias is an artifact of some range sensing 
methods (e.g., see [12]). Since bias models will strongly de- 
pend upon the given range sensing method, it is not possible to 
give a complete summary of bias models for common sensing 
methods. Instead, we consider the effect of bias on the displace- 
ment estimate. 

To analyze the bias effect, let E: +$!. I.e., $! represents 
the matching error if one ignores the bias offsets, and 6; = 0: - 
&jojk is the total bias offset effect at the kth correspondence. 
Incorporating the offsets, the likelihood function takes the form: 

Following the derivations that lead to Prop. 1, one can show 
that the translation estimate in this case is: 

One can interpret this result as follows. If a range sensor does 
suffer from bias offset, ignoring the offset will adversely affect 
the estimate. However, bias models can be used to compensate 
for bias effects in the estimate. 

4 Selection of point correspondences 

we select point correspondences following a methodology 
similar to the one in [9]. Given two scan sets {U;} and {U;}, 
the outZiers are removed in the first step. These are the points 
visible in one scan, but not in the other. After removing the 
outliers, we attempt to find correspondences between scan 
point pairs in the two poses. For every point in pose i, we 
search for a corresponding scan point in pose j that satisfies a 
range criterion: the, corresponding point must lie within a given 
distance: [ ] U ;  - U ~ I I  < d. If no points in pose j satisfy this 
criteria, then the point is marked as having no correspondence; 
The parameter d is initially set at a value proportional to the 
odometry error for the step. As the matching iterations proceed, 
d is monotonically reduced to a value of the order of the 
maximum point error predicted by our noise model in order to 
speed convergence. 

5 Estimating the Incidence Angle 

The correspondence error model of Section 3.2 assumes knowl- 
edge of each scan point’s incidence angle. To estimate this 
angle, the neighboring boundaries are approximated by fitting 
straight line segments to the range data employing a Hough 
transform. In this general line finding technique, each scan 
point { z k , g k }  is transformed into a discretized curve in the 
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Hough space. The transformation is based on the parametriza- 
tion of a line in polar coordinates with a normal distance to the 
origin, dL, and a normal angle, 4 ~ .  

(25) 
Values of 4~ and dL are discretized with 4~ E ( 0 , ~ )  and 
d~ E { -D, D} where D is the maximum sensor distance read- 
ing. The Hough space is the array of discrete cells, where each 
cell corresponds to a single line in the scan point space. For 
each scan point, the Hough space cells which correspond to 
lines passing through that point are incremented. Peaks in the 
Hough space correspond to lines in the scan data set. When the 
cells in the Hough space are incremented, we record the scan 
point coordinate in the cell, so when a peak is determined, the 
set of cells that make up that peak contain the set of points that 
contributed to that line. The incidence angles can then be found 
for every point contributing to a line. The Hough transform can 
be generalized to detect and fit simple curves, but for most in- 
door environments the line fitting method is sufficient. 

d~ = Zk sin(4t) + yk c o s ( 4 ~ )  

6 Experiments 

We implemented our method on a Nomadics 200 mobile robot 
equipped with a Sick LMS-200 laser range scanner. For com- 
parison, we also implemented an unweighted least squares scan 
matching algorithm (analogous to that of Lu and Milios [9], but 
with an improved point correspondence algorithm), hereafter 
called the “UWLS.” This section summarizes our experimental 
findings on our algorithm‘s absolute and relative performance. 
In our experiments, we used the values P = 0 . 5 O ,  u1 = 5 mm, 
ug = radians obtained from the Sick LMS-200 laser spec- 
ifications. 

r Relere- Ssan I ’  
c N e w b n  - 100 x Measuroment Cavarianco (99%) 

x 

Figure 2: Scan points from two poses. 

Fig. 2 shows matched scans taken at two poses inside our labo- 
ratory (at randomly selected boundary points, ellipsoids (scaled 
by factor of 100) indicate the 99% confidence region of the point 
pairing covariances). Fig. 3 shows the l i e  segments fitted to the 
pose 1 data. 

Fig. 4 graphically depicts the convergence properties of our al- 
gorithm and its comparison with the UWLS on the data set of 

m- 

’li 
E 0 -  - 
> I  

-2000 - 

1 4000 

Figure 3: Line segments fitted to Fig. 2 

Fig. 2. In this experiment, the robot displaced a manually mea- 
sured distance of (Axl2, Ay12, A412) =( 138 l mm, -690 ”,- 
2.06 rad). To test the algorithm’s robustness to poor odometry 
estimates, and its tightness of convergence, we added random 
noise (up to 200 mm in Ax, Ay, and 0.1 rad in A4) to the ve- 
hicle’s actual odometric displacement estimate to derive lo00 
different starting points for the algorithms’ iterations. Conver- 
gence was deemed successful if the change in error estimate 
between successive iterations remained below 0.05% for three 
iterations. 
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1 Unweighted Estimates 
D Weighted Estimates 

A X  Estimate (mm) 

Figure 4: Convergence comparison of Unweighted (blue crosses) and 
our Weighted (red circles) algorithm for loo0 random ini- 
tial estimates. 

The blue crosses in Fig. 4 show the final estimates of the UWLS 
algorithm after its convergence, while the red circles show the 
final estimates of our weighted algorithm. Figure 5 shows the 
projection of this data onto the (As, Ay) axes. From a wide 
range of initial conditions, our algorithm converges to a very 
tight cluster of displacement estimates. These visibly better 
convergence properties of our algorithm suggest that it is more 
robust to errors in initial estimates, such as given by odometry. 
Moreover, our algorithm is absolutely more accurate. Its mean 
estimate has total translational and angular errors of 6.0 mm and 
0.001 rad, while the mean UWLS estimate is in error by 10.7 



I -1 
Measured Displacement 
Unweighted Estimates --s Weighted Estimates 

-690 j c 

1370 1375 1380 1385 1390 1395 
A X  Estimate (mm) 

Figure 5: Projection of Fig. 4 onto Az12 and Ay12 coordinates. The 
solid circle and ellipse are the 99% confidence regions of 
the two algorithms’ estimated covariances. The green dot 
and dashed circle are the manually measured displacement 
and its maximum error. 

mm and 0.0013 rad. Some of the UWLS estimates were up to 
16 mm in error. 

The solid large circle of Fig. 5 is centered at the mean UWLS 
(Asln,Ay12) estimate, and it circumscribes the 99% confi- 
dence region corresponding to the UWLS covariance estimate 
(see [14] for the UWLS covariance formula). The lower ellipse 
circumscribes the 99% confidence region for our algorithm’s 
covariance estimate, as computed in Prop.3. The smaller size of 
our covariance estimate shows that in the presen.ce of perfect 
point correspondences, our algorithm should potentially pro- 
duce tighter displacement estimates, as it properly takes all of 
the noise factors into account. In cases where the point cor- 
respondences are uncertain, our algorithm may have a larger 
covariance than the UWLS algorithm. However, the UWLS co- 
variance estimate will be overly optimistic in these cases. 

1 

Figure 6 Number of iterations of Unweighted and our Weighted al- 

Figs 6 and 7 provide another view of the convergence process. 
For the same data set, Fig. 6 shows how many iterations were 
respectively required by our algorithm and the UWLS. Our al- 
gorithm required roughly 40% fewer iterations on average to 
reach the same convergence criteria. Fig. 7 compares the rate 
of convergence for one particular initial condition. 

Finally, Fig. 8 shows an eight-step robot path superimposed on 

gorithm. 

1 
OO I&” ’ Iterations : lo 15 

Figure 7: Convergence of Unweighted vs. Weighted algorithm. 

the acquired range data. The total path length was 21.8 meters. 
The ratio of the final translation error to total path length is .6% 
for our weighted algorithm, 2.4% for the UWLS, and 4.5% for 
odometry. Fig. 9 shows a detail of the final position estimates 
for our algorithm, the UWLS, as well as the actual position. 
The ellipses in this figure denote the 99% confidence regions of 
the covariance estimates of our algorithm and the UWLS algo- 
rithm. Fig. 10 plots the total cumulative position estimation er- 
ror for odometry, the UWLS, and ow weighted algorithm. Figs 
9 and 10 show that over this multi-step path, our method pro- 
vides significantly greater estimation accuracy. Moreover, the 
covariance estimates in Fig. 9 show that the UWLS provides an 
extremely optimistic covariance estimate, whereas the covari- 
ance estimate of our algorithm includes the actual error within 
its confidence region. 
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Figure 8: Multi-step path. 

7 Conclusion 

This paper investigated the effects of different error and noise 
sources on the convergence and accuracy properties of motion 
from structure algorithms. Our experiments showed that careful 
attention to the details of error modelling can significantly en- 
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+ Weighted Estimates 
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-500 -400 -300 -m -100 0 
X 

Figure 9 Detail of h a l  position estimates. 
10001 I 

step 

Figure 10  Cumulative position error along path, 

hance overall displacement and covariance estimation accuracy. 
Although the analysis was mainly aimed at laser range sensors, 
the methods can likely be extended to other range sensors, such 
as stereo cameras, radar, ultrasound, etc. The specifics of our 
analysis must be modified to incorporate the appropriate er- 
rorlnoise models for each particular sensor. 
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A Weighted Translation Solution 

Recall the log-likelihood formula of Eq. (1 1). Since Dij is in- 
dependent of Axij and Ayij, the necessary condition for an ex- 
tremal in the log-likelihood function with respect to these vari- 
ables is: 

Starting with Eq. (26), and noting that dMij/aAx = -[1 0IT 
and dMij/dAy = -[0 1IT, we get 

or 
nii 

Rearranging this formula results in Q. (12). 
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