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Weighted space-filling designs

VE Bowman1 and DC Woods2∗

1Defence Science and Technology Laboratory, Porton Down, UK;
2University of Southampton, Southampton, UK.

Many computer models or simulators have probabilistic dependencies between their input

variables, which if not accounted for during design selection may result in a large numbers of

simulator runs being required for analysis. We propose a method which incorporates known

dependencies between input variables into design selection for simulators and demonstrate the

benefits of this approach via a simulator for atmospheric dispersion. We quantify the benefit

of the new techniques over standard space-filling and Monte Carlo simulation. The proposed

methods are adaptations of computer-generated spread and coverage space-filling designs, with

“distance” between two input points redefined to include a weight function. This weight function

reflects any known multivariate dependencies between input variables and prior information on

the design region. The methods can include quantitative and qualitative variables, and different

types of prior information. Novel graphical methods, adapted from fraction of design space plots,

are used to assess and compare the designs.

Keywords: computer experiments; defence studies; design of experiments; simula-
tion experiments

1. Introduction

The simulation of physical and engineering systems via complex mathematical models
has become a common method of gaining knowledge about mechanisms where physical
experimentation would be time consuming, costly or hazardous. In order to explore
and understand these often computationally expensive computer codes, experiments are
performed where the so-called statistical treatments are combinations of values of the
input variables and the responses are deterministic outputs from the computer code, or
simulator. See Santner et al. (2003) and Fang et al. (2006) for book-length reviews of the
statistical approaches to this topic.

Our motivation for studying these simulators is the application of atmospheric dis-
persion models (see Section 1.1) used to model deliberate or accidental chemical and
biological releases; for example, from acts of terrorism or industrial accidents. Clearly, it
is not possible to regularly run highly instrumented field trials to explore the behaviour
of a hazardous gaseous release in the atmosphere, and hence computer simulators are
important planning and operational tools.

In this paper, we assume that the output from the simulator is deterministic; this
is often the case in many engineering and physical science applications (Kennedy et al.,
2005). We treat our simulator as an unknown function mapping the simulator inputs
x = (x1, . . . , xk)

T to the simulator output y, i.e. y = f(x; θ). The tuning parameters
θ = (θ1, . . . , θp)

T may be treated as additional simulator inputs, calibrated using real
physical data (see, for example, Kennedy and O’Hagan, 2001 and Overstall and Woods,
2013) or, as in the dispersion example, determined by subject expert scientists to match
observed scenarios. Throughout the rest of this paper, we shall assume that θ is fixed and
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Figure 1: Example of prior information - wind rose for wind speed and direction.

known. This definition of a simulator, although common in the Statistics and Uncertainty
Quantification literature, is somewhat different from the stochastic simulation models
typically employed in operational research applications; for example, discrete-event or
agent-based models (Allen, 2011).

A successfully calibrated simulator can be used to gain scientific understanding of the
system and to aid decision-making. Typically, there is uncertainty in the inputs x to
the simulator; for example, a dispersion simulation may need to incorporate uncertain
meteorology (see Section 1.1). Thus it is necessary to run these simulators multiple times
for a variety of combinations of input values in order to understand and quantify the
resulting uncertainties in the output (De Rocquigny et al., 2008).

A key aspect of these deterministic simulators is that multiple simulator evaluations
at the same combination of input values produce the same response. Hence, repetition
of combinations of simulator inputs is not beneficial and the designs commonly used are
chosen to cover, or space-fill, the design region of possible input values (Fang, 1980).
However, many of these space-filling designs, such as computer-generated designs based
on Euclidean distance, do not take into account probabilistic dependencies between input
variables. This can result in the selection of points in areas of the design region of little
relevance, for example, where it is known that no response can occur. For the dispersion
simulator, the meteorological inputs at a particular location are defined, among other
things, by wind speed and direction using a wind rose (Figure 1), and can be highly
dependent. For example, high wind speeds can be particularly unlikely for certain wind
directions and thus simulator runs with these input combinations will reveal little about
the behaviour of dispersion at the given location.
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Figure 2: The surface obtained from averaging the number of plumes seen at each coor-
dinate in a plane from 80,000 generated plumes.

1.1. Motivating example
Understanding and predicting how chemical, biological, radiological or nuclear (CBRN)

releases will disperse across a given terrain is an important task facing military and civil-
ian emergency planners. Such releases and their subsequent dispersion are therefore
simulated using computer codes. Available simulators range from quite simple Gaus-
sian plume models (e.g. Clarke, 1979), through Gaussian puff models (e.g. Sykes et al.,
1998) to Lagrangian models (e.g. NAME; Jones et al., 2007). These simulations are
undertaken for a number of purposes. In this paper we consider their use for optimizing
the placement of CBRN sensors to protect against non-visible airborne pollutants, such
as chemicals, particulates and biological agents. For some pollutant sensors, the benefit
gained is dependent on where the sensors are placed. Several factors must be considered
when optimizing sensor placement, including meteorological conditions and geographical
features.

Atmospheric dispersion models typically have the following features:

(i) the input variables are usually of two types, describing either the meteorology or
the source of the release, and can be quantitative or qualitative;

(ii) there is substantial prior information about the distribution of the input variables
from, for example, physical observations (meteorological) or expert prior knowledge
(source);

(iii) these distributions are not usually independent, either within type (for example,
wind direction and speed are defined via a wind rose) or between type (wind direc-
tion and source location);

3



(iv) the distributions define a joint probability density (or weight function) on the design
region, which is likely to have substantial areas of low weight.

The sensor placement tool developed by Dstl uses a moderately intensive Gaussian
puff dispersion model to simulate releases. For each run of the simulator, our data are
a plume, defined to be the integral of all puffs from a source over time. The plumes are
generated by Monte-Carlo sampling over input variables, to create a response surface on
a 128× 128 grid, which is the average number of plumes seen at each location. Upwards
of 80,000 simulated plumes are required to form a consistent mean surface, resulting
in extremely long runtimes; smaller sample sizes cause variability between samples and
inconsistent placement of sensors.

Figure 2 shows the output from a Monte Carlo study using 80,000 simulator runs.
The effect of wind direction on the response is clear, with a dominant wind blowing from
the east pushing the majority of the plumes to the west.

1.2. Aim of the work
In the literature, a variety of approaches have been taken to finding constrained space-

filling designs under deterministic constraints, see Iman and Conover (1982), Stinstra
et al. (2003), Petelet et al. (2010) and Draguljić et al. (2012) for examples. In this paper,
we develop, apply and investigate space-filling designs that take account of probabilistic
prior information and, particularly, relationships between input variables. The eventual
aim of the designs is to reduce the number of simulator evaluations required, compared to
both (i) Monte Carlo sampling from the distributions for the, quantitative or qualitative,
input variables; and (ii) standard space-filling designs. The designs are found using a
new class of weighted space-filling criteria that are introduced in Section 2. Designs from
competing criteria are evaluated and compared using assessment criteria introduced in
Section 3 in terms of (a) sampling properties with respect to the prior information, and
(b) space-filling properties. Illustrative examples are presented in Section 4 and the new
methods are used to reduce the number of simulator evaluations needed for the dispersion
problem in Section 5.

2. Weighted space-filling designs

Space-filling design methods are commonly used when the relationship between k
inputs and the response is unknown but possibly highly complex and nonlinear. At any
combination of input values, at most one observation is taken, and hence such designs
are commonly used with deterministic simulators. For a recent review see Pronzato and
Müller (2012). They have also found application in spatial statistics (for example, Royle,
2002).

Standard designs used in computer experiments include computer-generated minimax
and maximin designs (Johnson et al., 1990), uniform designs (Fang, 1980) and Latin Hy-
percube designs (McKay et al., 1979). Here, we focus on extensions of coverage and spread
designs (SAS Proc Optex, 1995), and in Section 4 we compare them to an appropriately
generated Latin Hypercube design.

2.1. Coverage and spread designs
To apply space-filling designs to applications such as the dispersion simulator, we

first need to define distance metrics across the design space. Let x1, . . . , xk1 denote k1
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quantitative variables and xk1+1, . . . , xk1+k2 denote k2 unordered categorical variables,
with variable xj having mj levels denoted by Mj = {1, . . . ,mj} (j = k1+1, . . . , k1+ k2).
Then, we can define the distance between two points x,x′ ∈ X = R ×

∏

j Mj, where

R ⊂ R
k1 , as

d(x,x′) =

√

√

√

√

k1
∑

i=1

(xi − x′
i)
2 + β

k1+k2
∑

j=k1+1

I[xj 6= x′
j)] , (1)

where I[r 6= s] is the indicator function that takes the value 1 if r 6= s and 0 otherwise.
Equation (1) is a weighted sum (with respect to β > 0) of the L2 distance for quantitative
variables and the 0-1 distance for qualitative variables. Such distance measures were
defined and applied to Gaussian process models by Qian et al. (2008).

Let ζ = {x1, . . . ,xn} be a n-point discrete design. Using (1), the following new
weighted space-filling criteria can be defined:

Coverage criterion: a coverage-optimal design ζ⋆ minimises

φu(ζ) =

{
∫

X

[

min
x∈ζ

w(x′)d(x,x′)

]p

dx′

}1/p

. (2)

Spread criterion: a spread-optimal design ζ⋆ minimises

φs(ζ) =

{

n
∑

i=1

[

min
x∈ζ\{xi}

w(x)w(xi)d(x,xi)

]−p
}1/p

. (3)

Here, w(x) ≥ 0 is a problem-specific multivariate weight function that encapsulates
the dependencies between the input variables and which may or may not be a proper
probability density function. In many applications, including the motivating dispersion
setting, it can be thought of as the probability of obtaining a “useful” or representative
response. We discuss the choice of w(·) further in Sections 4 and 5. The tuning parameter
p allows a range of criteria with different properties to be defined; in this paper, we set
p = 1.

For w(x) ≡ 1 for all x ∈ X , these criteria are closely related to the minimax and
maximin space-filling criteria defined by Johnson et al. (1990). A minimax design min-
imises through choice of design the maximum, over X , of the distance minx∈ζ d(x,x

′);
a coverage design with p = 1 minimises the average, over X , of this distance. By min-
imising the average rather than the maximum, we prevent worst-case distances unduly
influencing the choice of design (see Atkinson and Woods, 2013 for a related discussion in
the context of optimal model-based design). Clearly, the minimax and spread objective
functions coincide in the limit as p → ∞.

Similarly, a maximin design maximises min
x∈ζ\{xi} d(x,xi) through choice of design,

whereas a spread design, with p = 1, minimises the average of the reciprocal of this
minimum distance. In fact, it maximises the harmonic mean distance between design
points.

Mathematically, for coverage designs, we want to attract the points in the design to
relevant areas of the design region. Note that if w(x′) = 0, minx∈d w(x

′)d(x,x′) = 0
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for all choices of design ζ. Hence adding the point x
′ to will not enhance the coverage

properties of the design. For spread designs, we want the points in the design to repel
away from each other. Note that as w(x′) → 0,

[

min
x∈d\{x′}

w(x)w(x′)d(x,x′)

]−p

→ ∞

and hence point x′ can never be included in the design.
In contrast to these tailored space-filling designs, random sampling from the under-

lying distribution on X risks unnecessary oversampling from regions of high density. In
Section 5, we quantify the differences in simulation results obtained from the use of
weighted space-filling designs and random sampling.

2.2. Implementation
Optimal and efficient designs under the coverage and spread criteria can be found

using a variety of computer search algorithms. The designs in this paper were obtained
using a modified-Fedorov (MF) point exchange algorithm (Cook and Nachtsheim, 1980;
Royle, 2002). Regardless of the method employed, there are two key steps in finding a
design

1. Evaluation of the objective function: to find spread designs, (3) can be evalu-
ated directly. For coverage designs, (2) can be approximated using a quasi-random
sequence (x′

1, . . . ,x
′
s) ∈ X (see, for example, Lemieux, 2009, ch.5)

φu(ζ) ≈
s

∑

j=1

{[

min
x∈ζ

w(x′
j)d(x,x

′
j)

]p}1/p

. (4)

For the illustrative examples in Section 4, we used s = 900 (Example 1, with two
quantitative variables) and s = 2700 (Example 2, with two quantitative factors
and one qualitative factor); for the dispersion application (Section 5), we used
s = 1000. Alternatively, a quadrature scheme (see, for example, Evans and Swartz,
2000) could be employed.

2. Exploring the design space and improving the design: the MF algorithm proceeds
by considering each point in the current design in turn and evaluating the objective
function when this point is replaced by a point from a candidate list of possible
design points. If the swap improves the objective function, then the candidate
point immediately replaces the design point, and a swap with the next point in
the candidate list is evaluated. Alternatively, swaps, or a continuous optimisation
step, could be carried out on each coordinate of each design point (Meyer and
Nachtsheim, 1995; Gotwalt et al., 2009).

The MF algorithm is greedy, in that any swap that improves the current design is
accepted. Stochastic algorithms, which attempt to avoid local optima of the ob-
jective function by randomly accepting changes to the design which reduce perfor-
mance, could also be employed; examples include adaptive evolutionary algorithms
(Wong and Dong, 2005). Implementation of these alternatives did not result in
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an improvement to the generated designs, despite the more global nature of the
optimization.

Using a candidate-list method, such as a row exchange algorithm, allows the pre-
computation of the distances between all pairs of points. With other, more con-
tinuous, algorithms, efficient updating of distances is possible (as in the Fields

package in R; Nychka, 2005).

We construct our candidate list using the same quasi-random sequence used tin
approximation (4).

Clearly, the optimization methods discussed above are heuristic and have no guarantee
of converging to a global optimum. For a greedy algorithm, such as the MF, it is therefore
particularly important to perform multiple runs of the algorithm from different, random,
starting locations. In this paper, it was judged sufficient, from the consistency of the
generated designs, to perform 20 random starts.

3. Graphical assessment of designs

We graphically assess the properties of the design for both space-filling and sampling
(with respect to the prior density) using the following assessment measures:

(i) Fraction of Design Space (FDS; Zahran et al., 2003) with respect to the distance (1).
That is, for each point x̃ in the design space, we calculate

φ(x̃|ζ) = min
x∈ζ

d(x, x̃) ,

for x̃ ∈ X and plot the inverse of the empirical distribution function

Φ1(ν|ζ) =
1

D

∫

A1

dx̃ , (5)

where A1 = {x̃ ∈ X |φ(x̃|ζ) ≤ ν}, D =
∫

X
dx and 0 ≤ Φ1(ν|ζ) ≤ 1 for all ν ≥ 0.

Intuitively, Φ1(ν|ζ) has a straightforward interpretation as the proportion of the
design space X that is within ν of design ζ; that is, the proportion of the design
space for which φ(x̃|ζ) ≤ ν for a point x̃.

Clearly, this assessment measure is “larger-the-better”, and design ζ1 dominates
design ζ2 if and only if Φ1(ν|ζ1) ≥ Φ1(ν|ζ2) for all ν, with Φ1(ν|ζ1) > Φ1(ν|ζ2) for
at least one value of ν.

We approximate the integral in (5) across A1 for any given ν by a summation across
a quasi-random sample x̃1, . . . , x̃r from X

φ1(ν|ζ) ≈
1

r

r
∑

j=1

I[φ(x̃j|ζ) ≤ ν] ,

where I is once again an indicator function. Clearly, too small a quasi-random
sample may lead to inaccurate design assessment and, most importantly, incorrect
ranking of designs. We used r = 1000 and found the assessment and ranking of
designs to be consistent across different samples.
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(ii) Fraction of Design Points (FPS) with respect to the sampling density p(x). That
is, for each point x in the design, we calculate p(x) and then plot the inverse of the
empirical distribution function

Φ2(ρ|ζ) =
1

n

∫

A2

dx̃ , (6)

where A2 = {x̃ ∈ ζ|p(x̃) ≤ ρ} and 0 ≤ Φ2(ρ|ζ) ≤ 1 for all ρ ≥ 0. For this measure,
for a given ρ, smaller values of Φ2(ρ|ζ) are intuitively desirable, as then a higher
proportion of design points have higher values of p(x).

Clearly, this assessment measure is “smaller-the-better”, and design ζ1 dominates
design ζ2 if and only if Φ2(ρ|ζ1) ≤ Φ2(ρ|ζ2) for all ρ, with Φ2(ρ|ζ1) < Φ2(ρ|ζ2) for
at least one value of ρ.

For designs with a discrete and finite number of points, as in this paper, (6) can be
calculated as

Φ2(ρ|ζ) =
1

n

n
∑

i=1

I[p(xi) ≤ ρ] .

These two assessment measures can be interrogated graphically to compare and select
designs, as demonstrated in the next two sections.

4. Illustrative examples

In this section we consider two relatively simple examples which illustrate different
properties of the criteria from Section 2. We start by defining two different weight func-
tions.

4.1. Weight functionsAssume a prior distribution, p(x), on X can be elicited from subject experts. We
consider the following weight functions:

w(x) = p(x) , w(x) ≥ 0 , (7)

and

w(x) = (1− αp(x))−γ , w(x) ≥ 1 , (8)

with tuning parameters α < 1/max p(x) and γ ≥ 0. The inverse of weight function (8)
was used by Joseph et al. (2011) in the sequential design of physical experiments in
nanoscience, and α and γ allow the weight function to be adapted to the aim of the
experiment by putting greater emphasis on sampling or space-filling. For example, when
α = 0 or γ = 0, the weight function is constant and space-filling coverage or spread
designs result.
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Figure 3: Example 1: Coverage designs. (a) ζc1, weight function (7); (b) ζc2(1), weight
function (8) with α = γ = 1; (c) ζc2(0.75), weight function (8) with α = 1, γ = 0.75; (d)
ζc, unweighted design.

4.2. Example 1
The first illustrative example has two quantitative variables, x = (x1, x2), and p(x)

defined via the logistic function

ln
p(x)

1− p(x)
= 1.2 + 0.7x1 − 1.8x2 − 1.9x1x2 − 0.8x2

1 + 3.0x2
2 , (9)

for x ∈ X = [−3, 3]2. Hence, the prior density p(x) is a ridge function with substantial
regions having p(x) ≈ 0, see Figure 3. We find space-filling designs with nine points.

Standard coverage (ζc; Figure 3d) and spread designs (ζs; Figure 5d) in two dimensions
assume w(x) = 1 for all x ∈ X and hence attempt to provide uniform space-filling across
X . Note that the spread design has points closer to the boundary of X . As they take no
account of the weight function, both designs have many points in areas of low weight.

Weighted coverage and spread designs were found using an exchange algorithm to
minimise objective functions (2) and (3) respectively using weight functions (7) and (8).
The designs are shown in Figures 3 (coverage) and 5 (spread).
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Figure 4: Example 1: (a) Fraction of Design Space and (b) Fraction of Design Point plots
for the coverage designs.

The design found using (7), ζc1, places all nine design points on the diagonal ridge
of high probability; the minimum euclidean distance between the points is 1.03. Two
designs, ζc2(1) and ζc2(0.75), were found using (8), α = 1, and γ = 1 and γ = 0.75. These
designs include points which are clustered in the area of highest prior probability. Both
designs include points between which there is a Euclidean distance of 0.21, the minimum
distance within the limitations of the candidate list. In addition, both designs have points
in areas of lower prior density, with more points in areas of even lower density for ζc2(0.75)
where greater emphasis is placed on space-filling.

For Example 1, graphical assessment via FDS and FDP is possible via Figure 4.
Note that we plot φ−1

1 (ν|ζ) and φ−1
2 (ρ|ζ), and hence in the FDS and FDP plots, we

prefer lower and higher curves respectively. The designs ζc1 and ζc2(1) dominate both the
weighted ζc2(0.75) and unweighted ζc designs in the FDP plot; ζc2(1), found using weight
function (8) has seven points obtaining the maximum p(x). However, in the FDS plot,
ζc2(1) is dominated by all the three other designs. In contrast, ζc1, found using weight
function (7), is dominated only by the unweighted coverage design. Hence, ζc1 provides
a good compromise between space-filling and sampling.

The spread designs display similar patterns to the coverage designs, see Figure 5.
However the distribution of points tends to be more extreme under weight function (8),
with design ζs2(1) having all nine points closely clustered whereas design ζs2(0.5) has
design points at the boundary of the design region. When assessed via FDP and FDS
measures (plots not shown for these designs), design ζs2(1) dominates all other designs
on FDP but is itself dominated by the other three designs on FDS. Interestingly, the
unweighted spread design ζs does not dominate ζs1 and ζs2(0.5) under FDS. This is
because FDS assesses the coverage properties of a design, and ds is found under the
spread criterion.

To compare the coverage and spread designs, Figure 6 repeats the FDP and FDS
plots for designs ζc1, ζs1, ζs and ζc. The weighted coverage and spread designs ζc1 and ζs1
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Figure 5: Example 1: Spread designs. (a) ζs1, weight function (7); (b) ζs2(1), weight
function (8) with α = γ = 1; (c) ζs2(0.5), weight function (8) with α = 1, γ = 0.5; (d) ζs
unweighted design.

have similar FDP plots but ζc1 dominates ζs1 in the FDS plot. Similarly, it is difficult to
separate ζc and ζs in the FDP plot but ζc dominates all other designs in the FDS plot.
Of course, we do not expect the spread designs to outperform the coverage designs under
the FDS criterion.

4.3. Example 2
The second illustrative example has three variables x = (x1, x2, x3); two quantitative

variables (x1, x2 ∈ [−3, 3]2) and one qualitative variable (x3 ∈ {0, 1, 2}). Conditional on
the value of x3, p(x|Σ) is a bivariate normal probability density function

p(x|Σ) =
1

2π | Σ |1/2
exp

{

−
1

2
[x− µ(x3)]

′Σ−1[x− µ(x3)]

}

,

with
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Figure 6: Example 1: (a) Fraction of Design Space and (b) Fraction of Design Point plots
for the coverage and spread designs.

µ(x3) =







(0, 0)′ if x3 = 0
(1, 1)′ if x3 = 1

(−1,−1)′ if x3 = 2 ,

and Σ = I2 + J2. Here I2 is the 2 × 2 identity matrix and J2 is the 2 × 2 matrix with
all entries 1. This density function has ellipsoidal contours in (x1, x2), with a different
centre for each level of x3; see Figure 7, which also displays weighted coverage and spread
designs found using (7).

Coverage and spread designs were found for both weight function (7) (ζc1 and ζs1;
Figure 7) and (8) (ζc2 and ζs2; not shown). For weight function (8), a variety of values of α
and γ were empirically investigated, with the coverage design with α = 1/max{p(x|Σ)} =
0.37, γ = 0.75 and the spread design with α = 0.37 and γ = 0.3 giving good compromises
between sampling and space-filling.

As p(x3) = 1/3 for x3 = 0, 1, 2, all designs have three of their nine points at each of
the levels of x3. The coverage designs have points clustered around the centre of each
projection of p(x|Σ) in such a way that the projection of all nine points into the x1 − x2

plain maintains good coverage (Figure 7 shows the projection for x3 = 0). Design ζc1 is
more concentrated than ζc2 around regions of high probability density, with ζc2 containing
a few points in areas of very low density.

The spread design, ζs1, from weight function (7), has a similar distribution of points
to the coverage designs, with clustering around the centres of each projected density. As
in Example 1, both the coverage and spread designs from (8) provide a more extreme
compromise between sampling and space-filling. For the spread design ζs2 under weight
function (8), the majority of the design points are closer to the three unique modes for
x3 = 0, 1, 2. However, two points are positioned at the extremes of the design region, in
areas where p(x|Σ) is close to 0. Although these points greatly increase the performance
of the design under a spread criterion, they provide little in terms of sampling efficiency.
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Figure 7: Example 2: Coverage, ζc1, and spread, ζs1, designs using weight function (7).
(a) design points for ζc1; (b) design points and weight function (7) for ζc1 when x3 = 0;
(c) design points for ζs1; (d) design points and weight function (7) for ζs1when x3 = 0.
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Figure 8: Example 2: (a) Fraction of Design Space and (b) Fraction of Design Point plots
for the coverage and spread designs.

We have confirmed through the construction of alternative designs that the level of x3

for these extreme points is unimportant, providing there are three points at each level of
the variable.

We can again assess and compare the properties of these different designs using FDP
and FDS plots (Figure 8). No one design dominates in the FDP plot, although the
coverage (ζc1) and spread (ζs1) designs found using weight function (7) are the only
designs that avoid placing any points in areas of very low probability. Design ζs1 is
generally preferred over ζc1 from the FDP plot; however, ζc1 dominates ζs1 in the FDS
plot. However, both these designs are dominated by ζc2 under FDS. In fact, design ζc2
performs similarly under the FDS criterion to the unweighted coverage design, ζc, whilst
substantially outperforming ζc under FDP. As in Example 1, these measures and graphical
displays can be used to choose between these, and other, designs depending on the aim
of the experiment and the confidence in the prior probability density.

5. Application to dispersion

We now return to the motivating dispersion example to find and assess appropriate
weighted coverage and spread designs for dispersion across a flat, rural (non-urban) in-
land terrain which is subject to particularly skewed meteorological conditions due to the
terrain surrounding the area of interest. The dispersion model is a massively multivari-
ate simulator, with each simulator run producing 16384 responses, one response for each
point on the 128× 128 grid.

To apply a weighted space-filling design to a practical example, three basic steps are
required: (i) the simulator inputs to be varied in the experiment must be chosen; (ii) prior
information about these variables and their dependencies must be obtained, for example,
from historical data or elicited from subject experts; and (iii) a size of design must be
chosen.

In order to explore the methodology we considered two examples using different sub-
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Figure 9: Example 3: selected two-dimensional projections of the weighted coverage
design ζ7c1.

sets of input variables. The first set of input variables x7 are a set of the seven most
significant quantitative variables: wind speed, wind direction, cloud cover, temperature,
two Cartesian coordinates giving the location of the release, and the mass of the release.
The second subset x10 contain the same set of quantitative variables but with the three
most significant categorical variables appended: dispersion mechanism (7 levels), release-
type (3 levels) and type of agent (5 levels). When finding space-filling designs, each
variable was scaled from its original range to (0, 1).

For both examples, the prior distributions for wind speed and wind direction were
non-uniform, with the dependency between these variables estimated from historical data.
This relationship was encapsulated in a two-way table for six values of speed and 13 for
direction; the probability density for arbitrary points in the design space calculated via
interpolation between the entries in this table. Uniform distributions were assumed for
cloud cover and release location, and a normal distribution was assumed for temperature.
The distribution for mass varied between the two examples, with the second example
also requiring specification of prior distributions for the three categorical variables. The
joint density for both the seven and ten variable examples reflected realistic dispersion
scenarios in terms of historical data and subject-expert opinion; see Appendix 1. For
both examples, weight function (7) was used.

5.1. Example 3: quantitative variables only
For this example, a four point discrete probability distribution for mass was elicited

from subject experts. Space-filling designs, ζ7c1 and ζ7s1, using coverage (2) and spread (3)
respectively were obtained with 200 points using the prior density derived above; un-
weighted coverage (ζ7c ) and spread (ζ7s ) designs were also found. Selected two-dimensional
projections for ζ7c1 are given in Figure 9. The strong relationship between wind speed and
direction is reflected in the selected design points. Notice also the independence between
the two Cartesian location coordinates.

For comparison, a 200 point Latin Hypercube Design (LHD; ζlhd) was also generated.
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Figure 10: Example 3: (a) Fraction of Design Space and (b) Fraction of Design Points
plots for weighted coverage (ζ7c1) and spread (ζ7s1) designs, unweighted coverage (ζ7c ) and
spread (ζ7s ), and a Latin Hypercube Design (ζlhd).

An LHD with n points is a form of stratified sampling where the range of each input
variable is delineated into n bins of equal probability with respect to the marginal dis-
tribution of the variable. Typical choices of marginal distribution include the Uniform
and Normal distributions. Often, the n values of each variable are permuted, or the
design otherwise constructed, to obtain desirable two-dimensional properties, such as or-
thogonality. We form the design by permuting the n variable values to best match the
correlation structure of our target distribution using the method of Iman and Conover
(1982).

The coverage, spread and Latin Hypercube designs were assessed using the FDP and
FDS criteria (Figure 10). For FDP, the weighted spread design ζ7s1 dominates all the
other designs, with the weighted coverage design ζ7c1 dominating the LHD and the two
unweighted space-filling designs. Design ζ7c1 has 40% of its points having probability
density less than 0.1; for ζ7s1, only 5% of points have density less than 0.1. For FDS, the
unweighted coverage design ζ7c dominates, although the difference between this design
and ζ7c1 is only small. The weighted spread design is considerably worse, having 50% of
the design space having a minimum distance of more than 0.4 units from a design point;
for design ζ7c1, only about 10% of the design space has a minimum distance more than
0.4 units from a design point.

From Figure 10, it is clear that while ζ7c1 provides more points in areas of low proba-
bility density than ζ7s1, it has considerable more desirable space-filling properties. Hence,
we chose ζ7c1 for a computer experiment on the dispersion model. The LHD is mediocre
for both FDP and FDS but was also run as a comparator. Finally, a 200 Monte Carlo
sample from the prior probability distribution was also obtained and run through the
dispersion model.

For a quantitative comparison of these three designs, ζ7c1, ζ
7
lhd and the 200 run Monte

Carlo sample, we calculated, at each point in the 128 × 128 grid, the squared error for
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Table 1: Example 3: Squared error summaries from a comparison of the dispersion
surface from an 80,000 run Monte Carlo simulation to that from three competing designs:
weighted coverage (ζ7c1), Latin Hypercube (ζ7led) and a Monte Carlo sample of size 200.

Squared error Mean St. Dev. Max.
ζ7c1 4.0× 10−4 7.0× 10−4 5.4× 10−3

ζ7lhd 6.0× 10−4 7.0× 10−4 5.0× 10−3

Monte Carlo (n = 200) 7.0× 10−3 8.5× 10−3 4.1× 10−2

the proportion of plumes observed obtained from the simulator runs from each design,
relative to the proportion of observed plumes from a computationally expensive Monte
Carlo sample of size 80,000. These results are summarised in Table 1. Both ζ7c1 and
ζ7lhd have mean and maximum squared error an order of magnitude smaller than the
Monte Carlo sample. Design ζ7c1 has mean squared error only two-thirds that of ζ7lhd, with
maximum squared error less than 10% greater. Both designs have the same variation in
the squared error. A further analysis showed that a mean Monte Carlo sample of at least
double the size of ζ7c1 is required to achieve a similar mean squared error.

5.2. Example 4: quantitative and categorical variables
For this example, bivariate distributions were defined for dispersion mechanism and

mass, dispersion mechanism and agent, and dispersion mechanism and release, see Ap-
pendix 1. Weighted space-filling designs, ζ10c1 and ζ10s1 , using coverage (2) and spread (3)
respectively, were obtained with 200 points; unweighted coverage (ζ10c ) and spread (ζ10s )
designs were also found. To reduce the computational burden of the design search, the
three categorical factors were treated as quantitative, and the selected values for each de-
sign then binned to into categories. However, when evaluating the designs, distance (1)
was used with β > 0.

Figure 11 gives the FDS and FDP plots for these weighted and unweighted space-filling
designs, with FDS evaluated using β = 1, 10, 100. For FDP, the weighted coverage design
ζ10c1 dominates the three other designs, which perform similarly. The skewed nature of the
prior distribution on the larger design space for this example produce FDP plots that are
quite flat for a majority of the design points (> 70%). For FDS, the unweighted coverage
design ζ10c dominates, although the differences between designs tend to be small. Note
that just less than 20% of the design space is very close to a design point. Changing the
value of β for design evaluation does not change the relative performance of the designs
but clearly does increase the maximum distance, as the influence of combinations of the
categorical variables not included in the design becomes greater.

6. Discussion

When there are probabilistic relationships and dependencies between input variables
to a computer model or simulation that define regions of varying interest to the experi-
menters, standard space-filling designs may be inefficient and result in wasted resource.
The methods in this paper allow the flexible construction of space-filling designs that in-
corporate such dependencies and prior information through a weight function, and hence
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Figure 11: Example 4: Fraction of Design Space plots with (a) β = 1, (b) β = 10 and (c)
β = 100, and (d) Fraction of Design Points plot for weighted coverage (ζ10c1 ) and spread
(ζ10s1 ) designs, and unweighted coverage (ζ10c ) and spread (ζ10s ).
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target the design towards relevant regions of the design space. The weight function em-
ployed can reflect the aims of the experiment, the nature of the prior information and
the experimenter’s confidence. Potentially, the weight function might reflect the utility
of the design for some particular purpose, such as model-fitting. This is an interesting
avenue for future research.

Two design selection criteria were investigated, coverage and spread. In general, based
on evidence from the examples in this paper and other similar studies, we prefer the
coverage criterion as it tends to provide more predictable and intuitive designs. When
w(x) = 1 for all x ∈ X , it also provides designs which seem better matched to the
goals of space-filling. However, coverage designs are substantially more computationally
expensive to find than spread designs, as their computation requires an approximation to
an integral across the design space, see (2). Hence, for larger examples with more input
variables, spread designs may be a more feasible option and, through choice of weight
function, may still be tailored to the goals of the experiment.

For some applications, a simple inverse transformation of a standard space-filling
design with respect to the weight function may be an alternative to the methodology pre-
sented here. However, in Section 5 we demonstrate that our weighted space-filling method
still has benefits. In addition, for many practical problems including our motivating ex-
ample, the weight function or prior distribution is only implicitly defined, making an
inverse transformation difficult to achieve.

The methods also have potential application in spatial experiments, where a weight
function may be constructed from prior knowledge or historical data on covariate values.
For example, it may be of more interest to take observations in areas of high population
density or low annual rainfall. The methods can also be directly applied to the selection
of subsets of meteorological ensembles (Wilks, 2006, ch.6), where each ensemble member
is weighted by the underlying meteorological distribution or where an empirical weight
function is generated from the ensemble for the selection of further “pseudo-ensemble”
members.

We have considered deterministic simulators. Designs for stochastic simulators, see
Kleijnen (2008a,b), usually incorporate some repetition of combinations of simulator input
variables, and so without modification, it is unlikely the coverage and spread criteria could
be usefully applied. The utility of extensions to the methods developed in this paper for
stochastic simulators could be investigated in the future.

Other areas of further work include the investigation of alternative distance metrics,
such as the Mahalonobis distance for both quantitative and qualitative variables (Bedrick
et al., 2000). Comparisons to samples from quasi-random numbers and low discrepancy
sequences (see, for example, Lemieux, 2009) would also be insightful.

Space-filling in many dimensions with a small number of design points is clearly a
difficult task. By weighting the design region according to experimenters’ interest, we
can reduce the effective size of the design space, making space-filling more feasible. In
this sense, we suggest that weighting the design region has similar benefits to focussing
on the space-filling of projections (see Lam et al., 2002).

Acknowledgements

This work was funded by the Defense Threat Reduction Agency and the Ministry of
Defence Research Acquisitions Office; VEB was supported by a Dstl Associate Fellowship

19



and DCW was partly supported by a Fellowship from the UK Engineering and Physical
Sciences Research Council. We are grateful to Susan Lewis (University of Southampton),
and Steven Taylor, Douglas Strickland and Thomas Graham (Dstl) for discussions and
assistance.

c© Crown copyright 2012. Published with the permission of the Defence Science and
Technology Laboratory on behalf of the Controller of Her Majesty’s Stationary Office.

A. Appendix 1

The following tables show the pairwise dependencies between the input variables for
the two examples in Section 5.

Table 2: Two-way table of relative frequencies for wind speed and wind direction. Each
cell denotes the percentage of time spent in the given ranges

Wind Speed (m.s−1)
0.515 3.09 5.665 8.24 10.815 13.39

W
in
d
D
ir
ec
ti
on

(o
)

16 1.78 0.6 0.1 0.1 0 0
46 1.785 1.6 0.1 0.1 0 0
76 1.785 3.9 0.3 0.1 0 0
106 1.785 5.7 0.6 0.2 0 0.1
136 1.785 1.2 0.1 0 0 0.1
166 1.825 1.8 0.2 0 0.1 0
196 2.175 6.6 0.7 0.1 0 0
226 2.175 2.7 0.3 0.1 0.1 0.1
256 2.175 8.6 0.8 0.1 0.1 0
286 2.175 30 4.9 0.3 0.1 0.1
316 2.185 0.5 0.1 0.1 0.1 0
346 2.185 0.1 0 0 0 0
360 1.785 0.6 0.1 0.1 0 0
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Table 3: Two-way table of relative frequencies for dispersion mechanism and mass. The
dispersion mechanisms have been anonymised

Dispersion Mechanism
A B C D E F G

M
as
s
(k
g)

10 100 40
25 4 40
50 75 4 20
100 25 20 5
200 10 60 72
300 10 20 20 8
500 75 60 7
750 5 20

Table 4: Two-way table of relative frequencies for dispersion mechanism and release type.
Variables labels have been anonymised

Release Type
Alpha Beta Gamma

D
is
p
er
si
on

M
ec
h
an

is
m A 100 0 0

B 100 0 0
C 100 0 0
D 100 0 0
E 100 0 0
F 0 80 20
G 0 30 70
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Table 5: Two way table of relative frequencies for dispersion mechanism and agent type.
Variable labels have been anonymised

Dispersion Mechanism
A B C D E F G

A
ge
n
t
T
y
p
e Mu 28 30 24.75 16.33 32 8.8 3

Xi 28 30 24.75 16.33 32 8.8 3
Omikron 28 30 24.75 16.33 32 8.8 2
Pi 5.5 5 24.75 50 2 56.8 61
Rho 10.5 5 1 1 2 16.8 31
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