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Weighted single-step genomic BLUP 
improves accuracy of genomic breeding values 
for protein content in French dairy goats: 
a quantitative trait in�uenced by a major gene
Marc Teissier* , Hélène Larroque and Christèle Robert-Granié

Abstract 

Background: In 2017, genomic selection was implemented in French dairy goats using the single-step genomic 

best linear unbiased prediction (ssGBLUP) method, which assumes that all single nucleotide polymorphisms explain 

the same fraction of genetic variance. However, ssGBLUP is not suitable for protein content, which is controlled by a 

major gene, i.e. α
s1

 casein. This gene explains about 40% of the genetic variation in protein content. In this study, we 

evaluated the accuracy of genomic prediction using different genomic methods to include the effect of the α
s1

 casein 

gene.

Methods: Genomic evaluation for protein content was performed with data from the official genetic evaluation 

on 2955 animals genotyped with the Illumina goat SNP50 BeadChip, 7202 animals genotyped at the α
s1

 casein gene 

and 6,767,490 phenotyped females. Pedigree-based BLUP was compared with regular unweighted ssGBLUP and with 

three weighted ssGBLUP methods (WssGBLUP,  WssGBLUPMax and  WssGBLUPSum), which give weights to SNPs accord-

ing to their effect on protein content. Two other methods were also used: trait-specific marker-derived relationship 

matrix (TABLUP) using pre-selected SNPs associated with protein content and gene content based on a multiple-trait 

genomic model that includes α
s1

 casein genotypes. We estimated accuracies of predicted genomic estimated breed-

ing values (GEBV) in two populations of goats (Alpine and Saanen).

Results: Accuracies of GEBV with ssGBLUP improved by + 5 to + 7 percent points over accuracies from the pedigree-

based BLUP model. With the WssGBLUP methods, SNPs that are located close to the α
s1

 casein gene had the biggest 

weights and contributed substantially to the capture of signals from quantitative trait loci. Improvement in accuracy 

of genomic predictions using the three weighted ssGBLUP methods delivered up to + 6 percent points of accuracy 

over ssGBLUP. A similar accuracy was obtained for ssGBLUP and TABLUP considering the 20,000 most important SNPs. 

Incorporating information on the α
s1

 casein genotypes based on the gene content method gave similar results as 

ssGBLUP.

Conclusions: The three weighted ssGBLUP methods were efficient for detecting SNPs associated with protein 

content and for a better prediction of genomic breeding values than ssGBLUP. They also combined fast computing, 

simplicity and required ssGBLUP to be run only twice.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Ge n e t i c s

Se lec t ion

Evolut ion

*Correspondence:  marc.teissier@inra.fr 

GenPhySE, INRA, INPT, ENVT, Université de Toulouse, 

31326 Castanet-Tolosan, France

http://orcid.org/0000-0002-0137-961X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-018-0400-3&domain=pdf


Page 2 of 12Teissier et al. Genet Sel Evol  (2018) 50:31 

Background
�e availability of molecular data has enabled the devel-

opment and commercial application of genomic selection 

in various livestock species, such as dairy cattle [1, 2], 

dairy sheep [3, 4], meat sheep [5, 6] and dairy goats [7–9]. 

Meuwissen et  al. [10] proposed genomic prediction of 

animals based on dense single nucleotide polymorphism 

(SNP) maps, by deriving the effects of SNPs from a refer-

ence population, for which animals are both phenotyped 

and genotyped. Genomic estimated breeding values 

(GEBV) of selection candidates (i.e., usually young indi-

viduals with genotypes but without phenotypes) can be 

estimated by summing up the effects of the SNP alleles 

carried by each animal.

Methods such as genomic best linear unbiased pre-

diction (GBLUP) [11–15], are used to predict GEBV 

by replacing the pedigree relationship matrix used for 

pedigree-based BLUP with a realized genomic relation-

ship matrix. �e GBLUP method was further improved 

with single-step GBLUP (ssGBLUP) [12], which uses 

simultaneously all phenotypic, pedigree and genotypic 

information, including phenotypic information on non-

genotyped individuals. �erefore, in ssGBLUP, the rela-

tionship between each pair of animals (genotyped and 

non-genotyped) is estimated with a relationship matrix 

that combines pedigree and genotype information. Sev-

eral studies have reported that the accuracy of genomic 

prediction obtained with these methods is higher than 

with genetic evaluation using pedigree-based BLUP 

[16–18]. However, the accuracy obtained from genomic 

information depends on several parameters including 

reference population size [19, 20], extent of linkage dis-

equilibrium (LD), heritability of the trait [20, 21], rela-

tionship between training and validation populations [10] 

and the genetic architecture of the trait, which relates to 

the relative size of allele substitution effects at quantita-

tive trait loci (QTL) [10, 22].

�e GBLUP and ssGBLUP methods usually assume 

that each SNP follows the same distribution [11, 12, 

16, 23–25], thus, all SNPs have the same variance and 

the same weight for SNP variance. However, different 

genomic evaluation methods have been developed to 

allow the variance of the effect of SNPs to differ between 

SNPs. A priori information can be used to modify the 

distribution of SNP effects. Giving more variance to 

some SNPs allows these methods to take the presence of 

major genes or QTL that affect the trait of interest into 

account. For instance, various Bayesian methods, which 

estimate the effect of SNPs from animals that are both 

genotyped and phenotyped, have been proposed [10, 

26–28]. �e main difference between these Bayesian 

methods lies in the definition of an a priori distribution 

of the effects of SNPs. SNPs can be attributed to different 

distribution classes, which explain different parts of the 

total genetic variance, with one class possibly containing 

the SNPs that have no effect on the trait. Because animals 

need to be phenotyped and genotyped to apply Bayesian 

methods, phenotypes from non-genotyped animals can-

not be included. In dairy breeding programs, genotypes 

are mainly determined on the males whereas phenotypes 

come from the females. �us, daughter yield deviations 

(DYD) or de-regressed proofs are calculated to obtain 

pseudo-phenotypes for the males. However, multi-step 

methods may create bias in genomic predictions [29].

Other methods based on the ssGBLUP framework 

such as weighted ssGBLUP (WssGBLUP) or on the trait-

specific marker-derived relationship matrix (TABLUP) 

have been proposed [30]. WssGBLUP is an extension of 

ssGBLUP in which weights for SNP variances are used 

when forming the genomic relationship matrix [12]. Wss-

GBLUP can set more weight to SNPs that are in high LD 

with a causal mutation or associated with QTL with a rel-

atively large effect. �ese weights are estimated from the 

variance explained by each SNP as presented by Wang 

et al. [23]. �e weighting of SNP variances was also inves-

tigated by Zhang et al. [24] who proposed to use the same 

weight for SNPs that are within a defined window along 

the genome. �e TABLUP method proposes to construct 

the genomic relationship matrix based on genotypes 

from a subset of pre-selected SNPs. Selection of SNPs can 

be performed after GWAS analysis or based on weights 

that are estimated with WssGBLUP. �e selected SNPs 

are then equally weighted for the analyses [30]. Further-

more, an alternative to the previous methods is the gene 

content method proposed by Gengler et al. [31], which is 

based on a multiple trait model and considers the gene 

content for specific genotypes as a new trait. �is method 

can combine information from SNPs and genotypes for a 

causal mutation [31, 32]. �e number of alleles carried by 

each animal is considered as a second trait correlated to 

the quantitative trait. �en, the causal mutation is inte-

grated directly in the ssGBLUP multiple-trait model. Its 

advantage is that it can be extended to multi-allelic genes 

and used when genotypes for a causal mutation are miss-

ing [33].

In French dairy goats, the first step towards genomic 

selection for milk production traits, udder type traits and 

somatic cell score was taken by Carillier-Jacquin et  al. 

[8, 9] for French Alpine and Saanen dairy goat breeds. 

Carillier-Jacquin et  al. [8, 9] compared ssGBLUP and 

other methods of genomic evaluation that require sev-

eral steps (GBLUP or Bayesian methods). GBLUP and 

Bayesian methods usually use performances based on 

pseudo-phenotypes (DYD) whereas ssGBLUP is based 

on female performance. �ese authors found that ssGB-

LUP gave more accurate predictions of the genetic merit 
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of selection candidates than the previous official genetic 

evaluation that did not use genomic information, or 

the use of multi-step genomic methods. However, the 

increase in accuracy due to using genomic information 

was not expected to be high because the reference popu-

lation was small.

Currently, the next step in the genomic evaluation 

of French dairy goats is to investigate better ways to 

use genotyping information to improve the accuracy 

of genomic evaluation. One possibility is to take prior 

knowledge about major genes into account. Several 

major genes have been identified, such as DGAT1 for 

fat content [34] and αs1 casein for protein content [35]. 

For protein content, Carillier-Jacquin et al. [33] reported 

that the genetic variance explained by the αs1 casein gene 

reached 38% in the Saanen and 43% in the Alpine breed. 

�e caprine αs1 casein gene has six alleles ( A , B , C , E , F  

and O ) that have been identified in the French dairy goat 

population. Allele A is predominant in the Alpine breed, 

whereas alleles A , E and F  are the most frequent in the 

Saanen breed [33]. Carillier-Jacquin et  al. [33] showed 

that integrating the αs1 casein gene for protein content 

with the gene content method improved the accuracy of 

genomic evaluation (+ 8 to 14% for Alpine and Saanen 

populations) compared with ssGBLUP.

In this study, our aim was to investigate different meth-

ods of genomic prediction that estimate and integrate the 

fact that chromosomal regions are strongly associated 

with a trait. Protein content in French dairy goats was 

analyzed by applying WssGBLUP, two alternatives of the 

WssGBLUP method, the TABLUP method and the gene 

content method. �ese methods were compared with 

pedigree-based BLUP and ssGBLUP based on the accura-

cies of predicted breeding values.

Methods
Animals, phenotypes and genotypes

�e dataset used in this study was provided by the French 

national milk records system and included animals from 

the two main French dairy goat breeds, Alpine and 

Saanen. Phenotypes for protein content, pedigree data, 

genotypes and environmental fixed effects used in the 

ssGBLUP method were obtained from the official genetic 

evaluation of January 2016 [36]. Analyses were performed 

with a multi-breed dataset (Alpine and Saanen animals 

combined) and in two separate within-breed analyses.

�e trait analyzed was protein content (g/kg) with 

measurements from 6,767,490 lactations and 2,458,453 

females recorded between 1980 and 2010. Descriptive 

statistics (animal and record numbers, minimum, mean, 

maximum, coefficient of variation) for each breed are in 

Table 1.

�e pedigree consisted of 2,543,789 animals (1,449,991 

Alpine and 1,093,798 Saanen). In addition, it was com-

pleted with 36 unknown parent groups. Unknown parent 

groups were defined for each breed and for animals born 

before 1975, and then for cohorts born in 2-year win-

dows up to 2010.

Animals that were genotyped with the Illumina goat 

SNP50 BeadChip (50K SNP) [37] were also used in the 

analysis. Quality control (QC) for a dataset of 3347 geno-

typed animals (2020 Alpine and 1278 Saanen) and 53,347 

SNPs was performed independently for each breed. SNPs 

with a minor allele frequency (MAF) lower than 1% and 

a call rate lower than 95% were removed. Hardy–Wein-

berg equilibrium was also tested and the associated Chi 

squared statistic was calculated for each SNP. SNPs with 

a Chi squared statistic higher than 24 were removed. 

Finally, animals with a SNP call rate lower than 99% were 

discarded from the analyses. After QC, 2955 (1749 Alpine 

and 1206 Saanen) animals and 46,849 SNPs remained for 

further analyses. Some SNPs within the αs1 casein gene 

were present on the 50 K SNP but since they did not pass 

QC, they were removed [33].

Genotypes for the αs1 casein gene were available for 

3696 Alpine individuals (2154 males and 1542 females), 

and 3506 Saanen individuals (2049 males and 1457 

females) born between 1982 and 2012. �e αs1 casein 

gene is located on caprine chromosome 6 at 82 Mb and is 

multi-allelic in the French dairy goat population, with six 

different alleles ( A , B , C , E , F  and O ) and 19 genotypes 

detected among the 21 possibilities ( FO and OO geno-

types have never been detected in the French dairy goat 

population) [33]. Genotypes of animals with one miss-

ing allele were removed from the analysis. �e estimated 

effects of the 19 αs1 casein genotypes on protein content 

were computed and reported previously [33]. Table  2 

includes the number of animals (males and females for 

Table 1 Summary statistics on protein content (g/kg) in Alpine and Saanen breeds

CV coe�cient of variation

a Minimum, mean, maximum protein content

Breed Number 
of lactations

Number of females 
with phenotypes

Minimuma (g/kg) Meana (g/kg) Maximuma (g/kg) CV

Alpine 3,844,071 1,392,399 10.47 30.42 54.81 0.11

Saanen 2,923,419 1,066,054 10.00 29.67 54.63 0.09
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Alpine and Saanen breeds) used in this study with infor-

mation on their αs1 casein and/or 50 K SNP genotypes.

Genomic prediction with and without considering 

information on the α
s1 casein genotypes

ssGBLUP was implemented in 2017 in the official genetic 

evaluations for the two main French dairy goats. �is 

method and pedigree-based BLUP were used as the ref-

erence method in our study and compared with Wss-

GBLUP, two alternatives of the WssGBLUP method, 

TABLUP and the gene content method. Analyses were 

performed using the blupf90 software [38].

Single-step GBLUP (ssGBLUP) method

For both multi-breed and within-breed scenarios, the fol-

lowing model was applied:

where y is a vector of performances (female phenotypes) 

for protein content (phenotypes are based on standard-

ized 250-day lactation records). β is a vector of fixed 

effects including herd within year (32 years from 1980 to 

2012) and within parity (1, 2 and ≥ 3) (188,933 levels in 

total); age at delivery within year and within region (four 

regions in France depending on goat breeding manage-

ment) (3224 levels in total); month at delivery within year 

and region (1448 levels in total); and length of dry period 

within year and region (1107 levels in total); a fifth fixed 

effect for breed (two levels) was added for multi-breed 

analyses. u is a vector of random additive genetic effects 

assumed to be normally distributed N
(

0,Hσ
2
u

)

 , p is a 

vector of random permanent environmental effects 

assumed to be normally distributed N
(

0, Iσ 2
p

)

 , e is a vec-

tor of random residuals that is normally distributed 

N
(

0, Iσ 2
e

)

 . X is the incidence matrix relating phenotypes 

to the fixed effects ( β). Z is the design matrix allocating 

phenotypes to breeding values ( u ) and W is the incidence 

matrix relating phenotypes to permanent environmental 

effects ( p).

(1)y = Xβ + Zu + Wp + e,

Matrix H is the genetic relationship matrix combining 

SNP information and pedigree data, implemented as in 

Legarra et al. [12]:

where A is a pedigree-based relationship matrix with 

indices 1 for ungenotyped animals and 2 for genotyped 

animals, and G is the genomic relationship matrix derived 

as in Christensen and Lund [11]:

where m is the number of SNPs, pi is the estimated allele 

frequency at locus i and M is a centered matrix of SNP 

genotypes.

Variance components were estimated by using the 

restricted maximum likelihood (REML) method in the 

remlf90 software [38].

Weighted ssGBLUP (WssGBLUP) method

Model 1 was also used for WssGBLUP but G was con-

structed differently. Solutions of genomic breeding values 

from ssGBLUP (Model 1) can be decomposed into SNP 

effects as modeled in Wang et al. [23]:

where â is a vector of SNP effects, D is a diagonal matrix 

of weights (initially diagonal of 1 for the ssGBLUP), M is 

the centered matrix of SNP genotypes and ûg the vector 

of GEBV from genotyped animals only. Variances of the 

effect of SNP i were estimated as:

where pi is the allele frequency of SNP i . �e vector of 

variances of SNP effects was normalized (the normali-

zation process ensured that the sum of the variances 

remained constant and was equal to the number of 

SNPs) and used as weights in matrix D to construct the 

weighted matrix G ( G∗ ) as described in Wang et al. [23]:

H =

(

A11 + A12A
−1
22 (G − A22)A

−1
22

A21 A12A
−1
22

G

GA
−1
22

A21 G

)

,

G = 0.95
M

′
M

2
∑m

i=1 pi(1 − pi)
+ 0.05A22,

â = DM
′
[

MDM
′
]−1

ûg ,

σ 2
u,i = 2â2i pi(1 − pi),

Table 2 Number of animals with information on the α
s1

 casein genotype and/or 50 K SNP genotypes

Breed Gender Animals with 50 K SNP 
genotype

Animals with α
s1

 casein 
genotype

Animals with both 50K SNP 
and α

s1
 casein genotype

Alpine Males 512 2154 510

Females 1237 1542 0

Saanen Males 393 2049 393

Females 813 1457 0
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GEBV were estimated again with Model 1 by considering 

weights for each SNP via the G∗ matrix included in the 

H matrix. �is process was carried out iteratively with 

weights estimated at each iteration as described in Wang 

et  al. [23]. Wang et  al. [23] have shown that WssGLUP 

with only very few iterations may be sufficient to reach 

a maximum accuracy of GEBV and SNP effects. In this 

study, we analyzed the influence of the number of itera-

tions (1–10) on the accuracy of genomic predictions.

As proposed by Zhang et  al. [24], other methods can 

be considered to calculate the weight for SNPs in the D 

matrix. �ese methods assign the same weight to several 

consecutive SNPs within a chromosomal region. Modi-

fications of the WssGBLUP method were considered in 

this study and the individual weights were computed as 

follows: (1) the maximum weight of SNPs included in 

the chromosomal region, or (2) the sum of the weights 

of the SNPs included in the chromosomal region. �ese 

weights were calculated based on the weights estimated 

with the WssGBLUP. In the end, the vector of the weights 

was normalized in such a way that the sum of all weights 

remained constant and equal to the number of SNPs. 

Chromosomal regions of various lengths were tested: 2, 

5, 10, 20, 40, 80, 100, 150, 200 and 250 consecutive SNPs 

with non-overlapping windows. Hereafter, these methods 

are named  WssGBLUPi where i denotes the method used 

to calculate the weights (Max or Sum).

Trait-speci�c marker-derived relationship matrix (TABLUP) 

method

Only a subset of SNPs that are more or less associ-

ated with protein content was selected to build the G 

matrix. One of our objectives was to investigate how the 

genetic architecture of protein content could be taken 

into account in the ssGBLUP method. �us, TABLUP 

was applied by selecting a subset of SNPs according to 

their effect on the trait (estimated from the WssGBLUP 

method described previously). A total of 5000, 10,000, 

15,000, 20,000, 25,000, 30,000, 35,000 or 40,000 SNPs 

were selected to construct G . Two scenarios were tested 

in which either the most or the least strongly associated 

SNPs were selected. GEBV were estimated with Model 

1 and the G matrix that was built based on the selected 

SNPs without weights ( D = I).

Gene content method

�e gene content method estimates the GEBV for each 

animal by taking information on the αs1 casein genotype, 

genotypes from the 50K SNP and pedigree into account 

G
∗

= 0.95
M

′
DM

2
∑

m

i=1
pi(1 − pi)

+ 0.05A22.

through a multiple-trait model. �e model used here was 

the same as in [33]:

where y is a vector of female performances for protein 

content. Fixed effects ( β ), random effects ( u , p and e ) and 

incidence matrices X , Z and W are the same as in Model 

1. yA , yB , yC , yE , yF , and yO are vectors of gene content 

for alleles A , B , C , E , F  and O . �is corresponds to the 

number of copies carried by each animal (i.e., 0, 1 or 2). 

For ungenotyped animals, the value was set to missing. 

µA , µB , µC , µE , µF , and µO are the mean fixed effects for 

alleles A , B , C , E , F  and O , ZA , ZB , ZC , ZE , ZF , and ZO 

are the incidence matrices relating observations to the 

random genetic effect ( uA , uB , uC , uE , uF and uO ) of gene 

content for each allele and eA , eB , eC , eE and eO are the 

random residual errors for each of the six alleles. For 

i ∈ {A,B,C ,E, F ,O} , ui are normally distributed such 

that Var(ui) = Hσ 2
ui

 and σ 2
ui

= 2pi(1 − pi) , where pi is 

the frequency of allele i at the αs1 casein locus. Covari-

ances between genetic values ( u ) and genetic effects of 

gene content ( uA , uB , uC , uE , uF and uO ) were modeled 

as in Carillier-Jacquin et al. [33]. Variance and covariance 

parameters from this model were estimated using the 

restricted maximum likelihood (REML) algorithm imple-

mented in the remlf90 software.

Accuracy of genomic predictions

Genomic evaluations were performed from all pheno-

types recorded until January 2010, but we were also 

interested in the prediction of genotyped animals that 

constituted our reference population. �is reference pop-

ulation was composed of 905 sires born between 1993 

and 2012 and genotyped with the 50K SNP chip (Table 2) 

and was split into a training population of 554 sires born 

from 1993 to 2007 (307 Alpine and 247 Saanen) with 

phenotypes of their daughters recorded until January 

2010), and 351 validation sires born from 2008 to 2012 

(205 Alpine and 146 Saanen) with no daughters in Janu-

ary 2013 (daughters of these animals were removed from 

the dataset). �en, GEBV and DYD computed from the 

official genetic evaluation of January 2016 were com-

pared for the 351 animals in the validation set. DYD were 

average performance values for the daughters corrected 

(2)

y = Xβ + Zu + Wp + e

yA = µA + ZAuA + eA

yB = µB + ZBuB + eB

yC = µC + ZCuC + eC

yE = µE + ZEuE + eE

yF = µF + ZFuF + eF

yO = µO + ZOuO + eO

,
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for environmental effects and merit of the dam, and they 

were weighted by effective daughter contributions as 

described in VanRaden and Wiggans [39]. Accuracy of 

genomic predictions was assessed as the Pearson cor-

relation between GEBV estimated with each model and 

DYD. Pearson correlations obtained with different meth-

ods were tested using the Hotelling-Williams test [40].

Results and discussion
�e most frequent αs1 casein genotypes are AA for the 

males and AE for the females in the Alpine breed, and 

AE for the females and EE for the males in the Saanen 

breed (present in more than 50% of the animals). Allele 

C is rather rare (less than 5% of the animals carry this 

allele) in the two breeds. �e largest differences in geno-

type frequency between Alpine and Saanen populations 

were observed for genotypes AA (49% in Alpine vs. 7% 

in Saanen), EE (3% in Alpine vs. 32% in Saanen) and AE 

(49% in Saanen vs. 30% in Alpine). �ese results were 

consistent with the previous work of Carillier-Jacquin 

et al. [33] in which fewer genotypes were available. Pro-

tein content was analyzed knowing that this trait is highly 

heritable in both Alpine and Saanen populations (0.5) 

[41].

Estimation of weights for SNPs with the WssGBLUP method

We compared different genomic methods. First, we used 

WssGBLUP because we wanted to identify the weights 

given to SNPs with this method, in order to determine 

if the chromosomal region including the αs1 casein gene 

was considered in the analyses. WssGBLUP is an itera-

tive method, and 10 iterations were performed for multi-

breed analyses and within-breed analyses. Accuracy 

of genomic predictions was evaluated at each iteration 

(results not shown). �e highest accuracies were obtained 

at the second iteration as reported by Wang et al. [23] and 

then decreased slightly. �us, all the results presented for 

the WssGBLUP multi-breed and within-breed analyses 

are those obtained for the second iteration (see Fig.  1). 

�e top 50 SNPs (with the biggest weights) were com-

pared between the three analyses and were all located 

on chromosome 6 i.e. the multi-breed (between 71 and 

86  Mb), Alpine (between 64 and 101  Mb) and Saanen 

analyses (between 71 and 92  Mb), and their weights 

ranged from 24 to 115 for multi-breed, from 23 to 45 for 

Fig. 1 Estimated weights of SNPs included in the second iteration of the WssGBLUP approach for multi-breed, Alpine and Saanen populations. 

WssGBLUP used GEBV of genotyped animals and genotypes to estimate weights for each SNP. The estimated weight of each SNP is represented 

along the genome
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Alpine and from 30  to 108 for Saanen analyses. Among 

these SNPs, 16 were common to the three analyses and 

located between 78 and 82 Mb; 11 SNPs were common 

to the Saanen and multi-breed analyses and located 

between 79 and 83  Mb; 16 SNPs were common to the 

Alpine and multi-breed analyses and located between 77 

and 86 Mb; and only one SNP was common to both the 

Alpine and Saanen analyses and located at 76 Mb.

WssGBLUP can be used not only for genomic predic-

tion but also for QTL detection as in GWAS [23, 24]. 

In French dairy goat data, the chromosomal regions 

detected with WssGBLUP were on caprine chromosome 

6, which includes a well-known region that was pre-

viously located and described by Martin et  al. [34] in a 

GWAS study. �ey performed linkage analyses (LA) and 

linkage disequilibrium (LD) analyses on 1941 dairy goats 

distributed in 20 half-sib families using all females and 

their 20 sire genotypes and detected a large QTL between 

82.5 and 82.8 Mb on chromosome 6. In our study, SNPs 

with the biggest weights for SNP variances were located 

within this region.

�e WssGBLUP method developed by Wang et  al. 

[23] has some limitations. Weights for SNP variances 

are estimated by using a whole-genome regression, 

which can result in their unstable prediction due to 

multi-collinearity between SNPs because of LD between 

SNPs. In our study, we tested common weights for sev-

eral SNPs instead of individual weights for SNP vari-

ances, using  WssGBLUPMax or  WssGBLUPSum. �ese 

methods are expected to limit the large variation in 

prediction of weights for SNP variances by smooth-

ing weights of SNPs that are in the same window. In our 

study,  WssGBLUPMax and  WssGBLUPSum gave higher 

accuracies of genomic prediction than the classical Wss-

GBLUP. With  WssGBLUPMax or  WssGBLUPSum, window 

sizes were used to allocate the same weights to consecu-

tive SNPs. Another approach would be to use the LD 

between SNPs, which could limit the multi-collinearity 

between the SNPs used in the genomic evaluation. Since 

the weight of SNPs is included through the D matrix, this 

matrix can be replaced by the weights derived from the 

GWAS approach.

Including the e�ect of the α
S1

 casein gene in WssGBLUP 

or gene content methods

Figure 2 presents accuracies of genomic evaluation for 

pedigree-based BLUP, ssGBLUP, gene content and Wss-

GBLUP in a multi-breed population and in the Alpine 

and Saanen breeds. Accuracies with pedigree-based 

BLUP (0.72 in multi-breed, 0.71 in Alpine and 0.66 

Fig. 2 Validation correlations for validation males in multi-breed, Alpine and Saanen populations for pedigree-based BLUP, ssGBLUP, gene 

content and WssGBLUP approaches. Differences in accuracy between ssGBLUP and other approaches were tested with the Hotelling-Williams test 

(threshold: *5%, **3%, ***1%, NS non-significant)
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in Saanen) were lower than accuracies with ssGBLUP 

(0.77 in multi-breed, 0.76 in Alpine and 0.73 in Saanen), 

gene content (0.76 in multi-breed, 0.76 in Alpine and 

0.72 in Saanen) or WssGBLUP (0.79 for multi-breed, 

0.78 for Alpine and 0.77 for Saanen). �e gene content 

method did not improve accuracy of genomic predic-

tions for the three populations compared to ssGBLUP 

(accuracy was 1 percent point lower for gene content 

in the multi-breed and Saanen analyses and identi-

cal in the Alpine analysis). In addition, accuracies with 

WssGBLUP were significantly higher than with ssG-

BLUP for the Saanen population (+ 4 percent points). 

We did not observe any significant difference between 

ssGBLUP and WssGBLUP for multi-breed and Alpine 

populations.

Previously, Carillier-Jacquin et  al. [33] used the gene 

content and ssGBLUP methods to analyze protein con-

tent in French dairy goats. Accuracies obtained with ssG-

BLUP were higher in our study than in Carillier-Jacquin 

et  al. [33] for the multi-breed (+ 5 percent points) and 

Alpine (+ 8 percent points) analyses, and slightly lower 

for the Saanen analysis (− 2 percent points). A similar 

trend was observed with the gene content method, with 

+ 1 percent point for multi-breed, + 8 percent points for 

Alpine and − 14 percent points for Saanen in our study 

compared to Carillier-Jacquin et  al. [33]. �e main dif-

ference between our study and that of Carillier-Jacquin 

et al. [33] was the number of animals genotyped with the 

50 K SNP chip, number of αs1 casein genotypes, and the 

size and composition of the training and validation sets. 

In our study, 82 males and 2050 females genotyped with 

the 50 K SNP chip and 50 females and 878 males geno-

typed for the αs1 casein gene were added. In Carillier-

Jacquin et al. [33], the reference population consisted of 

a training set with 677 animals born between 1993 and 

2009 (384 Alpine and 293 Saanen), and a validation set 

with 146 animals born between 2010 and 2011 (86 Alpine 

and 60 Saanen). In our study, we had 554 animals born 

between 1993 and 2007 (307 Alpine and 247 Saanen) in 

the training set and 351 animals born between 2008 and 

2012 (205 Alpine and 146 Saanen) in the validation set. 

�e main difference between the Carillier-Jacquin et  al. 

study and that reported here was the size of the validation 

population (2 versus 5  years in our study). �e slightly 

improved results that we obtained may be explained by 

the larger reference population (823 animals in Carillier-

Jacquin et al. [33] compared to 905 in our study), a well-

known factor in the literature on genomic selection. For 

instance, VanRaden et al. [42] report a gain of + 5 percent 

points between genomic prediction and parent average 

by adding 1000 animals in the training population. �ese 

results were consistent with the higher accuracy obtained 

in the multi-breed analysis compared to the within-breed 

analyses, especially if the trait has the same genetic deter-

minism in the two breeds that are combined (which is 

the case for protein content). Accuracy is expected to 

improve even more the size of the reference population 

continues to grow over the years.

Carillier-Jacquin et al. [33] showed that the gene con-

tent method was more accurate than ssGBLUP (+ 3 per-

cent points for multi-breed, + 5 percent points for Alpine 

and + 11 percent points for Saanen). However, in our 

study, accuracies of genomic prediction were the same 

for the gene content method and ssGBLUP. �e goat αs1 

casein gene has six alleles in the two main French dairy 

goats and genotype frequencies vary considerably with 

some being rare. Predicting αs1 casein genotypes with 

the gene content method for non-genotyped animals 

remains difficult in this case, especially in French dairy 

goats, for which the number of non-genotyped animals 

is large compared with that of genotyped animals (only 

0.3% of the population is genotyped for the αs1 casein 

gene), and 40% of females have unknown parents. �is 

may explain why the gene content method did not out-

perform ssGBLUP.

�e genetic architecture of protein content is similar 

between the Alpine and Saanen breeds. However, the 

gain in accuracy with the genomic evaluation methods 

(ssGBLUP, gene content and WssGBLUP) compared to 

pedigree-based BLUP was greater for the Saanen than 

the Alpine breed. As discussed by Carillier-Jacquin 

et al. [9], the greater gain observed for the Saanen breed 

between pedigree-based BLUP and genomic evaluation 

may be explained by a higher level of inbreeding (2.3% in 

Saanen and 1.8% in Alpine), and a higher kinship coef-

ficient between the training and validation sets (2.4% in 

Saanen and 1.1% in Alpine using genomic data).

For prediction of GEBV, WssGBLUP was more effi-

cient than gene content, which may be due to the con-

struction of the 50K SNP chip. �e region around the αs1 

casein gene was enriched in SNPs in the 1-Mb region at 

82  Mb on chromosome 6 (the region that contains the 

αs1 casein gene). Overall, 40 SNPs are present within this 

1-Mb region, whereas on average only 20 SNPs per Mb 

are located outside of this region on chromosome 6 or 

on other chromosomes. Moreover, the Chi squared test 

between αs1 casein genotypes and each SNP on chromo-

some 6 revealed a very strong correlation between αs1 

casein genotypes and SNPs on the 50K SNP chip in this 

region (results not shown). Giving more weight to SNPs 

that are more strongly associated with protein content 

seems to be more efficient to capture the effect of the αs1 

casein gene than using genotype data for this gene. Vallejo 

et  al. [18] investigated the efficiency of WssGBLUP for 

bacterial cold water disease resistance, for which several 

QTL are identified. �ey observed an improvement of 4 
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percent points with WssGBLUP compared to ssGBLUP. 

In our study, we observed similar gains with WssGBLUP. 

Su et al. [43] also observed a superiority of the WssGB-

LUP over ssGBLUP in dairy cattle for milk traits.

Use of common weights on consecutive SNPs 

with WssGBLUP

WssGBLUP was significantly more predictive than other 

genomic evaluation methods for protein content in 

the Saanen breed but not in multi-breed or the Alpine 

breed. Zhang et al. [24] reported that  WssGBLUPMax and 

 WssGBLUPSum increase the accuracy of genomic evalu-

ation more efficiently than WssGBLUP. We evaluated 

these methods and Tables  3, 4 and 5 show the results 

on the validation population in the multi-breed, Alpine 

and Saanen populations, respectively using WssGBLUP 

and the two modified WssGBLUP methods (Max, Sum) 

according to the size of SNP windows. If identical results 

were obtained for different window sizes, they were 

merged in the same column. For the multi-breed popu-

lation, accuracies of the analyses with  WssGBLUPMax 

and  WssGBLUPSum were very similar and differed only 

with non-overlapping SNP windows of 40, 80, 100, 150, 

200 and 250 SNPs, the accuracy (0.81) of  WssGBLUPSum 

being slightly higher than that of  WssGBLUPMax (0.80). 

Otherwise, accuracies were equal to 0.79 with a window 

size of two SNPs and 0.80 for window sizes of five, 10 

and 20 SNPs. Finally, accuracies of  WssGBLUPMax and 

 WssGBLUPSum were slightly higher than that of WssGB-

LUP (0.79) and higher than that of ssGBLUP (0.77).

For both within-breed analyses, increasing the win-

dow size barely influenced accuracies. In the Alpine 

within-breed analysis, a maximum accuracy of 0.79 was 

reached with the  WssGBLUPSum method and a window 

size of 40 SNPs and thus, it outperformed WssGBLUP 

(0.78). For other window sizes (larger or smaller), accu-

racies with  WssGBLUPSum were equal to 0.78. With the 

 WssGBLUPMax method, accuracies ranged from 0.77 

for a window of two consecutive SNPs to 0.78 for win-

dows of 5, 10, 20, 40, 80, 100, 150, 200 and 250 consecu-

tive SNPs. In comparison, genomic evaluations with 

 WssGBLUPMax and  WssGBLUPSum were more accu-

rate than with ssGBLUP (0.76). In the Saanen within-

breed analysis, accuracies of 0.78 were reached with 

 WssGBLUPSum for windows of 40, 80, 100, 150, 200 and 

250 consecutive SNPs, and with  WssGBLUPMax for win-

dows of 80 and 100 consecutive SNPs.  WssGBLUPMax 

and  WssGBLUPSum outperformed WssGBLUP (0.77) or 

even ssGBLUP (0.73). Accuracies of 0.77 were obtained 

with  WssGBLUPSum for windows of 2, 5, 10 and 20 con-

secutive SNPs and with  WssGBLUPMax for windows of 2, 

5, 10, 20, 40, 150, 200 and 250 consecutive SNPs.

WssGBLUPMax and  WssGBLUPSum slightly improved 

the accuracy of genomic predictions for protein con-

tent in French dairy goats compared to WssGBLUP. 

Similar results were observed by Zhang et  al. [24] with 

 WssGBLUPMax and  WssGBLUPSum compared to WssG-

BLUP on simulated data for five QTL. Zhang et al. [27] 

presented their results for a window size of 20 consecu-

tive SNPs because when they used windows with more 

than 20 SNPs, accuracies decreased when many QTL 

affected a trait. �is is due to most of the weight being 

assigned to the windows with large SNP effects and less 

weight to those with small SNP effects, which may intro-

duce bias in the estimates. For the populations in our 

study, accuracies varied little with window size. How-

ever, 20 consecutive SNPs were not sufficient to reach 

the highest accuracies and 40 consecutive SNPs were 

more appropriate. �us, for a trait that is influenced by 

few QTL,  WssGBLUPMax or  WssGBLUPSum were more 

Table 3 Validation correlations for  351 validation males 

in  the  multi-breed population using di�erent WssGBLUP 

and di�erent window sizes of non-overlapping SNPs

a Each SNP has its own weight (WssGBLUP standard)

Method Size of non-overlapping SNP windows

1 2 5/10/20 40/80/100/150/200/250

WssGBLUPa 0.79

WSSGBLUPSum 0.79 0.80 0.81

WSSGBLUPMax 0.79 0.80 0.80

Table 4 Validation correlations for  205 validation 

males in  the  Alpine breed using di�erent WssGBLUP 

and di�erent window sizes of non-overlapping SNPs

a Each SNP has its own weight (WssGBLUP standard)

Method Size of non-overlapping SNP windows

1 2 5/10/20 40 80/100/150/200/250

WssGBLUPa 0.78

WSSGBLUPSum 0.78 0.78 0.79 0.78

WSSGBLUPMax 0.77 0.78 0.78 0.78

Table 5 Validation correlations for  146 validation 

males in  the  Saanen breed using di�erent WssGBLUP 

and di�erent windows size of non-overlapping SNPs

a Each SNP has its own weight (WssGBLUP standard)

Method Size of non-overlapping SNP window

1 2/5/10/20 40 80/100 150/200/250

WssGBLUPa 0.77

WSSGBLUPSum 0.77 0.78 0.78 0.78

WSSGBLUPMax 0.77 0.77 0.78 0.77
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efficient to capture clear signals from QTL compared to 

WssGBLUP with one weight per SNP.

TABLUP method

To validate that ssGBLUP does capture the αs1 casein 

gene information, we used TABLUP that consists in 

selecting a subset of SNPs for constructing the G matrix, 

i.e. we selected the SNPs that were the most or the least 

strongly associated with protein content. Figure 3 shows 

the accuracies obtained with ssGBLUP and TABLUP for 

the multi-breed population according to the number of 

SNPs conserved (5000 to 40,000 SNPs) to construct the G 

matrix. Since results for both Alpine and Saanen breeds 

were similar to those for the multi-breed population, they 

are not shown.

First, for the SNPs that were the most strongly asso-

ciated with protein content, TABLUP with only 5000 

such SNPs led to a high accuracy of genomic prediction 

(0.74), which is close to that obtained with ssGBLUP 

(0.77). TABLUP reached the 0.77 accuracy of ssGBLUP 

with 20,000 such SNPs, which were distributed across the 

whole genome with on average 42% of the SNPs on each 

chromosome being retained and 54% on chromosome 

6. �is indicates that SNPs around the αs1 casein gene 

have been more selected than the others. Increasing the 

number of SNPs from 20,000 to 40,000, did not increase 

the accuracy furthermore. Conversely, for the SNPs that 

were the least strongly associated with protein content, 

TABLUP with 5000 such SNPs led to a very low accuracy 

(0.47) and increasing their number to 40,000 led to an 

increase in accuracy of 24 percent points (0.47 with 5000 

SNPs and 0.71 with 40,000 SNPs) but accuracy remained 

significantly lower than that obtained by using the whole 

50K SNP BeadChip (0.71 against 0.77).

Using different subsets of SNPs and the BayesA model, 

VanRaden et  al. [44] compared accuracies of genomic 

predictions in Holstein breed cattle for 33 traits. �ey 

used 60K and high-density (HD) SNP panels, and added 

specific SNPs selected from whole-genome sequence 

data, which were SNPs based on their annotation 

(located on exons, splicing sites, indels, 2  kb upstream, 

1 kb downstream, untranslated regions, SNPs with large 

effects). �ey showed that the highest accuracies were 

Fig. 3 Validation correlations for 351 validation males in the multi-breed population using the TABLUP approach. TABLUP consists in selecting a 

subset of the genotypes from the 50K SNPs according to their association with protein content (either the most strongly associated or the least 

strongly associated with protein content), which is done by selecting SNPs according to their weights estimated with the WssGBLUP approach
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obtained with the scenario that used 60K SNPs plus the 

top 1000 SNPs for all 33 traits. Increasing the number 

of SNPs (using the HD SNP panel for example) did not 

increase the accuracy of genomic predictions. However, 

adding selected SNPs from whole-genome sequence to a 

medium-density SNP BeadChip improved GEBV accu-

racies. �ese results agree with those that we obtained 

with the TABLUP method. In the near future, when 

whole-genome caprine sequence data become available, 

it will be possible to select sequence-based variants and 

add them to the 50K SNP data in the genomic evaluation 

model, which will improve the accuracy of genomic pre-

dictions in these species.

We undertook additional analyses (results not shown) 

in which SNPs were removed chromosome-wise with 

the ssGBLUP, WssGBLUP and gene content meth-

ods. �e same accuracies were observed, regardless of 

the chromosome from which the SNPs were removed, 

except for chromosome 6 for ssGBLUP (0.77), WssG-

BLUP (0.79) and gene content (0.76). When SNPs from 

chromosome 6 were removed, accuracies dropped to 

0.70 for ssGBLUP, 0.66 for WssGBLUP and 0.74 for gene 

content. However, the loss in accuracy with gene con-

tent was smaller than with ssGBLUP and WssGBLUP, 

i.e. using genotypes for the αs1 casein gene and SNPs 

from 28 chromosomes (except chromosome 6) is quite 

similar to using the 50K SNP chip. �e missing geno-

types from the 50K SNP chip (i.e. the SNPs on chro-

mosome 6) did not add much information compared 

to the information contained by the genotypes for the 

αs1 casein. Results of TABLUP and chromosome-wise 

removal of SNPs showed that a part of the effect of the 

αs1 casein gene was retained by the ssGBLUP method, 

which basically does not include information on causal 

mutations. �ese results can be explained by the high 

coverage of SNPs on chromosome 6 around the αs1 

casein gene.

Conclusions
Our aim was to investigate different genomic evaluation 

methods (using αs1 casein genotypes and/or 50K SNP 

information) to integrate information on the αs1 casein 

gene in genomic evaluations of dairy goats. Using the 

trait-specific marker-derived relationship matrix did not 

improve accuracy of genomic evaluation, which was the 

same as that obtained by ssGBLUP with a selection of the 

20,000 most important SNPs for protein content. With 

the gene content method, accuracies of genomic evalua-

tion were not improved compared to ssGBLUP, which is 

probably due to the αs1 casein gene having many alleles 

and to the small number of genotyped animals. Put-

ting more weight on SNPs with larger effects improved 

accuracies of genomic evaluation using WssGBLUP, 

 WssGBLUPMax and  WssGBLUPSum. For  WssGBLUPMax 

and  WssGBLUPSum, accuracies were highest when a com-

mon weight was applied to non-overlapping windows of 

40 SNPs. Gains in accuracies reached + 12 percent points 

for the Saanen, + 9 percent points for the multi-breed 

and + 8 percent points for the Alpine populations com-

pared to a pedigree-based BLUP evaluation. WssGBLUP 

using common weights for SNPs within non-overlap-

ping windows is efficient if the trait is influenced by few 

QTL and the true number of QTL is not known. WssG-

BLUP also combines fast computing and simplicity, and 

requires ssGBLUP to be run only twice.
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