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Abstract

This paper addresses the problem of learning from very large databases where
batch learning is impractical or even infeasible. Bootstrap is a popular tech-
nique applicable in such situations. We show that sampling strategy used
for bootstrapping has a significant impact on the resulting classifier perfor-
mance. We design a new general sampling strategy ”quasi-random weighted
sampling + trimming” (QWS+) that includes well established strategies as
special cases. The QWS+ approach minimizes the variance of hypothesis er-
ror estimate and leads to significant improvement in performance compared
to standard sampling techniques. The superior performance is demonstrated
on several problems including profile and frontal face detection.

1 Introduction
With the information available on the Internet, it is possible to acquire training data sets
(pools) of virtually unlimited sizes for many problems in visual recognition. Given a
fixed complexity of a classifier, generalization improves with a training set size [18].
Hoverer due to computational limitations and training complexity, it is rarely the case that
the entire pool can be processed at once. Methods that are able to process large pools
effectively are thus of increasing significance.

One possible solution is to restrict the learner to much smaller active subset of the
pool and proceed iteratively. In every iteration, the training is performed on the active set
and returns a preliminary classifier. The classifier is then used to evaluate the pool and to
collect new, more informative active set. This technique is commonly called bootstrap-
ping1 and proved to be an essential component in many object detection systems based
on batch learning [17, 11, 13, 15, 19].

Besides the bootstrapping, on-line learning algorithms exist that are naturally suitable
for large datasets [10, 5]. Even though the on-line approach demonstrates some inter-
esting applications, the majority of current object detection algorithms is based on batch
learning, where bootstrapping plays an important role.

The bootstrap was first introduced by Sung and Poggio [17]. In every round of train-
ing, the active set is extended by examples misclassified in previous round, thus empha-
sizing samples close to the decision boundary. Later Papageorgiou et al. [11] and Dalal

1In the statistical literature [2], the term bootstrapping refers to a re-sampling technique used to obtain
properties of an estimator such as its variance.
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and Triggs [1] applied bootstrap to refine the decision surface of an SVM classifier, Row-
ley et al. [13] to train the neural network, and Schneiderman and Kanade [15] to estimate
the histograms of the part-based detector.

Viola and Jones [19] published the first real-time face detection system based on a
cascaded classifier composed of boosted stages. A bootstrapping strategy based on re-
sampling of the undecided parts of the pool was used. Many authors follow this ap-
proach [8, 6, 7, 22]. A number of improvements has been proposed for the classical
Viola-Jones cascade. For example, the standard cascade ignores the confidence which is
output from each stage thus making the classifier unnecessarily long. This drawback was
addressed in [16, 20, 21] where bootstrapping based on re-sampling and re-weighting of
the selected samples according to the confidence was used. Later on, Fleuret and Ge-
man [3] proposed the weighted sampling. Instead of weighting examples in the active
set, examples were sampled with replacement from the pool with respect to their weights.
The approach let to improved classifier performance.

Apart from iterations on the Viola and Jones detector, Friedman et al. [4] suggested
trimming, a technique that selects only a fraction of examples with the highest weights
resulting in improvement of training speed.

We argue and show experimentally that sampling strategy used in bootstrap signif-
icantly influences the performance of the final classification system. We build on the
weighted sampling proposed by Fleuret and Geman [3] and further improve its perfor-
mance by quasi-random sampling. We propose a generalized strategy based on quasi-
random weighted sampling + trimming (QWS+) that optimally combines its components
in order to minimize the variance of hypothesis error in each round of training. The QWS+
sampling method is applied to real AdaBoost [14] and leads to significant increase in the
classification performance as well as the training efficiency on large datasets compared
with standard sampling strategies.

The rest of the paper is organized as follows. Section 2 formalizes the concept of
bootstrapping and discusses the well established and proposed sampling strategies. Large
scale experiments in the context of face detection are presented in Section 3. The paper is
concluded in Section 4.

2 Bootstrap for AdaBoost
Bootstrapping is a general technique that is applicable in conjunction with many learning
algorithms. We focus on the real AdaBoost and build on the fact that AdaBoost iteratively
calls a weak learner on a weighted training set. We suppose that the training set (pool) is
large and calling the weak learner directly is in-practical. Yet, it is possible to maintain
the distribution of weights on the pool. In every iteration, the pool is approximated by an
active set of a specified size obtained by some sampling strategy. The active set is then
used as an input to the weak learner that returns a hypothesis, which updates the weights
in the pool and the training continues. Figure 1 illustrates the process.

Suppose we have a pool of size M composed of pairs X = {xi,yi}, where xi ∈X is
an observation and yi ∈ {−1,1} is a label. Next we have a set of weights assigned to each
example D = {di} satisfying ∑M

i=1 di = 1. For the sake of simplified notation, we consider
the pool as triples S = {xi,yi,di}. Standard AdaBoost processes this pool in T rounds. In
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Figure 1: AdaBoost with bootstrapping based on re-sampling of the active set.

each round, a hypothesis h∗ minimizing the upper bound of error Z on pool S is found:

h∗ = argmin
h

Z(S,h) = argmin
h

M

∑
i=1

die−yih(xi). (1)

As stated before, this process can be very time consuming.
If bootstrap is employed, the pool S is first subsampled to form an active set Ŝ =

{x j,y j, d̂ j} of size N with weights satisfying ∑N
j=1 d̂ j = 1. The AdaBoost learner then

finds an approximate hypothesis ĥ minimizing the upper bound of error on Ŝ:

ĥ = argmin
h

Z(Ŝ,h) = argmin
h

N

∑
j=1

d̂ je−y jh(x j). (2)

This process is usually much faster since the parameter N is chosen according to the
computational resources available, e.g. the size of available memory.

In the above equations, we use subscript i for indexing samples in the pool. The sam-
pling strategy assigns each sample the estimated weight d̂i. Samples with the estimated
weight bigger than zero are added to the active set. The estimated weight of sample i is
a random variable with expectation E[d̂i] and variance Var[d̂i]. Note that the randomness
is here considered over realizations of the sampling process. If E[d̂i] = di we consider
the estimated weights unbiased. Suppose we have a hypothesis h with some error upper
bound on the pool Z(S,h). In training, we do not know this value but we are estimating it
on the active set Ŝ according to the following equation:

Z(Ŝ,h) =
M

∑
i=1

d̂ie−yih(xi) (3)

where the estimated weights are linearly combined by the constant coefficients e−yih(xi).
It follows that if the estimated weights d̂i are unbiased so is the estimated error upper
bound. If E[Z(Ŝ,h)] = Z(S,h) we consider the entire strategy unbiased. Var[Z(Ŝ,h)] will
be referred to as a variance of error estimate.

Problem formulation. Our objective is to find the sampling strategy that selects N
unique samples out of the pool of size M, is unbiased and with minimal variance of error



estimate. Such strategy would guarantee that the approximate hypothesis ĥ is as close as
possible to the optimal one h∗, which would be trained on the entire pool.

2.1 Commonly used strategies
Trimming (T). This technique selects N samples from the pool with the highest weights.
The weights of the selected samples are then normalized so that ∑i d̂i = 1. This strategy
was introduced in [4], where N was set so that a predefined fraction (90− 99%) of the
total weight mass was used for training. If N < M then the weights are biased E[d̂i] 6= di
with zero variance.

Unique uniform sampling (UUS). This strategy selects N unique samples from the
pool with a probability of selecting sample i equal to P(i) = 1

M . The weights of the
selected samples are then normalized so that ∑i d̂i = 1. The estimated weights are in
general biased (due to normalization) and have high variance since it is likely to disregard
examples that carry significant mass of the distribution. Despite this it is often used in
practice [16, 20, 21] for its simplicity.

Weighted sampling (WS). Selects N samples with replacement from the pool. Sample
i is selected with probability P(i) = di and assigned weight d̂i = 1

N . WS is unbiased,
since E[d̂i] = Ndi

N = di. Possible implementation: the example weights are represented
as intervals arranged on a unit line segment. Next we generate N random points on this
line segments which positions determine the index of the selected sample. Since the
example weight are approximated by repeated selection of the sample, this strategy does
not guarantee N unique samples in the active set. This strategy was proposed in [3].

2.2 Proposed strategies
In this section, we propose new sampling strategies based on WS. These strategies are
designed to reduce the variance of error estimate by quasi-random sampling and guarantee
selection of N unique samples to the active set.

Quasi-random weighted sampling (QWS). QWS reduces variance of the error esti-
mate by pseudo-random sampling [12]. The weights are represented as intervals and
arranged to a unit line segment. The line segment is split into N equal intervals. Within
each interval, one random number is generated which position determines the index of the
selected sample. This process maintains the weights unbiased but significantly reduces
their variance. Intuitively, each sample can be selected at most n-times, where n is num-
ber of intervals the sample is sitting on. For standard WS, each sample can be selected
at most N-times. Since n ¿ N, QWS significantly reduces the variance of the estimated
weights. QWS selects a unknown number of unique samples, which leads to inefficient
usage of available capacity of the active set.

Quasi-random weighted sampling + trimming (QWS+). The QWS+ is a general-
ization of trimming and QWS, parameterized by K, the number of samples with largest
weights in the pool that are trimmed. For K = N, QWS+ coincides with trimming. For



K = 0, QWS+ becomes a QWS. For any 0≤K < N, the QWS+ strategy is unbiased, since
weighted sampling is unbiased and calculations of error upper bound on the trimmed set
is exact. Parameter K is set to minimize the variance of error estimate.

Intuitively, QWS+ selects K most dominant samples that would be selected by QWS
with probability at lest 50% and assigns them their own weights. The remaining weight
mass is distributed amongst the remaining L = N−K samples selected by QWS. Trim-
ming of the most dominant samples reduces the variance of their estimated weight and
hence the entire error estimate.

In the following theorem, we show the optimal setting of the parameter K. We use the
following notation. Index in parenthesis denotes (i)-th sample with largest weight. SK =
S \{x(i),y(i),d(i)}K

1 is the pool minus K samples with largest weights, DK = 1−∑K
i=1 d(i)

is the weight mass of SK .

Theorem: The optimal size of trimming is the largest K = N−L that satisfies the con-
dition 1

L ≤
d(K)
DK

(2+
d(K)
DK

) if variance of error upper bound of h changes ”slowly” (defined
below).

Proof: First, we express the variance of QWS+ estimator as a function of K. In the
QWS+, the error upper bound for a given hypothesis h on the pool S is estimated by

ẐQWS+(S,h) =
K

∑
i=1

d(i)e
−y(i)h(x(i)) + ẐQWS(SK ,h) (4)

≈
K

∑
i=1

d(i)e
−y(i)h(x(i)) + ẐWS(SK ,h), (5)

where ẐQWS is a random variable representing error upper bound estimated by QWS
strategy on SK . For the purpose of the proof, we assume that ẐQWS(SK ,h) ≈ ẐWS(SK ,h)
which results in simplified analysis. The difference between sampling with/without re-
placement is in this case very small since all K dominant samples were already removed
by trimming.

WS selects L = N−K samples with replacement from SK . Sample i is selected with
probability P(i) = di

DK
and assigned weight d̂i = DK

L . The random variable ẐWS is thus a
re-scaled sum of L i.i.d. random variables corresponding to each sample:

ẐWS =
DK

L

L

∑
s=1

Ẑs
WS, (6)

where random variables Ẑs
WS(SK ,h) attain the value e−yi(s)h(xi(s)) with probability

di(s)
DK

; i(s)
is the index chosen in step s.

From Eq. (5) we can see that variance of ẐQWS+ can be approximated by ẐWS since a
trimming has variance equal to zero. Variance of ẐWS can be substituted from Eq. (6) as:

Var[ẐQWS+]≈ Var[
DK

L

L

∑
s=1

Ẑs
WS] =

D2
K

L
Var[Ẑs

WS]. (7)



Frontal faces (S f ront ) 3085 profile faces from the Internet
Google faces (SGoogle) 9771 multi-view faces from Google face search
Profile faces (Sβ

pro f ) 3384 left profile faces from 8 movies rotated by β de-
grees in plane from upright position

Background (Sback) 3310 images without target concept

Table 1: Training databases used in our experiments.

The variance of the individual samples Var[Ẑs
WS(SK ,h)] depends on SK and the assessed

weak classifier h. However, the selection of the active set cannot depend on the weak clas-
sifier for efficiency reasons. Next, we assume that variance of individual samples changes
slowly as a function of K, i.e. Var[Ẑs

WS(SK ,h)] = cK and cK
cK−1

≈ 1. In the following, we
express the optimality condition that variance of QWS+ estimator for K must be smaller
than for K−1 (trimming one more sample must reduce the variance):

Var[ẐK ] ≤ Var[ẐK−1]

D2
K

L
cK ≤ D2

K−1

L+1
cK−1 =

(DK +d(K))2

L+1
cK−1 , cK/cK−1 ≈ 1 (8)

L+1
L

≤ (DK +d(K))2

D2
K

(9)

1
L

≤ d(K)

DK
(2+

d(K)

DK
) ≈ 2d(K)

DK
(10)

In practice, the optimal K is found iteratively. Samples are trimmed until the Eq. (10)
is satisfied.

3 Experiments
This section presents large scale experiments on real data. The training is performed on
several databases as shown in Table 1. The testing is performed on standard CMU-MIT
frontal/profile test set and compared with other authors when possible. The detectors are
compared by ROC and Precision-recall curves (PRC) .

We use the real AdaBoost [14] to train a hypothesis that is added to a modified Wald-
Boost classifier [16]. Thresholds for classification are given by Wald’s criterion [16] but
decision is not done after each weak classifier but only when the upper bound drops un-
der some specified threshold. The reason is speedup of training with little influence on
the resulting performance. Tree types of local image features are used: Haar-like fea-
tures [6], Local Binary Patterns [9, 22] (LBP) and Histogram of Orientated Gradients [1]
(HoG) projected into one dimension using weighted LDA [7]. All the features are local-
ized within a reference frame and can be computed for arbitrary scale and aspect ratio.
We generate a set of approximately 12,000 Haar, 12,000 LBP and 400 HoG features for
image frame of size 28×28 pixels.

In Section 3.1 we verify our theoretical results about bias and variance for all dis-
cussed strategies. In Section 3.2 we investigate the impact of the relative active set size
on the classifier performance. And finally, real profile/specific detectors will be trained in
Section 3.3 and compared with other approaches.
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Figure 2: Pool with weights di (blue bars) is repeatedly sampled to obtain a distribution
of the estimated weights which range (1 and 99% quantiles) is depicted by red vertical
lines and expected values by circles.

3.1 Properties of sampling strategies
Estimation of weights. In this experiment, we test our claims about bias and variance
of estimated weights for different strategies. We generated a pool of size M = 15 with
randomly assigned weights di. The active set of size N = 5 was sampled 1000 times,
each realization outputs a set of estimated weights d̂i. The expectation and variance of
d̂i are shown in Figure 2. The circles in the figure denote the expectation of the esti-
mated weight. Notice that the expectation of Trimming and UUS is biased, the remaining
strategies are not. The variance of the estimated weights is depicted by the red error bars.
Note the reduction of variance by quasi-random sampling (QWS, QWS+). Furthermore,
WS+ completely eliminates variance on large examples thus rendering the variance of all
weights minimal.

Estimation of error upper bound. In this experiment, we created a pool S containing
M = 95,000 examples with distribution of weights after the 100th iteration of training
a frontal face detector. The 100th iteration was chosen because the distribution is dom-
inated by large samples but still there are many samples in the pool allowing statistical
evaluation. We first trained the optimal hypothesis h∗ on whole pool S with corresponding
upper bound Z(S,h∗). The pool was than sampled by each strategy to obtain 1000 active
sets Ŝ of size N = 500. Next, the optimal hypothesis was tested on each active set in order
to obtain its approximated upper bound Ẑ = Z(Ŝ,h∗). The expectation and variance of Ẑ is
shown in the left panel of Figure 3. Weighted sampling reduces significantly the variance
of Ẑ and keeps mean unbiased. Intuitively, the error is dominated by examples with high
weights, weighted sampling forces these examples to be included in every realization of
Ŝ, hence the error in different trials is similar. These results indicate that the weighted
sampling leads to an accurate estimate of the error using only a small active set.

Overfitting and generalization. In this experiment we use the same sets as defined
in previous paragraph. We first trained the optimal hypothesis h∗ on full pool S with
corresponding upper bound Z(S,h∗). The hypothesis was trained by domain partitioning
approach [14]. Next we trained an approximate hypothesis ĥ on the active sets Ŝ with
training upper bound Ẑ = Z(Ŝ, ĥ) (Figure 3, middle) and tested them on the full pool
(Figure 3, right). By comparing the two panels we see that UUS sampling overfits the
training data much more than any other strategy. Further more, the variance of UUS is
very high. The variance is significantly reduced by weighted sampling; quasi-random
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Figure 3: Accuracy of hypothesis obtained by different sampling strategies. Black hori-
zontal dashed line represents the error of the optimal hypotheses h∗ tested on the full pool.
Vertical lines represent range of errors between 5 and 95% quantiles, the circles denote
the expectations. a) The error of the optimal hypothesis is estimated on the active sets. b)
The hypothesis is trained and tested on the active sets (overfitting). c) The hypothesis is
trained on the active set and tested on the full pool (generalization error).
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Figure 4: Dependence of classifier performance on the relative active set size and the
sampling strategy.

weighted sampling further reduces the variance just slightly in this case. This apparently
insignificant difference in the variance reduction proves to be of importance, when full
detector training in evaluated.

3.2 Influence of relative active set size
In this experiment, we investigated the influence of relative active set size on classifier
performance for different sampling strategies. We used the following pool: 10.000 pos-
itive samples generated from S f ront and 56 million background patches generated from
Sback. This pool was approximated in training by active sets of three different sizes
N ∈ {100,1.000,10.000}. For each size of the active set, four classifiers were trained
using different sampling strategy (UUS, WS, QWS, QWS+). Trimming was also tested
but its performance was far worse than any other strategy so we do not compare it with
the others. The classifiers were trained up to the length 200, resampling of the active set
was performed after each weak classifier.

Figure 4 shows the resulting PRC curves on CMU-MIT dataset. The performance
of all sampling strategies decreases with smaller active set size. For sufficiently large
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Figure 5: Left: ROC curves on CMU-MIT profile database (368 profile faces in 208
images). Right: PRC for specific face detector applied on the results of Google face
search.

active sets (N = 10.000) there is no difference in performance. For smaller active sets
(N = 1000) the UUS sampling performs significantly worse than the others. WS is in
this case slightly worse than QWS and QWS+. For extremely small active sets (N = 100)
the difference increases. This clearly demonstrate the benefit of QWS and QWS+. The
difference between QWS and QWS+ is in this case on a noise level only. The active set
size has also impact on training efficiency. While training with N = 10.000 takes 3 hours,
training with N = 100 requires 1 hour on the same machine.

3.3 Real detectors
Face profile. In order to compare our system with other approaches a profile detector
was trained with the following setting. The pool of 41,000 positive and 424 million neg-
ative patches was generated from S0

pro f , S15
pro f , S30

pro f and Sback. Two left-profile classifiers
of length 2000 were trained with QWS+ and UUS strategy. The right profile detectors
were obtained by flipping of the model.

The resulting ROC curves are displayed in the left panel of Figure 5. QWS+ has
detection rate by 5% higher than UUS for 100 false positives. On the same level of false
positives, our detector performs better than the results in [8] and [6] and slightly worse
than [15]. The average number of evaluated weak classifiers is 5.6 for QWS+ and 7.2 for
UUS which shows positive influence of weighted sampling on the classifier speed.

Specific face detector. Google face search was used to collect 650 images returned for
query “borat”. This set contained 350 images of Borat (fictional Kazakhstani journalist)
the remaining images contained other faces or background. The Borat images were split
into training (250) and testing (100) set, all of the non-borat images became a part of the
testing set. A specific face detector was trained and evaluated on the collected data.

The resulting precision recall curve is presented in the right panel of Figure 5. Also
in this task, the performance of QWS+ is superior to UUS. Our specific face detector suc-
cessfully finds approximately 80% of faces with 90% precision which shows a scope for
possible improvement of Google’s face search. Interestingly, the false positives contain
some paintings of Borat and the Borat’s protagonist Sacha Baron Cohen.



4 Conclusions
In this paper, two improvements of standard weighted sampling (WS) are introduced.
We design quasi-random weighted sampling (QWS) which reduces the variance of error
estimate but does not guarantee unique samples. Next, we introduce a new strategy based
on quasi-random weighted sampling + trimming (QWS+) which fixes this drawback. We
provide the theoretical proof of the variance minimization of QWS+.

The superiority of our strategies is demonstrated on large-scale learning experiments
as well on learning problem with a small dataset. Different commonly used sampling
strategies are extensively evaluated in the context of frontal and profile face detection.

Various characteristics of the learning process are improved: reduction of the required
active training set, better precision/recall curves and speed of the resulting classifier. In
future work the proposed strategy will be extended to other learning methods.
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