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WEIGHTED SOBOLEV SPACES AND EMBEDDING THEOREMS

V. GOL’DSHTEIN AND A. UKHLOV

Abstract. In the present paper we study embedding operators for weighted
Sobolev spaces whose weights satisfy the well-known Muckenhoupt Ap-
condition. Sufficient conditions for boundedness and compactness of the em-
bedding operators are obtained for smooth domains and domains with bound-
ary singularities. The proposed method is based on the concept of ‘generalized’
quasiconformal homeomorphisms (homeomorphisms with bounded mean dis-
tortion). The choice of the homeomorphism type depends on the choice of
the corresponding weighted Sobolev space. Such classes of homeomorphisms
induce bounded composition operators for weighted Sobolev spaces. With
the help of these homeomorphism classes the embedding problem for non-

smooth domains is reduced to the corresponding classical embedding problem
for smooth domains. Examples of domains with anisotropic Hölder singular-
ities demonstrate the sharpness of our machinery comparatively with known
results.

Introduction

Weighted Sobolev spaces are solution spaces of degenerate elliptic equations (see,
for example, [1]). The type of a weight depends on the equation type. Similar to the
classical theory of Sobolev spaces, embedding theorems of weighted Sobolev spaces
are suitable for the corresponding elliptic boundary problems, especially for the
existence and uniqueness of solutions. Embedding operators for weighted Sobolev
spaces in smooth domains were studied by many authors (see, for example, [1]–[6])
with the help of the integral representations theory adopted to the weighted case.
Weighted Sobolev spaces in nonsmooth domains were not studied before, except
article [7], where some sufficient conditions for boundedness of the embedding op-
erators were obtained. The main technical problem for the nonsmooth case is an
adequate description of an interplay between weights and boundary types (singu-
larities). The adequate choice allows us to obtain sharp Sobolev-type embeddings.

The relation between Jacobians of quasiconformal homeomorphisms and admis-
sible weights for Sobolev and Poincaré inequalities was studied in [8]. In the present
article we introduce a new approach based on the concept of ‘generalized’ quasi-
conformal homeomorphisms (or homeomorphisms with bounded mean distortion
in another terminology) that induce bounded composition operators of weighted
Sobolev spaces. These homeomorphisms transform the original embedding opera-
tors on nonsmooth domains to the embedding operators on smooth domains with
a corresponding weight change. This approach was suggested in [9] for classical
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3830 V. GOL’DSHTEIN AND A. UKHLOV

Sobolev spaces on nonsmooth domains and can be briefly described with the help
of the following diagram:

(1) W 1
p (D′, w)

��

ϕ∗
�� W 1

q (D)

��
Ls(D′, w) Lr(D).

(ϕ−1)∗��

Here the operator ϕ∗f = f ◦ϕ is a bounded composition operator of Sobolev spaces
induced by a homeomorphism ϕ that maps smooth domains D ⊂ R

n onto non-
smooth domains D′ ⊂ R

n. Suppose that its inverse homeomorphism ϕ−1 induces
a bounded composition operator of corresponding Lebesgue spaces. If the Sobolev
space W 1

q (D) permits a bounded (compact) embedding operator into Lr(D), then,
using the corresponding compositions, we can construct the embedding operator
of the weighted Sobolev space W 1

p (D′, w) into Ls(D′, w). The same scheme was
used in the article [10] for the study of the embedding operators of W 1

2 into L2

on nonsmooth bounded domains. In article [11] the same approach was applied to
embedding problems for domains of Carnot groups.

Let us shortly describe the content of the paper. In section 1 we give necessary
definitions and prove the density of smooth functions in weighted Sobolev spaces
with weights satisfying the Ap-condition. Such weighted Sobolev spaces are Banach
spaces. In section 2 we introduce classes of quasi-isometrical homeomorphisms and
prove sufficient conditions for the compactness of the embedding operators for the
weighted Sobolev spaces in domains quasi-isometrically equivalent to smooth ones.
In section 3 we introduce classes of homeomorphisms with bounded mean distortion
and study embedding operators for weighted Sobolev spaces defined on images of
smooth domains. We apply these abstract results to domains with anisotropic
Hölder-type singularities. The obtained estimates are sharper than the known
result [7].

In section 5 we apply embedding theorems for weighted Sobolev spaces to de-
generate elliptic boundary problems.

1. Weighted spaces

In this paper we study weighted Lebesgue and Sobolev spaces defined in the
domains of n-dimensional Euclidean space R

n, n ≥ 2.
Let D be an open subset of R

n, n ≥ 2, and w : R
n → [0,∞) be a locally

summable nonnegative function, i.e., a weight. Define a weighted Lebesgue space
Lp(D, w), 1 ≤ p < ∞, as a Banach space of locally summable functions f : D → R

equipped with the following norm:

‖f | Lp(D, w)‖ =
( ∫

D

|f |p(x)w(x) dx

)1/p

, 1 ≤ p < ∞.

Define a weighted Sobolev space Wm
p (D, w), 1 ≤ m < ∞, 1 ≤ p < ∞, as a normed

space of locally summable, m times weakly differentiable functions f : D → R

equipped with the following norm:

‖f | Wm
p (D, w)‖ =

( ∫
D

|f |p(x)w(x) dx

)1/p

+
∑

|α|=m

( ∫
D

|Dαf |p(x)w(x) dx

)1/p

,
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where α := (α1, α2, ..., αn) is a multi-index, αi = 0, 1, ..., |α| = α1 + α2 + ... + αn

and Dαf is the weak derivative of order α of the function f :∫
D

fDαη dx = (−1)|α|
∫
D

(Dαf)η dx, ∀η ∈ C∞
0 (D).

As usual C∞
0 (D) is the space of infinitely smooth functions with compact support.

By technical reasons we will need also a seminormed space Lm
p (D) of locally

summable, m times weakly differentiable functions f : D → R equipped with the
following seminorm:

‖f | L1
p(D, w)‖ =

∑
|α|=m

( ∫
D

|Dαf |p(x)w(x) dx

)1/p

.

Without additional restrictions the space Wm
p (D, w) is not necessarily a Banach

space (see, for example, [1]).
Let us assume additionally that the weight w : R

n → [0,∞) satisfies the well-
known Ap-condition:

sup
B⊂Rn

(
1
|B|

∫
B

w

)(
1
|B|

∫
B

w1/(1−p)

)p−1

< +∞,

where 1 < p < ∞, and |B| is the Lebesgue measure of the ball B.

Theorem 1. Let D ⊂ R
n be an open set and let a weight w satisfy the Ap-condition.

Then Wm
p (D, w), 1 ≤ m < ∞, 1 < p < ∞, is a Banach space. Smooth functions

of the class Wm
p (D, w) are dense in Wm

p (D, w).

Let us give some remarks before the proof.
Suppose that the nonnegative function ω : R

n → [0,∞) belongs to C∞(Rn),
supp ω ⊂ B(0, 1) and ∫

Rn

ω dx = 1.

Denote by

Arf(x) =
1
rn

∫
Rn

ω

(
x − z

r

)
f(z) dz

a mollifier function of f with a mollification kernel ω.
Let Dδ = {x ∈ D : dist(x, ∂D) > δ} for δ > 0. The proof of the theorem is

based on the following lemma (see, for example, [12]):

Lemma 1. Let D ⊂ R
n be an open set and let a function f ∈ L1,loc(D) have a

weak derivative Dαf on D. Then for every 0 < r < δ,

Dα(Arf) = Ar(Dαf) on Dδ.

Proof. For the reader’s convenience we reproduce here a version of the proof. Note,
that for every x ∈ Dδ,

(Arf)(x) =
∫

B(0,1)

f(x − rz)ω(z) dz, 0 < r < δ.

By definition of the weak derivative, Dα
x (f(x − rz)) = (Dα

x f)(x − rz) on Dδ.
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3832 V. GOL’DSHTEIN AND A. UKHLOV

Suppose (x, z) ∈ Dδ × B(0, 1). Define F (x, z) = f(x − rz)ω(z) and G(x, z) =
(Dα

x f)(x − rz)ω(z). Then for each compact K ⊂ Dδ the functions F, G belong to
L1(K × B(0, 1)). Moreover, by Fubini’s theorem and the definition of the mollifi-
cation kernel, we get

∫
K

( ∫
B(0,1)

|f(x − rz)ω(z)| dz

)
dx =

∫
K

(
1
rn

∫
B(x,r)

|f(y)ω
(x − y

r

)
| dy

)
dx

=
∫

Kr

(
1
rn

∫
K

|f(y)ω
(x − y

r

)
| dx

)
dy ≤

∫
Kr

|f(y)|
(

1
rn

∫
K

ω
(x − y

r

)
dx

)
dy

≤
∫

Kr

|f(y)|
(

1
rn

∫
Rn

ω
(x − y

r

)
dx

)
dy =

∫
Kr

|f(y)| dy = ‖f | L1(Kr)‖.

Here Kr is the r-neighborhood of K, Kr ⊂ D. Of course, the same estimate is
correct for G.

Using the Fubini theorem we have

∫
Dδ

( ∫
B(0,1)

Dα
x f(x−rz)ω(z) dz

)
η(x)dx =

∫
B(0,1)

(∫
Dδ

(
Dα

x f(x−rz)ω(z)
)
η(x) dx

)
dz

= (−1)|α|
∫

B(0,1)

(∫
Dδ

f(x − rz)ω(z)
(
Dαη(x)

)
dx

)
dz

= (−1)|α|
∫

Dδ

( ∫
B(0,1)

f(x − rz)ω(z) dz

)
Dαη(x) dx

for every function η ∈ C∞
0 (Dδ).

Hence for every x ∈ Dδ,

Dα((Arf)(x)) = Dα

( ∫
B(0,1)

f(x − rz)ω(z) dz

)

=
∫

B(0,1)

Dα
x f(x − rz)ω(z) dz = (Ar(Dαf))(x).

�

Proof of Theorem 1. Fix δ > 0. Since the weight w satisfies the Ap-condition, the
Hardy-Littlewood maximal operator

Mf(x) = sup
δ>r>0

1
rn

∫
B(x,r)

f(z) dz
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is bounded in Lp(Dδ, w) [13]. Hence

‖Arf − f | Lp(Dδ, w)‖ =
(∫

Dδ

∣∣∣∣
∫

B(0,1)

f(x − rz)ω(z) dz − f(x)
∣∣∣∣
p

w(x) dx

) 1
p

=
(∫

Dδ

∣∣∣∣
∫

B(0,1)

(f(x − rz) − f(x))ω(z) dz)
∣∣∣∣
p

w(x) dx

) 1
p

≤ ‖M‖ max
x∈B(0,1)

ω(x)
(∫

Dδ

|f(x − rz) − f(x)|pw(x) dx

) 1
p

.

Here ‖M‖ is the norm of the maximal operator in the space Lp(Dδ, w).
From the last inequality it follows, that for continuous functions f ,

Arf → f in Lp(Dδ, w).

Using an approximation of an arbitrary function f ∈ Lp(Dδ, w) by continuous
functions (see, for example, [14]) the convergence can by obtained for f ∈ Lp(Dδ, w)
also. �

By Lemma 1,

Arf → f in Wm
p (Dδ, w)

for an arbitrary function f ∈ Wm
p (D, w). Therefore smooth functions are dense in

Wm
p (Dδ, w).
The density of smooth functions of class Wm

p (D, w) in Wm
p (D, w) will be proved

using the scheme proposed in [15].
Choose a sequence of open sets Dj � Dj+1 � D, j ≥ 1, compactly embedded one

into another, such that
⋃

j Dj = D. Let Ψ be a partition of unity on D, subordinate
to the covering Dj+1 \ Dj−1. Let ψj denote the (finite) sum of those ψ ∈ Ψ for
which supp ψ ⊂ Dj+1 \ Dj−1. Thus ψj ∈ C∞

0 (Dj+1 \ Dj−1) and
∑

j ψj ≡ 1 in D.
Fix ε > 0 and for each j = 1, 2, . . . choose ϕj ∈ C∞

0 (Dj+1 \ Dj−1) such that

‖ϕj − ψjf | Wm
p (D, w)‖ ≤ ε2−j .

Then ϕ =
∑

j ϕj ∈ C∞(D) and

‖ϕ − f | Wm
p (D, w)‖ =

∥∥∑
j

ϕj −
∑

j

ψjf | Wm
p (D, w)

∥∥

≤
∑

j

‖ϕj − ψjf | Wm
p (D, w)‖ < ε.

Therefore, the weighted space Wm
p (D, w) is a Banach space and smooth functions

of the class Wm
p (D, w) are dense in this space.

Denote by w(A) =
∫

A
w(x) dx the weighted measure (the measure associ-

ated with the weight w) of a measurable set A ⊂ R
n. By [13] the Mucken-

houpt Ap-condition leads to the doubling condition for the weighted measure; i.e.,
µ(B(x, 2r)) ≤ Cαµ(B(x, r)) for all x ∈ R

n and r > 0.
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Definition 1. We call a bounded subdomain D of Euclidean space R
n an embed-

ding domain if for any function f ∈ L1
q(D), 1 ≤ q < n, the Sobolev-Poincaré-type

inequality
inf
c∈R

‖f − c | Lr(D)‖ ≤ M‖f | L1
q(D)‖

holds for any r ≤ nq/(n − q). Here a constant M depends on q and r only.

Recall that for any embedding domain and for any r < nq/(n − q) the corre-
sponding embedding operator W 1

q (D) ↪→ Lr(D) is compact.
Lipschitz bounded domains D ⊂ R

n represent examples of embedding domains.
Let us recall also that Sobolev-type embeddings for smooth domains have been
studied thoroughly and a discussion about the different aspects of the embedding
problem can be found, for example, in [16].

2. Quasi-isometrical mappings and Sobolev embeddings

Let D and D′ be domains in Euclidean space R
n, n ≥ 2. A homeomorphism

ϕ : D → D′ is called Q-quasi-isometrical if there exists a constant 0 < Q < +∞,
such that

1
Q

≤ ϕ′(x) ≤ ϕ′(x) ≤ Q

for all points x ∈ D. Here

ϕ′(x) = lim inf
z→x

|ϕ(x) − ϕ(z)|
|x − z| and ϕ′(x) = lim sup

z→x

|ϕ(x) − ϕ(z)|
|x − z| .

It is well known that any Q-quasi-isometrical homeomorphism is locally bi-
Lipschitz, weakly differentiable and differentiable almost everywhere in D. Hence
its Jacobi matrix Dϕ =

(
∂ϕi

∂xj

)
, i, j = 1, . . . , n and its Jacobian J(x, ϕ) = det

(
∂ϕi

∂xj

)
are well defined almost everywhere in D. By definition of a Q-quasi-isometrical
homeomorphism,

Q−n ≤ |J(x, ϕ)| ≤ Qn

almost everywhere.
Let us recall also that a quasi-isometrical homeomorphism has the Luzin N -

property: the image of a set of measure zero is a set of measure zero.
Therefore, for any Q-quasi-isometrical homeomorphism ϕ, the change of variable

formula in the Lebesgue integral∫
ϕ(E)

f(y) dy =
∫
E

f ◦ ϕ(x)|J(x, ϕ)| dx

holds for any nonnegative measurable function f and any measurable set E ⊂ D
[17].

Suppose weight w satisfies the Ap-condition and that a homeomorphism ϕ :
R

n → R
n is Q-quasi-isometrical. Combining the change of variable formula and

the two-side estimate for |J(x, ϕ)| we can conclude that the weight w◦ϕ also satisfies
the Ap-condition.

Theorem 2. Let ϕ : D → D′ be a Q-quasi-isometrical homeomorphism. Then a
composition operator ϕ∗f = f ◦ϕ is an isomorphism of the Sobolev spaces W 1

p (D, w)
and W 1

p (D′, w′), 1 < p < ∞, where w = w′ ◦ ϕ.
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Proof. Choose an arbitrary function f ∈ W 1
p (D′, w′). By [14], f belongs to the

space W 1
1,loc(D

′) and by [17] the composition f ◦ ϕ ∈ W 1
1,loc(D). Hence

‖ϕ∗f | W 1
p (D, w)‖ =

(∫
D

|f◦ϕ|p(w′◦ϕ)(x) dx

) 1
p

+
(∫

D

|∇(f◦ϕ)|p(w′◦ϕ)(x) dx

) 1
p

≤
(∫

D

|f ◦ ϕ|p(w′ ◦ ϕ)(x)|J(x, ϕ)| 1
|J(x, ϕ)| dx

) 1
p

+
(∫

D

|∇f |p(ϕ(x))(w′ ◦ ϕ)(x)|J(x, ϕ)| |ϕ
′(x)|p

|J(x, ϕ)| dx

) 1
p

.

Since ϕ is a Q-quasi-isometrical homeomorphism the following estimates are
correct:

1
|J(x, ϕ)| ≤ Qn for almost all x ∈ D

and
|ϕ′(x)| ≤ Q for almost all x ∈ D.

Hence

‖ϕ∗f | W 1
p (D, w)‖ ≤ Q

n
p

(∫
D

|f ◦ ϕ|p(w′ ◦ ϕ)(x)|J(x, ϕ)| dx

) 1
p

+ Q
n
p +1

(∫
D

|∇f |p(ϕ(x))w′ ◦ ϕ(x)|J(x, ϕ)| dx

) 1
p

.

Using the change of variable formula we finally get the following inequality:

‖ϕ∗f | W 1
p (D, w)‖ ≤ Q

n
p

(∫
D′

|f |pw′(y)| dy

) 1
p

+ Q
n
p +1

(∫
D′

|∇f |p(y)w′(y)| dy

) 1
p

≤ Q
n
p
(
Q + 1

)
‖f | W 1

p (D′, w′)‖.

Since the inverse homeomorphism ϕ−1 is also a Q-quasi-isometrical one, the
inverse inequality

‖(ϕ−1)∗g | W 1
p (D′, w′)‖ ≤ Q

n
p
(
Q + 1

)
‖g | W 1

p (D, w)‖, g ∈ W 1
p (D, w),

is also correct. �

Corollary 1. Let D and D′ be domains in the Euclidean space R
n. Suppose there

exists a Q-quasi-isometrical homeomorphism ϕ : D → D′. Then the embedding
operator

i : W 1
p (D, w) ↪→ Lr(D, w)

is bounded (compact) if and only if the embedding operator

i′ : W 1
p (D′, w′) ↪→ Lr(D′, w′)

is bounded (compact).
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Proof. Suppose the embedding operator

i : W 1
p (D, w) ↪→ Lr(D, w)

is bounded (compact). Since ϕ−1 is a Q-quasi-isometrical homeomorphism, then
a composition operator (ϕ−1)∗ = g ◦ ϕ−1 : Lr(D, w) ↪→ Lr(D′, w′) is bounded, as
one can see by a simple calculation:

‖(ϕ−1)∗g | Lr(D′, w′)‖

=
(∫

D′

|g ◦ ϕ−1|r(y)w′(y) dy

) 1
r

=
(∫

D

|g|r(x)w′ ◦ ϕ(x)|J(x, ϕ)| dx

) 1
r

≤ Q
n
r

(∫
D

|g|r(x)w(x) dx

) 1
r

= Q
n
r ‖g | Lr(D, w)‖.

Therefore, the embedding operator i′ : W 1
p (D′, w′) ↪→ Lr(D′, w′) is bounded (com-

pact) as a composition of bounded operators ϕ∗, (ϕ−1)∗ and a bounded (compact)
embedding operator W 1

p (D, w) ↪→ Lr(D, w).
The proof in the inverse direction is the same. �

By Corollary 1 an image D′ = ϕ(D) of an embedding domain D under a quasi-
isometrical homeomorphism ϕ is an embedding domain also. In the paper [10] the
various examples of embedding domains of such a type were discussed.

The next theorem demonstrates simple conditions for compactness of the em-
bedding operators of weighted Sobolev spaces.

Theorem 3. Let D′ ⊂ R
n be a quasi-isometrical image of an embedding domain

D, 1 ≤ s ≤ r < nq/(n − q), q ≤ p, 1 < p < ∞, and

K(w) = max
{
‖w− 1

p | L pq
p−q

(D′)‖, ‖w 1
s | L rs

r−s
(D′)‖

}
< +∞.

Then the embedding operator

i : W 1
p (D′, w) ↪→ Ls(D′, w)

is a compact operator.
For r = nq/(n − q) the embedding operator i is bounded only.

Proof. By the conditions of the theorem, there exists a Q-quasi-isometrical home-
omorphism ϕ : D → D′ of the embedding domain D onto the domain D′. For any
function u ∈ W 1

p (D′, w) the composition u◦ϕ is weakly differentiable in the domain
D, and the following estimate is correct:

‖u ◦ ϕ | W 1
q (D)‖ =

(∫
D

|u ◦ ϕ|q dx

) 1
q

+
(∫

D

|∇(u ◦ ϕ)|q dx

) 1
q

≤
(∫

D

|u ◦ ϕ|q(|J(x, ϕ)|w(ϕ(x))
q
p

1

(|J(x, ϕ)|w(ϕ(x))
q
p

dx

) 1
q

+
(∫

D

|∇u|q|ϕ′(x)|q(|J(x, ϕ)|w(ϕ(x))
q
p

1

(|J(x, ϕ)|w(ϕ(x))
q
p

dx

) 1
q

.
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By the Hölder inequality,

‖u ◦ ϕ | W 1
q (D)‖

≤
(∫

D

(
1

|J(x, ϕ)|w(ϕ(x))

) q
p−q

dx

) p−q
pq

(∫
D

|u|p(ϕ(x))w(ϕ(x))|J(x, ϕ)| dx

) 1
p

+
(∫

D

(
|ϕ′(x)|p

|J(x, ϕ)|w(ϕ(x))

) q
p−q

dx

) p−q
pq

(∫
D

|∇u|p(ϕ(x))w(ϕ(x))|J(x, ϕ)| dx

) 1
p

.

Since ϕ is a Q-quasi-isometrical homeomorphism, then by the change of variable
formula for the Lebesgue integral we obtain

‖u ◦ ϕ | W 1
q (D)‖ ≤ Q

n
q

(∫
D′

w(y)
q

q−p dy

) p−q
pq

(∫
D′

|u|pw(y) dy

) 1
p

+ Q
p−q+n

q

(∫
D′

w(y)
q

q−p dy

) p−q
pq

(∫
D′

|∇u|pw(y) dy

) 1
p

≤ Q
n
q K(w)‖u | Lp(D′, w)‖ + Q

p−q+n
q K(w)‖∇u | Lp(D′w)‖.

By the previous inequality the composition operator

ϕ∗ : W 1
p (D′, w) → W 1

q (D), 1 ≤ q ≤ p < +∞,

is bounded.
Let us prove boundedness of the composition operator (ϕ−1)∗ : Lr(D) →

Ls(D′, w). By the theorem’s conditions the quantity ‖w 1
s | L rs

r−s
(D′)‖ is finite.

Hence by [18] the composition operator

(ϕ−1)∗ : Lr(D) → Ls(D′, w), 1 ≤ s ≤ r < +∞,

is bounded.
Because D is an embedding domain the embedding operator i : W 1

q (D) ↪→ Lr(D)
is compact for any r < nq/(n − q) and bounded for r = nq/(n − q). Therefore the
embedding operator i′ : W 1

p (D′, w) ↪→ Ls(D′, w) is compact (bounded) as a com-
position of bounded operators ϕ∗, (ϕ−1)∗ and the compact (bounded) embedding
operator i for any r < nq/(n − q) (r = nq/(n − q)). �

In a similar way we can prove

Theorem 4. Let D′ ⊂ R
n be a quasi-isometrical image of an embedding domain

D, 1 ≤ s ≤ r < nq/(n − q), q ≤ p, 1 < p < ∞, and

K(w) = ‖w 1
s | L rs

r−s
(D′)‖ < +∞.

Then the embedding operator

i : W 1
p (D′) ↪→ Ls(D′, w)

is compact.
For r = nq/(n − q) the embedding operator i is bounded only.

The next lemma allows us to construct various examples of the embedding do-
mains.
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Lemma 2. Let D1 and D2 be domains such that the embedding operators

i : W 1
p (D1, w) ↪→ Ls(D1, v),

i : W 1
p (D2, w) ↪→ Ls(D2, v)

are compact. Then the embedding operator

i : W 1
p (D1 ∪ D2, w) ↪→ Ls(D1 ∪ D2, v)

is also compact.

Proof. We prove this lemma by the scheme suggested in [10]. Choose a sequence
of functions {fn} ⊂ W 1

p (D1 ∪ D2, w) such that ‖fn | W 1
p (D1 ∪ D2, w)‖ ≤ 1 for

all n. Let gn = fn|D1 and hn = fn|D2 . Then gn ∈ W 1
p (D1), hn ∈ W 1

p (D2),
‖fn | W 1

p (D1)‖ ≤ 1, ‖hn | W 1
p (D2)‖ ≤ 1.

Because the embedding operator i : W 1
p (D1, w) ↪→ Ls(D1, v) is compact, we can

choose a subsequence {gnk
} of the sequence {gn} which converges in Ls(D1, v) to a

function g0 ∈ Ls(D1, v). Because the second embedding operator i : W 1
p (D2, w) ↪→

Ls(D2, v) is also compact we can choose a subsequence {hnkm
} of the sequence

{hnk
} which converges in Ls(D2, v) to a function h0 ∈ Ls(D2, v). It is evident

that g0 = h0 v-almost everywhere in D1 ∩ D2 and the function f0 = g0 on D1 and
f0 = h0 on D2 belongs to Ls(D1 ∪ D2, v).

Hence

‖fnkm
− f0 | Ls(D1 ∪ D2, v)‖ ≤ ‖gnkm

− g0 | Ls(D1, v)‖ + ‖hnkm
− h0 | Ls(D2, v)‖.

Therefore ‖fnkm
− f0 | Ls(D1 ∪ D2, v)‖ −→ 0 for m −→ ∞. �

3. Embedding operators for general domains

Let D and D′ be domains in Euclidean space R
n, n ≥ 2. Remember that a

homeomorphism ϕ : D → D′ belongs to the Sobolev class W 1
1,loc(D) if its coordinate

functions belong to W 1
1,loc(D). Denote by Dϕ the weak differential of ϕ. The norm

|Dϕ(x)| is the standard norm of the linear operator defined by Dϕ(x).
Call a homeomorphism ϕ : D → D′ w-weighted (p, q)-quasiconformal if ϕ belongs

to the Sobolev space W 1
1,loc(D), |Dϕ| = 0 almost everywhere on the set Z = {x :

|J(x, ϕ)|w(ϕ(x)) = 0} and the following inequality

Kp,q(D, w) =
[∫

D

(
|Dϕ(x)|p

|J(x, ϕ)|w(ϕ(x))

) q
p−q

dx

] p−q
pq

< ∞

is correct.
For w ≡ 1 we call a 1-weighted (p, q)-quasiconformal homeomorphism a (p, q)-

quasiconformal one.
The following result was proved in [19] for a more general class of mappings. For

the reader’s convenience we reproduce here a simple version of the proof adopted
to homeomorphisms.

Proposition 1. Let D and D′ be domains in Euclidean space R
n, n ≥ 2 and

let ϕ : D → D′ be a w-weighted (p, q)-quasiconformal homeomorphism. Then a
composition operator

ϕ∗ : L1
p(D

′, w) → L1
q(D), 1 ≤ q ≤ p < +∞,

is bounded.
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Proof. Let f ∈ L1
p(D′, w) be a smooth function. Then f ◦ ϕ ∈ L1

1,loc(D) and the
following inequalities

‖ϕ∗f | L1
q(D)‖ =

(∫
D

|∇(f ◦ ϕ)|q dx

) 1
q

≤
(∫

D

|Dϕ|q|∇f |q dx

) 1
q

≤
(∫

D

|Dϕ|q 1

|J(x, ϕ)|
q
p w(ϕ(x))

q
p

|∇f |q|J(x, ϕ)|
q
p w(ϕ(x))

q
p dx

) 1
q

are correct.
Using the Hölder inequality and the change of variable formula for the Lebesgue

integral, we obtain

‖ϕ∗f | L1
q(D)‖

≤
[∫

D

(
|Dϕ(x)|p

|J(x, ϕ)|w(ϕ(x))

) q
p−q

dx

] p−q
pq

(∫
D

|∇f |p|J(x, ϕ)|w(ϕ(x)) dx

) 1
p

= Kp,q(D, w)‖f | L1
p(D

′, w)‖.

The fulfillment of the last inequality for an arbitrary function f ∈ L1
p(D′, w) can

be proved by an approximation of f by smooth functions [19]. �

The next theorem gives a sufficient condition for the boundedness (compactness)
of embedding operators in nonsmooth domains.

Theorem 5. Let a domain D ⊂ R
n be an embedding domain and let there exist

a w-weighted (p, q)-quasiconformal homeomorphism ϕ : D → D′ of the domain D
onto the bounded domain D′.

If for some p ≤ s ≤ r < ∞ the following inequality is correct,
∫
D

(
|J(x, ϕ)|w(ϕ(x))

) r
r−s

dx < +∞,

then an embedding operator

i : W 1
p (D′, w) ↪→ Ls(D′, w)

is bounded, if s ≤ r ≤ nq/(n − q), and is compact if s ≤ r < nq/(n − q).

Proof. Because ∫
D

(
|J(x, ϕ)|w(ϕ(x))

) r
r−s

< +∞,

the composition operator (ϕ−1)∗ : Lr(D) → Ls(D′, w) is bounded; i.e., the follow-
ing inequality

‖(ϕ−1)∗v | Ls(D′, w)‖ ≤ Ar,s(D, w)‖v | Lr(D)‖

is correct. Here Ar,s(D, w) is a positive constant.
Because the domain D is an embedding domain and the composition operators

(ϕ−1)∗ : Lr(D) → Ls(D′, w), ϕ∗ : L1
p(D

′, w) → L1
q(D)
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are bounded, the following inequalities

inf
c∈R

‖u − c | Ls(D′, w)‖ ≤ Ar,s(D, w) inf
c∈R

‖v − c | Lr(D)‖

≤ Ar,s(D, w)M‖v | L1
q(D)‖ ≤ Ar,s(D, w)Kp,q(D, w)M‖u | L1

p(D
′, w)‖

hold. Here M and Kp,q(D, w) are positive constants.
The Hölder inequality implies the following estimate:

|c| = w(D′)−
1
p ‖c | Lp(D′, w)‖ ≤ w(D′)−

1
p
(
‖u | Lp(D′, w)‖+ ‖u− c | Lp(D′, w)‖

)
≤ w(D′)−

1
p ‖u | Lp(D′, w)‖ + w(D′)−

1
s ‖u − c | Ls(D′, w)‖.

Because q ≤ r we have

‖v | Lq(D)‖ ≤ ‖c | Lq(D)‖ + ‖v − c | Lq(D)‖ ≤ |c||D|
1
q + |D|

r−q
r ‖v − c | Lr(D)‖

≤
(

w(D′)−
1
p ‖u | Lp(D′, w)‖ + w(D′)−

1
s ‖u − c | Ls(D′, w)‖

)
|D|

1
q

+ |D|
r−q

r ‖v − c | Lr(D)‖.
From previous inequalities we obtain finally

‖v | Lq(D)‖ ≤ |D|
1
q w(D′)−

1
p ‖u | Lp(D′)‖

+ Ar,s(D, w)Kp,q(D, w)M |D|
1
q w(D′)−

1
p ‖u | L1

p(D
′, w)‖

+ Kp,q(D, w)M |D|
r−q

r ‖u | L1
p(D

′, w)‖.
Therefore the composition operator

ϕ∗ : W 1
p (D′, w) → W 1

q (D)

is also bounded.
Finally we can conclude that the embedding operator i : W 1

p (D′, w) ↪→ Ls(D′, w)
is bounded as the composition of bounded operators ϕ∗, (ϕ−1)∗ and the embedding
operator W 1

q (D) ↪→ Lr(D) in the case r ≤ nq/(n − q). The embedding operator
i : W 1

p (D′, w) ↪→ Ls(D′, w) is compact as the composition of bounded operators
ϕ∗, (ϕ−1)∗ and the embedding operator W 1

q (D) ↪→ Lr(D) is compact in the case
r < nq/(n − q). �

Let us apply these general results to domains with anisotropic Hölder singulari-
ties described in [9].

Let gi(τ ) = τγi , γi ≥ 1, 0 ≤ τ ≤ 1. For the function G =
∏n−1

i=1 gi denote by

γ =
log G(τ )

log τ
+ 1.

It is evident that γ ≥ n. Let us consider the domain

Hg = {x ∈ R
n : 0 < xn < 1, 0 < xi < gi(xn), i = 1, 2, . . . , n − 1}.

In the case g1 = g2 = · · · = gn−1 we will say that the domain Hg is a domain with
σ-Hölder singularity, σ = (γ − 1)/(n − 1). For g1(τ ) = g2(τ ) = · · · = gn−1(τ ) = τ
we will use the notation H1 instead of Hg. The domain H1 is quasi-isometrically
homeomorphic to the standard unit ball. Hence by Theorem 3, domain H1 is an
embedding domain.
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If the weight is polynomial, i.e. w(x) := |x|α, then the Ap-condition is correct
only if −n < α < n(p − 1).

Theorem 6. Let −n < α < n(p − 1) and 1 < p < α + γ. Then the embedding
operator

W 1
p (Hg, |x|α) ↪→ Ls(Hg, |x|α)

is compact for any 1 ≤ s < (α+γ)p
α+γ−p .

Proof. For any 0 < a < 1 we define a homeomorphism ϕa : H1 → Hg, a > 0, by
the expression

ϕa(x) = (
x1

xn
ga
1 (xn), . . . ,

xn−1

xn
ga

n−1(xn), xa
n).

During the proof we will choose a number a and a corresponding homeomorphism
in such a way that the conditions of Theorem 5 will be fulfilled. By a simple
calculation,

∂(ϕa)i

∂xi
=

ga
i (xn)
xn

,
∂(ϕa)i

∂xn
=

−xig
a
i (xn)

x2
n

+
axig

a−1
i (xn)
xn

g′i(xn)

and
∂(ϕa)n

∂xn
= axa−1

n

for any i = 1, ..., n − 1.
Hence J(x, ϕa(x)) = axa−n

n Ga(xn). By definition, the functions gi, i = 1, 2, . . . ,
n−1 are Lipschitz functions. Therefore there exists a constant M < +∞ such that

gi(xn) ≤ Mxn and g′i(xn) ≤ M

for any xn ∈ [0, 1] and i = 1, 2, . . . , n − 1. Using estimates for derivatives and the
inequalities xi ≤ xn that are correct for all x ∈ H1 we obtain the following estimate:
|Dϕa(x)| ≤ c1x

a−1
n . By the same way we obtain also the two-sided estimate:

c2x
αa
n ≤ |ϕa(x)|α ≤ c3x

αa
n .

Now we can check for which q the homeomorphism ϕa : H1 → Hg is a w-weighted
(p, q)-quasiconformal homeomorphism:

Ia = Kp,q(H1, w)
pq

p−q =
∫

H1

(
|Dϕa(x)|p

|J(x, ϕa)|w(ϕa(x))

) q
p−q

dx

≤ C

1∫
0

xn∫
0

. . .

xn∫
0

(
x

p(a−1)
n

xa−n
n Ga(xn)xαa

n

) q
p−q

dx1 . . . dxn−1dxn

= C

1∫
0

x

(
p(a−1)−a(α+1)+n

)
q

p−q +n−1
n G−a q

p−q (xn) dxn.

Hence the quantity Ia is finite if(
p(a − 1) − a(α + 1) + n

) q

p − q
+ n − a(γ − 1)

q

p − q
> 0

or
q < np/

(
a(α + γ) + p − ap

)
.

Hence, the homeomorphism ϕa is a w-weighted (p, q)-quasiconformal homeomor-
phism.
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Let us check the conditions of Theorem 5. First we have to estimate the degree
of integrability for the Jacobian Ja of the homeomorphism ϕa:

Ja =
∫

H1

(
|J(x, ϕ)|w(ϕ(x))

) r
r−s

dx

≤ C

1∫
0

xn∫
0

. . .

xn∫
0

x

(
a(α+1)−n

)
r

r−s
n Ga r

r−s (xn) dx1 . . . dxn−1dxn

≤ C

1∫
0

x

(
a(α+1)−n

)
r

r−s +n−1+a r
r−s (γ−1)

n dxn.

The integral Ja converges if
(
a(α + 1) − n

) r

r − s
+ n + a

r

r − s
(γ − 1) > 0,

or

s <
a(α + γ)

n
r.

Hence, the conditions of Theorem 5 are fulfilled if

s <
a(α + γ)

n
r, r <

nq

n − q
and q <

np

a(α + γ) + p − ap
.

Therefore

s <
a(α + γ)

n

nq

n − q
<

np

a(α + γ − p)
a(α + γ)

n
=

p(α + γ)
α + γ − p

.

Theorem 6 is proved. �

Remark 1. The conclusion of Theorem 6 is fulfilled for functions gi : [0, 1] → R,
i = 1, 2, . . . , n − 1 such that

C1τ
γi ≤ gi(τ ) ≤ C2τ

γi

for some constants C1 and C2.

From Theorem 6, Corollary 2 immediately follows.

Corollary 2. Let D ⊂ R
n be a domain with σ-Hölder singularity. Then the em-

bedding operator
W 1

p (D, |x|α) ↪→ Ls(D, |x|α)

is compact for

s ≤ (σ(n − 1) + 1 + α)p
σ(n − 1) + α − (p − 1)

.

(Here s ≥ 0, since p < α + γ, σ = (γ − 1)/(n − 1).)

Let us compare this result with the known ones. From the main result of [7] it
follows that for an arbitrary domain D with σ-Hölder singularity the embedding
operator

W 1
p (D, |x|α) ↪→ Ls̃(D, |x|α)
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is bounded, while

s̃ ≤ (n + α)p
σ(α + n − 1) − (p − 1)

.

Then s > s̃ while σ > 1, and s = s̃ while σ = 1. Hence our estimate is sharper.
The next results deal with embeddings of classical Sobolev spaces into weighted

Lebesgue spaces.

Theorem 7. Let D ⊂ R
n be an embedding domain and let there exist a (p, q)-

quasiconformal homeomorphism ϕ of D onto the bounded domain D′.
If ∫

D

(
|J(x, ϕ)|w(ϕ(x))

) r
r−s

< +∞,

for a pair of numbers p ≤ s < r < ∞, then an embedding operator

i : W 1
p (D′) ↪→ Ls(D′, w)

is compact for r < nq/(n − q) and is bounded for r = nq/(n − q).

Proof. Because D is an embedding domain, the (p, q)-quasiconformal homeomor-
phism ϕ induces the bounded composition operator

ϕ∗ : W 1
p (D′) → W 1

q (D)

(see [18]).

Because
∫
D

(
|J(x, ϕ)|w(ϕ(x))

) r
r−s

< +∞ the composition operator for Lebesgue

spaces
‖(ϕ−1)∗v | Ls(D′, w)‖ ≤ Ar,s(D, w)‖v | Lr(D)‖

is bounded also.
Finally we can conclude that
1) If r ≤ nq/(n − q), then the embedding operator i : W 1

p (D′) ↪→ Ls(D′, w)
is bounded as a composition of bounded operators ϕ∗, (ϕ−1)∗ and the bounded
embedding operator W 1

q (D) ↪→ Lr(D).
2) If r < nq/(n − q), then the embedding operator i : W 1

p (D′) ↪→ Ls(D′, w)
is compact as a composition of bounded operators ϕ∗, (ϕ−1)∗ and the compact
embedding operator W 1

q (D) ↪→ Lr(D).
Apply the previous result to anisotropic Hölder domains. �

Theorem 8. Let 1 < p < γ and 1 ≤ s < (α+γ)p
γ−p . Then the embedding operator

W 1
p (Hg) ↪→ Ls(Hg, |x|α)

is compact.

Proof. Similar to the proof of Theorem 6, for any 0 < a < 1, we define a homeo-
morphism ϕa : H1 → Hg, a > 0 by the expression

ϕa(x) = (
x1

xn
ga
1 (xn), . . . ,

xn−1

xn
ga

n−1(xn), xa
n).

During the proof we will choose a number a and the corresponding homeomorphism
in such a way that the conditions of Theorem 7 will be fulfilled.
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By a simple calculation we have

∂(ϕa)i

∂xi
=

ga
i (xn)
xn

,

∂(ϕa)i

∂xn
=

−xig
a
i (xn)

x2
n

+
axig

a−1
i (xn)
xn

g′i(xn) and
∂(ϕa)n

∂xn
= axa−1

n

for any i = 1, ..., n − 1.
Hence J(x, ϕa(x)) = axa−n

n Ga(xn). By definition, the functions gi, i = 1, 2, . . . ,
n − 1 are Lipschitz. So there exists a constant M < +∞ such that

gi(xn) ≤ Mxn and g′i(xn) ≤ M

for any xn ∈ [0, 1] and i = 1, 2, . . . , n − 1. Using estimates for derivatives and the
inequalities xi ≤ xn that are correct for all x ∈ H1 we obtain the following estimate:
|Dϕa(x)| ≤ c1x

a−1
n . In the same way we obtain also the two-sided estimate

c2x
αa
n ≤ |ϕa(x)|α ≤ c3x

αa
n .

Now we can check for which q the homeomorphism ϕa : H1 → Hg is a (p, q)-
quasiconformal homeomorphism. Let us start from the following estimate:

Ia = Kp,q(H1)
pq

p−q =
∫

H1

(
|Dϕa(x)|p
|J(x, ϕa)|

) q
p−q

dx

≤ C

1∫
0

xn∫
0

. . .

xn∫
0

(
x

p(a−1)
n

xa−n
n Ga(xn)

) q
p−q

dx1 . . . dxn−1dxn

= C

1∫
0

x

(
p(a−1)−a+n

)
q

p−q +n−1
n G−a q

p−q (xn) dxn.

Hence, the quantity Ia is finite if
(
p(a − 1) − a + n

) q

p − q
+ n − a(γ − 1)

q

p − q
> 0

or
q < np/

(
aγ + p − ap

)
.

Hence, the homeomorphism ϕa is a (p, q)-quasiconformal homeomorphism.
Let us check the conditions of Theorem 5. First we have to estimate the degree

of integrability for the Jacobian Ja of the homeomorphism ϕa:

Ja =
∫

H1

(
|J(x, ϕ)|w(ϕ(x))

) r
r−s

dx

≤ C

1∫
0

xn∫
0

. . .

xn∫
0

x

(
a(α+1)−n

)
r

r−s
n Ga r

r−s (xn) dx1 . . . dxn−1dxn

≤ C

1∫
0

x

(
a(α+1)−n

)
r

r−s +n−1+a r
r−s (γ−1)

n dxn.
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The integral Ja converges if(
a(α + 1) − n

) r

r − s
+ n + a

r

r − s
(γ − 1) > 0,

or

s <
a(α + γ)

n
r.

Hence, the conditions of Theorem 5 are fulfilled if

s <
a(α + γ)

n
r, r <

nq

n − q
and q <

np

aγ + p − ap
.

Therefore

s <
a(α + γ)

n

nq

n − q
<

np

a(γ − p)
a(α + γ)

n
=

p(α + γ)
γ − p

.

�

4. Sobolev embeddings for spaces with high derivatives

This section is devoted to embedding theorems for weighted Sobolev spaces with
high derivatives.

If for some m and p an embedding theorem for classical Sobolev spaces Wm
p is

correct, then, using a standard procedure, it is possible to obtain the corresponding
embedding theorem for m1 ≥ m and p1 ≥ p also (see, for example, [9]). Here we
adopt the scheme of [9] to the case of weighted Sobolev spaces. The next lemma is
the main technical result of this section.

Lemma 3. Let D be a domain in R
n. Suppose that for some p0 ≥ 1 and q0 ≥ 1

the embedding operator
W 1

p0
(D, w) ↪→ Lq0(D, w)

is bounded. Let p ≥ p0 and 1
p > 1

p0
− 1

q0
. If q is such that

1
p
− 1

q
=

1
p0

− 1
q0

,

then the embedding operator

W 1
p (D, w) ↪→ Lq(D, w)

is bounded also.

Proof. Let a function u belong to the space W 1
p (D, w)∩C∞

0 (D). Using boundedness
of the embedding operator

W 1
p0

(D, w) ↪→ Lq0(D, w)

we obtain the following estimate:
(∫

D

|u|qw(x) dx

) 1
q0

=
(∫

D

(
|u|

q
q0

)q0
w(x) dx

) 1
q0

≤ C

((∫
D

∣∣∇(u
q

q0 )
∣∣p0

w(x) dx

) 1
p0

+
(∫

D

(
|u|

q
q0

)p0
w(x) dx

) 1
p0

)

≤ C

((∫
D

|u|p0
q−q0

q0 |∇u|p0w(x) dx

) 1
p0

+
(∫

D

|u|p0
q−q0

q0 |u|p0w(x) dx

) 1
p0

)
.
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Applying the Hölder inequality we get

(∫
D

|u|qw(x) dx

) 1
q0

≤ C

((∫
D

|∇u|pw(x) dx

) 1
p

·
(∫

D

|u|pp0
q−q0

q0(p−p0) w(x) dx

) p−p0
pp0

+
(∫

D

|u|pw(x) dx

) 1
p

·
(∫

D

|u|pp0
q−q0

q0(p−p0) w(x) dx

) p−p0
pp0

)
.

Because q = pp0
q−q0

q0(p−p0)
we obtain finally

(∫
D

|u|qw(x) dx

) 1
q0

≤ C

((∫
D

|∇u|pw(x) dx

) 1
p

+
(∫

D

|u|pw(x) dx

) 1
p
)
·
(∫

D

|u|qw(x) dx

) p−p0
pp0

.

Since 1
q0

− p−p0
pp0

= 1
q then

‖u | Lq(D, w)‖ ≤ C‖u | W 1
p (D, w)‖.

The lemma is proved. �

Denote

q∗m,D(p) = sup{q ∈ R
+ : the operator Wm

p (D, w) ↪→ Lq(D, w) is bounded}.
The following statements can be obtained directly from Lemma 3.

Corollary 3. If D is a bounded domain in R
n, p ≥ p0, then

q∗1,D(p) ≥
pp0q

∗
1,D(p0)

p0q∗1,D(p0) − p(q∗1,D(p0) − p0)
.

Corollary 4. If D is a bounded domain in R
n, p ≥ p0 and m > 1, then

q∗m,D(p) ≥
pp0q

∗
1,D(p0)

p0q∗1,D(p0) − mp(q∗1,D(p0) − p0)
.

Proof. This corollary follows from the previous corollary by induction with respect
to m. �

Combining Theorem 5 and Corollary 4 we obtain finally

Theorem 9. Let domain D ⊂ R
n be an embedding domain and let there exist a

w-weighted (p, q)-quasiconformal homeomorphism ϕ : D → D′ of the domain D
onto the bounded domain D′.

If for some s ≤ r ≤ nq/(n − q) the following inequality is correct,
∫
D

(
|J(x, ϕ)|w(ϕ(x))

) r
r−s

< +∞,

then an embedding operator

i : Wm
p (D′, w) ↪→ Ls∗(D′, w)
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is bounded if

s∗ ≥ ps

s − m(s − p)
.

5. Solvability of degenerate elliptic equations

In this section we apply an embedding theorem for Hilbert Sobolev spaces W 1
2

to a degenerate elliptic boundary problem.

Theorem 10. Let D′ ⊂ R
n be a quasi-isometrical image of an embedding domain

D and ∫
D′

w(y)−
n
2 dy < +∞.

Then an embedding operator

i′ : W 1
2 (D′, w) ↪→ L2(D′)

is bounded.

Proof. By the conditions of the theorem there exists a Q-quasi-isometrical home-
omorphism ϕ : D → D′ of the embedding domain D onto D′. For any function
u ∈ W 1

2 (D′, w) the composition u ◦ϕ is weakly differentiable in the domain D, and
the following estimates are correct for any 1 ≤ q ≤ 2:

‖u ◦ ϕ | W 1
q (D)‖ =

(∫
D

|u ◦ ϕ|q dx

) 1
q

+
(∫

D

|∇(u ◦ ϕ)|q dx

) 1
q

≤
(∫

D

|u ◦ ϕ|q(|J(x, ϕ)|w(ϕ(x))
q
2

1
(|J(x, ϕ)|w(ϕ(x))

q
2

dx

) 1
q

+
(∫

D

|∇u|q|ϕ′(x)|q(|J(x, ϕ)|w(ϕ(x))
q
2

1
(|J(x, ϕ)|w(ϕ(x))

q
2

dx

) 1
q

.

By the Hölder inequality we have

‖u ◦ ϕ | W 1
q (D)‖

≤
(∫

D

(
1

|J(x, ϕ)|w(ϕ(x))

) q
2−q

dx

) 2−q
2q

(∫
D

|u|2(ϕ(x))w(ϕ(x))|J(x, ϕ)| dx

) 1
2

+
(∫

D

(
|ϕ′(x)|2

|J(x, ϕ)|w(ϕ(x))

) q
2−q

dx

) 2−q
2q

(∫
D

|∇u|2(ϕ(x))w(ϕ(x))|J(x, ϕ)| dx

) 1
2

.
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Since ϕ is the Q-quasi-isometrical homeomorphism, then by the change of vari-
able formula in the Lebesgue integral, we obtain

‖u ◦ ϕ | W 1
q (D)‖ ≤ Q

n
q

(∫
D′

w(y)
q

q−2 dy

) 2−q
2q

(∫
D′

|u|2w(y) dy

) 1
2

+ Q
2−q+n

q

(∫
D′

w(y)
q

q−2 dy

) 2−q
2q

(∫
D′

|∇u|pw(y) dy

) 1
2

= Q
n
q K(w)‖u | L2(D′, w)‖ + Q

2−q+n
q K(w)‖∇u | L2(D′w)‖.

By the previous inequality the composition operator

ϕ∗ : W 1
2 (D′, w) → W 1

q (D), 1 ≤ q ≤ 2,

is bounded.
Since D is an embedding domain there exists the bounded embedding operator

i : W 1
q (D) ↪→ L nq

n−q
(D).

Now we choose a number q such that nq
n−q = 2 (i.e. q = 2n

n+2 ).
Since ϕ is the Q-quasi-isometrical homeomorphism, the following composition

operator acting on Lebesgue spaces,

(ϕ−1)∗ : L2(D) → L2(D′),

is bounded also [18].
Therefore the embedding operator i′ : W 1

2 (D′, w) ↪→ L2(D′) is bounded as a
composition of bounded operators ϕ∗, (ϕ−1)∗ and the bounded embedding operator
i. �

Define an inner product in the weighted space W 1
2 (D, w) as:

〈u, v〉 =
∫
D

∇u · ∇v w(x) dx,

for any u, v ∈ W 1
2 (D, w).

Consider the Dirichlet problem for the degenerate elliptic equation:

div(w(x)∇u) = f,(1)

u|∂D = 0(2)

in a bounded domain D for the weight w ∈ C1(D).

Theorem 11. Let f ∈ L2(D) and
∫
D

w(y)−
n
2 dx < +∞. Then there exists a unique

weak solution u ∈
◦

W
1

2(D, w) of the problem (1), (2).

Proof. The function f ∈ L2(D) induces a linear functional F : L2(D) → R by the
standard rule

F (φ) =
∫
D

f(x)φ(x) dx.

By Theorem 10 there exists a bounded embedding operator i :
◦

W
1

2(D, w) ↪→ L2(D).
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Therefore

|F (φ)| ≤ ‖f · φ | L1(D)‖

≤ ‖f | L2(D)‖ · ‖φ | L2(D)‖ ≤ C‖f | L2(D)‖ · ‖φ |
◦

W
1

2(D, w)‖.

Hence, F is a bounded linear functional in the Hilbert space
◦

W
1

2(D, w). By the

Riesz representation theorem [20] there exists a unique function u ∈
◦

W
1

2(D, w) such
that

F (φ) = 〈u, φ〉 =
∫
D

∇u · ∇φ w(x)dx,

or ∫
D

∇u · ∇φ w(x)dx =
∫
D

f(x)φ(x) dx.

Therefore u is the unique weak solution of the problem (1), (2). �
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pp. 974–977.
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