〕 Open access • Journal Article • DOI:10.2478/UMCSMATH-2014-0006

Weighted sub-Bergman Hilbert spaces - Source link

Maria Nowak, Renata Rososzczuk
Published on: 01 Jun 2014 - Annales Umcs, Mathematica (Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej)
Topics: Hilbert space and Context (language use)

Related papers:

- Sharp Estimates in Bergman and Besov Spaces on Bounded Symmetric Domains
- The Essential Norm of Operators on \ell $\wedge\{2\}$-Valued Bergman-Type Function Spaces
- A CHARACTERIZATION OF WEIGHTED BERGMAN-PRIVALOV SPACES ON THE UNIT BALL OF C n
- Toeplitz Operators with BMO Symbols on Holomorphic Besov Spaces
- Generalized weighted composition operators on Bergman spaces induced by doubling weights

MARIA NOWAK and RENATA ROSOSZCZUK

Weighted sub-Bergman Hilbert spaces

Abstract. We consider Hilbert spaces which are counterparts of the de Branges-Rovnyak spaces in the context of the weighted Bergman spaces A_{α}^{2}, $-1<\alpha<\infty$. These spaces have already been studied in [8], [7], [5] and [1]. We extend some results from these papers.

1. Introduction. Let \mathbb{D} denote the unit disk in the complex plane. For $-1<\alpha<\infty$, the weighted Bergman space A_{α}^{2} is the space of holomorphic functions f in \mathbb{D} such that

$$
\int_{\mathbb{D}}|f(z)|^{2} d A_{\alpha}(z)<\infty
$$

where

$$
d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} \frac{d x d y}{\pi}=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z), \quad z=x+i y
$$

The space A_{α}^{2} is a Hilbert space with the inner product $\langle f, g\rangle_{\alpha}$ inherited from $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$. It then follows that if

$$
f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n} \quad \text { and } \quad g(z)=\sum_{n=0}^{\infty} \hat{g}(n) z^{n}
$$

are functions in A_{α}^{2}, then

$$
\langle f, g\rangle_{\alpha}=\sum_{n=0}^{\infty} \frac{n!\Gamma(2+\alpha)}{\Gamma(n+2+\alpha)} \hat{f}(n) \overline{\hat{g}(n)}
$$

Key words and phrases. Weighted Bergman spaces, Toeplitz operators.

Clearly, $A_{0}^{2}=A^{2}$ is the Bergman space on the unit disk.
For $\varphi \in L^{\infty}(\mathbb{D})$ the Toeplitz operator T_{φ}^{α} on A_{α}^{2} is defined by

$$
T_{\varphi}^{\alpha}(f)=P_{\alpha}(\varphi f), \quad f \in A_{\alpha}^{2}
$$

where $P_{\alpha}: L^{2}\left(\mathbb{D}, d A_{\alpha}\right) \rightarrow A_{\alpha}^{2}$ is the projection operator

$$
P_{\alpha}(f)(z)=\int_{\mathbb{D}} \frac{f(w)}{(1-\bar{w} z)^{\alpha+2}} d A_{\alpha}(w)
$$

Suppose that T is a contraction on a Hilbert space H. Following [4], we define the space $\mathcal{H}(T)$ to be the range of the operator $\left(I-T T^{*}\right)^{1 / 2}$ with the inner product given by

$$
\left\langle\left(I-T T^{*}\right)^{1 / 2} f,\left(I-T T^{*}\right)^{1 / 2} g\right\rangle_{\mathcal{H}(T)}=\langle f, g\rangle, \quad f, g \in\left(\operatorname{ker}\left(I-T T^{*}\right)^{1 / 2}\right)^{\perp}
$$

For φ in the closed unit ball of H^{∞}, the spaces $\mathcal{H}\left(T_{\varphi}^{\alpha}\right)$ and $\mathcal{H}\left(T_{\bar{\varphi}}^{\alpha}\right)$ are denoted by $\mathcal{H}_{\alpha}(\varphi)$ and $\mathcal{H}_{\alpha}(\bar{\varphi})$, respectively. For the case when $\alpha=0$ these spaces were studied by Kehe Zhu in [7], [8]. He proved that the spaces $\mathcal{H}_{0}(\varphi)$ and $\mathcal{H}_{0}(\bar{\varphi})$ coincide as sets and both the spaces contain H^{∞}. Zhu also proved that if φ is a finite Blaschke product B, then, as sets, $\mathcal{H}_{0}(B)=\mathcal{H}_{0}(\bar{B})=H^{2}$, the Hardy space on the unit disk. These results were extended to positive α in [5], where the author proved that

$$
\mathcal{H}_{\alpha}(B)=\mathcal{H}_{\alpha}(\bar{B})=A_{\alpha-1}^{2}
$$

For α as above, we define the space $\mathcal{D}(\alpha)$ to be the set of holomorphic functions in \mathbb{D} and such that $f^{\prime} \in L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$. Here we further extend the above-mentioned result and show that for $-1<\alpha<\infty$,

$$
\mathcal{H}_{\alpha}(B)=\mathcal{H}_{\alpha}(\bar{B})=D(\alpha+1) \quad \text { as sets. }
$$

After sending this paper for publication we found that a different proof of these equalities was given by F. Symesak in [6].

For $a \in \mathbb{D}$, set

$$
\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z} .
$$

Let $K_{a}^{\alpha}(z)=\frac{1}{(1-\bar{a} z)^{\alpha+2}}$ be a reproducing kernel for A_{α}^{2} and let

$$
k_{a}^{\alpha}(z)=\frac{\left(1-|a|^{2}\right)^{1+\frac{\alpha}{2}}}{(1-\bar{a} z)^{\alpha+2}}
$$

be the normalized kernel. Since the linear operator $A: A_{\alpha}^{2} \rightarrow A_{\alpha}^{2}$ defined by

$$
A f(z)=k_{a}^{\alpha} f \circ \varphi_{a}
$$

is a surjective isometry, the functions

$$
e_{a, n}=\frac{k_{a}^{\alpha} \varphi_{a}^{n}}{\sqrt{(\alpha+1) \beta(n+1, \alpha+1)}}
$$

form an orthonormal basis for A_{α}^{2}.

The following formula for the operator $\left(I-T_{\varphi_{a}}^{\alpha} T_{\varphi_{a}}^{\alpha}\right)^{1 / 2}=\left(T_{1-\left|\varphi_{a}\right|^{2}}^{\alpha}\right)^{1 / 2}$ has been derived in [5]:

$$
\left(T_{1-\left|\varphi_{a}\right|^{2}}^{\alpha}\right)^{1 / 2}=\sum_{n=0}^{\infty} \frac{\sqrt{\alpha+1}}{\sqrt{n+\alpha+2}} e_{a, n} \otimes e_{a, n}
$$

where $e_{a, n} \otimes e_{a, n}(f)=\left\langle f, e_{a, n}\right\rangle_{\alpha} e_{a, n}$ for $f \in A_{\alpha}^{2}$.
In this paper we obtain the analogous formula for the operator ($I-$ $\left.T_{\varphi_{a}}^{\alpha} T_{\bar{\varphi} a}^{\alpha}\right)^{1 / 2}$. We also find the formulas for the inner products in $\mathcal{H}_{\alpha}\left(\varphi_{a}\right)$ and $\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)$ in terms of the Fourier coefficients with respect to the orthonormal basis $\left\{e_{a, n}\right\}$.

We note that since

$$
\varphi_{a}^{n}(z)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a^{n-k} \frac{\left(1-|a|^{2}\right)^{k} z^{k}}{(1-\bar{a} z)^{k}}
$$

(see [5]), we have

$$
\begin{aligned}
\left\langle f, \varphi_{a}^{n} K_{a}^{\alpha}\right\rangle_{\alpha} & =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \bar{a}^{n-k}\left(1-|a|^{2}\right)^{k}\left\langle f, \frac{z^{k}}{(1-\bar{a} z)^{k+\alpha+2}}\right\rangle_{\alpha} \\
& =\bar{a}^{n} f(a)+\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k} \bar{a}^{n-k}\left(1-|a|^{2}\right)^{k} f^{(k)}(a)}{(\alpha+2)(\alpha+3) \ldots(\alpha+k+1)}
\end{aligned}
$$

So, in particular, the constant function $f_{1} \equiv 1$ can be written as follows

$$
\begin{aligned}
1 \equiv f_{1} & =\sum_{n=0}^{\infty} \frac{\bar{a}^{n}}{\left\|\varphi_{a}^{n} K_{a}^{\alpha}\right\|} e_{a, n}(z)=\sum_{n=0}^{\infty} \frac{\bar{a}^{n}\left(1-|a|^{2}\right)^{\frac{\alpha}{2}+1}}{\sqrt{(\alpha+1) \beta(n+1, \alpha+1)}} e_{a, n} \\
& =\frac{\left(1-|a|^{2}\right)^{\alpha+2}}{(1-\bar{a} z)^{\alpha+2}} \sum_{n=0}^{\infty} \frac{\Gamma(n+2+\alpha)}{n!\Gamma(\alpha+2)} \bar{a}^{n}\left(\frac{z-a}{1-\bar{a} z}\right)^{n}
\end{aligned}
$$

2. The spaces $H_{\alpha}\left(\varphi_{a}\right)$ and $\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)$. The following theorem describes the operator $\left(I-T_{\varphi_{a}}^{\alpha} T_{\overline{\varphi_{a}}}^{\alpha}\right)^{\frac{1}{2}}$.

Theorem 2.1. For $a \in \mathbb{D}$,

$$
\left(I-T_{\varphi_{a}}^{\alpha} T_{\varphi_{a}}^{\alpha}\right)^{\frac{1}{2}}=\sum_{n=0}^{\infty} \sqrt{\frac{\alpha+1}{n+\alpha+1}} e_{a, n} \otimes e_{a, n}
$$

Proof. Our aim is to prove that the functions $\varphi_{a}^{n} K_{a}^{\alpha}, n=0,1 \ldots$, are eigenvectors of the operator $\left(I-T_{\varphi_{a}}^{\alpha} T_{\overline{\varphi_{a}}}^{\alpha}\right)^{\frac{1}{2}}$ with corresponding eigenvalues
$\sqrt{\frac{\alpha+1}{n+\alpha+1}}$. We have

$$
\begin{aligned}
T_{\bar{\varphi} a}^{\alpha}\left(\varphi_{a}^{n} K_{a}^{\alpha}\right)(z) & =\int_{\mathbb{D}} \frac{\overline{\varphi_{a}(w)} \varphi_{a}^{n}(w)}{(1-\bar{a} w)^{\alpha+2}(1-z \bar{w})^{\alpha+2}} d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} \frac{\bar{u} u^{n}}{(1-\bar{u} a-z \bar{a}+z \bar{u})^{2+\alpha}} d A_{\alpha}(u) \\
& =K_{a}^{\alpha}(z) \int_{\mathbb{D}} \frac{\bar{u} u^{n}}{\left(1-\bar{u} \varphi_{a}(z)\right)^{2+\alpha}} d A_{\alpha}(u) \\
& =K_{a}^{\alpha}(z) \int_{\mathbb{D}} \sum_{k=0}^{\infty} \frac{\Gamma(k+2+\alpha)}{k!\Gamma(2+\alpha)}\left(\bar{u} \varphi_{a}(z)\right)^{k} \bar{u} u^{n} d A_{\alpha}(u) \\
& =\frac{\Gamma(n+1+\alpha)}{(n-1)!\Gamma(2+\alpha)} K_{a}^{\alpha}(z) \varphi_{a}^{n-1}(z) \int_{\mathbb{D}}|u|^{2 n} d A_{\alpha}(u) \\
& =\frac{n}{n+1+\alpha} K_{a}^{\alpha}(z) \varphi_{a}^{n-1}(z) .
\end{aligned}
$$

Hence

$$
\left(I-T_{\varphi_{a}}^{\alpha} T_{\bar{\varphi} a}^{\alpha}\right)\left(\varphi_{a}^{n} K_{a}^{\alpha}\right)(z)=\frac{\alpha+1}{n+\alpha+1} \varphi_{a}^{n} K_{a}^{\alpha}
$$

and consequently,

$$
\left(I-T_{\varphi_{a}}^{\alpha} T_{\overline{\varphi_{a}}}^{\alpha}\right)^{\frac{1}{2}}\left(\varphi_{a}^{n} K_{a}^{\alpha}\right)(z)=\sqrt{\frac{\alpha+1}{n+\alpha+1}} \varphi_{a}^{n} K_{a}^{\alpha}
$$

Expanding $f \in A_{\alpha}^{2}$ in the Fourier series with respect to the basis $\left\{e_{a, n}\right\}$

$$
f=\sum_{n=0}^{\infty}\left\langle f, e_{a, n}\right\rangle e_{a, n}
$$

we find that

$$
\begin{aligned}
\left(I-T_{\varphi_{a}}^{\alpha} T_{\varphi_{a}}^{\alpha}\right)^{\frac{1}{2}} f & =\sum_{n=0}^{\infty}\left\langle f, e_{a, n}\right\rangle\left(I-T_{\varphi_{a}}^{\alpha} T_{\overline{\varphi_{a}}}^{\alpha}\right)^{\frac{1}{2}} e_{a, n} \\
& =\sum_{n=0}^{\infty}\left\langle f, e_{a, n}\right\rangle \sqrt{\frac{\alpha+1}{n+\alpha+1}} e_{a, n} \\
& =\sum_{n=0}^{\infty} \sqrt{\frac{\alpha+1}{n+\alpha+1}}\left(e_{a, n} \otimes e_{a, n}\right) f
\end{aligned}
$$

By Proposition 1.3.10 in [9] we also get
Corollary 2.1. $\left(I-T_{\varphi_{a}}^{\alpha} T_{\overline{\varphi_{a}}}^{\alpha}\right)^{\frac{1}{2}}$ is a compact operator on A_{α}^{2}.

In our next result we give formulas for inner products $\langle f, g\rangle_{\mathcal{H}_{\alpha}\left(\varphi_{a}\right)}$ and $\langle f, g\rangle_{\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)}$ in terms of the Fourier coefficients $\hat{f}_{a}(n)=\left\langle f, e_{a, n}\right\rangle_{\alpha}$ and $\hat{g}_{a}(n)$ $=\left\langle f, e_{a, n}\right\rangle_{\alpha}$.
Proposition 2.1. For $a \in \mathbb{D}$,

$$
\langle f, g\rangle_{\mathcal{H}_{\alpha}\left(\varphi_{a}\right)}=\langle f, g\rangle_{\alpha}+\sum_{n=1}^{\infty} \frac{n}{\alpha+1} \hat{f}_{a}(n) \overline{\hat{g}_{a}(n)}
$$

and

$$
\langle f, g\rangle_{\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)}=\langle f, g\rangle_{\alpha}+\sum_{n=0}^{\infty} \frac{n+1}{\alpha+1} \hat{f}_{a}(n) \overline{\hat{g}_{a}(n)}
$$

Proof. We shall prove the first formula. The other can be proved analogously. By Sarason ([4], p. 3) we know that $f, g \in \mathcal{H}_{\alpha}\left(\varphi_{a}\right)$ if and only if $T_{\overline{\varphi_{a}}}^{\alpha} f \in \mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)$ and

$$
\langle f, g\rangle_{\mathcal{H}_{\alpha}\left(\varphi_{a}\right)}=\langle f, g\rangle_{\alpha}+\left\langle T_{\overline{\varphi_{a}}}^{\alpha} f, T_{\overline{\varphi_{a}}}^{\alpha} g\right\rangle_{\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)} .
$$

It follows from the proof of Theorem 2.1 that

$$
T_{\varphi_{a}}^{\alpha}\left(\varphi_{a}^{n} K_{a}^{\alpha}\right)(z)=\frac{n}{n+1+\alpha} K_{a}^{\alpha}(z) \varphi_{a}^{n-1}(z)
$$

and consequently,

$$
T_{\overline{\varphi_{a}}}^{\alpha}\left(e_{a, n}\right)=\sqrt{\frac{n}{n+1+\alpha}} e_{a, n-1}
$$

Hence

$$
\left\langle T_{\overline{\varphi_{a}}}^{\alpha} f, T_{\overline{\varphi_{a}}}^{\alpha} g\right\rangle_{\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)}=\sum_{n=1}^{\infty} \frac{n}{n+1+\alpha} \hat{f}_{a}(n) \overline{\hat{g}_{a}(n)}\left\|e_{a, n-1}\right\|_{\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)}^{2}
$$

Since

$$
\left(I-T_{\frac{\varphi_{a}}{\alpha}}^{\alpha} T_{\varphi_{a}}^{\alpha}\right)^{\frac{1}{2}}\left(e_{a, n}\right)=\sqrt{\frac{\alpha+1}{n+\alpha+2}} e_{a, n}
$$

we have

$$
\left\|e_{a, n-1}\right\|_{\mathcal{H}_{\alpha}\left(\overline{\varphi_{a}}\right)}^{2}=\frac{n+1+\alpha}{\alpha+1}
$$

3. Finite Blaschke products. Throughout this section B will stand for a finite Blaschke product. The spaces $\mathcal{H}_{\alpha}(B)$ and $\mathcal{H}_{\alpha}(\bar{B})$ have been described for $\alpha \geq 0$ in [8] and [1]. We will use the methods developed in these papers to extend the result for $-1<\alpha<0$.

For $-1<\alpha<\infty$ let $\mathcal{D}(\alpha)$ denote the Hilbert space consisting of analytic functions in \mathbb{D} whose derivatives are in $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ with the inner product

$$
\langle f, g\rangle_{\mathcal{D}(\alpha)}=\hat{f}(0) \overline{\hat{g}(0)}+\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)} d A_{\alpha}(z)
$$

We shall show the following
Theorem 3.1. For $-1<\alpha<\infty$,

$$
\mathcal{H}_{\alpha}(\bar{B})=\mathcal{D}(\alpha+1)
$$

as sets.
Proof. As in [7] and [1] we define the Hilbert space $A_{\alpha, B}^{2}$ consisting of functions f analytic in \mathbb{D} and such that

$$
\int_{\mathbb{D}}|f(z)|^{2}\left(1-|B(z)|^{2}\right) d A_{\alpha}(z)<\infty
$$

with the inner product

$$
\langle f, g\rangle_{A_{\alpha, B}^{2}}=\int_{\mathbb{D}} f(z) \overline{g(z)}\left(1-|B(z)|^{2}\right) d A_{\alpha}(z)
$$

Since, for $z \in \mathbb{D}$,

$$
\left.1-\left|B(z)^{2}\right| \sim 1-|z|^{2} \quad \text { (see, e.g., Lemma } 1 \text { of }[8]\right)
$$

the function $g \in A_{\alpha, B}^{2}$ if and only $g \in A_{\alpha+1}^{2}$ and the norms in these spaces are equivalent.

It was proved in [8] and [1] that the space $\mathcal{H}_{\alpha}(\bar{B})$ consists of analytic functions of the form

$$
\begin{equation*}
f(z)=S_{\alpha}(g)(z)=\int_{\mathbb{D}} \frac{1-|B(w)|^{2}}{(1-z \bar{w})^{\alpha+2}} g(w) d A_{\alpha}(w) \tag{3.1}
\end{equation*}
$$

where $g \in A_{\alpha, B}^{2}$. It then follows that if $f \in \mathcal{H}_{\alpha}(\bar{B})$, then

$$
f^{\prime}(z)=(\alpha+2) \int_{\mathbb{D}} \frac{\bar{w}\left(1-|B(w)|^{2}\right)}{(1-z \bar{w})^{\alpha+3}} g(w) d A_{\alpha}(w)
$$

By Theorem 1.9 of [3] the operator

$$
\Lambda g(z)=\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\alpha+1}}{|1-z \bar{w}|^{\alpha+3}}|g(w)| d A(w)
$$

is bounded on $L^{2}\left(\mathbb{D}, d A_{\alpha+1}^{2}\right)$. Therefore, there is a constant $C>0$ such that

$$
\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A_{\alpha+1}(z) \leq\|\Lambda g\|_{L^{2}\left(\mathbb{D}, d A_{\alpha+1}^{2}\right)} \leq C\|g\|_{A_{\alpha+1}^{2}}
$$

which proves the inclusion $\mathcal{H}_{\alpha}(\bar{B}) \subset \mathcal{D}(\alpha+1)$. To prove that $\mathcal{D}(\alpha+1) \subset$ $\mathcal{H}_{\alpha}(\bar{B})$ we consider the operator $R_{\alpha}: \mathcal{D}(\alpha+1) \rightarrow A_{\alpha, B}^{2}$ given by

$$
R_{\alpha} f(z)=(\alpha+2) z f^{\prime}(z)+f(0)
$$

Using the Fubini Theorem, one can easily check that $R_{\alpha}=S_{\alpha}^{*}$, where S_{α} : $A_{\alpha, B}^{2} \rightarrow \mathcal{D}(\alpha+1)$ is given by (3.1). Indeed, for $f \in \mathcal{D}(\alpha+1)$,

$$
\begin{aligned}
\left\langle f, S_{\alpha} g\right\rangle_{\mathcal{D}(\alpha+1)}= & \hat{f}(0) \overline{\overline{S_{\alpha} g}(0)} \\
& +(\alpha+2) \int_{\mathbb{D}} f^{\prime}(z) \int_{\mathbb{D}} \frac{\left(1-|B(w)|^{2}\right) w}{(1-\bar{z} w)^{\alpha+3}} \overline{g(w)} d A_{\alpha}(w) d A_{\alpha+1}(z) \\
= & \hat{f}(0)\langle 1, g\rangle_{A_{\alpha, B}^{2}} \\
& +\int_{\mathbb{D}}\left(1-|B(w)|^{2}\right) w \overline{g(w)}(\alpha+2) f^{\prime}(w) d A_{\alpha}(w) \\
= & \left\langle R_{\alpha} f, g\right\rangle_{A_{\alpha, B}^{2}}
\end{aligned}
$$

Since R_{α} is invertible, the image of the unit ball of $\mathcal{D}(\alpha+1)$ under R_{α} contains a ball of radius $r>0$ centered at zero. As in [8], [1], for every unit vector $g \in A_{\alpha, B}^{2}$ we have

$$
\begin{aligned}
& \left\|S_{\alpha} g\right\|_{\mathcal{D}(\alpha+1)}=\sup \left\{\left|\left\langle S_{\alpha} g, f\right\rangle_{\mathcal{D}(\alpha+1)}\right|:\|f\|_{\mathcal{D}(\alpha+1)} \leq 1\right\} \\
& =\sup \left\{\left|\left\langle g, R_{\alpha} f\right\rangle_{A_{\alpha, B}^{2}}\right|:\|f\|_{\mathcal{D}(\alpha+1)} \leq 1\right\} \\
& =\sup \left\{\left|\int_{\mathbb{D}} g(w) \overline{R_{\alpha} f(w)}\left(1-|B(w)|^{2}\right) d A_{\alpha}(w)\right|:\|f\|_{\mathcal{D}(\alpha+1)} \leq 1\right\} \\
& \geq \sup \left\{\left|\int_{\mathbb{D}} g(w) \overline{h(w)}\left(1-|B(w)|^{2}\right) d A_{\alpha}(w)\right|:\|h\|_{A_{\alpha, B}^{2}} \leq r\right\} \\
& =r\|g\|_{A_{\alpha, B}^{2}}=r .
\end{aligned}
$$

This means that S_{α} is bounded from below, so that its range is closed in $\mathcal{D}(\alpha+1)$. Since polynomials are dense in the space $\mathcal{D}(\alpha+1)$, it is enough to prove that $S_{\alpha}\left(A_{\alpha, B}^{2}\right)$ contains all polynomials. To show that z^{n} is in $S_{\alpha}\left(A_{\alpha, B}^{2}\right)$ consider the closed subspace M of $A_{\alpha, B}^{2}$ spanned by functions z^{m}, $m \neq n, m \in \mathbb{N}$. Let g be a unit vector in $A_{\alpha, B}^{2} \ominus M$. Then

$$
S_{\alpha}(g)(z)=\int_{\mathbb{D}} \frac{1-|B(u)|^{2}}{(1-z \bar{u})^{\alpha+2}} g(u) d A_{\alpha}(u)=\frac{\Gamma(n+2+\alpha)}{n!\Gamma(2+\alpha)} z^{n}\left\langle g, u^{n}\right\rangle_{A_{\alpha, B}^{2}}
$$

for every $z \in \mathbb{D}$. If $\left\langle g, u^{n}\right\rangle_{A_{\alpha, B}^{2}}=0$ for every unit vector g in $A_{\alpha, B}^{2} \ominus M$, then it will follow that $z^{n} \in M$, which is clearly impossible. So, there is $c_{n} \neq 0$ such that $c_{n} z^{n} \in S_{\alpha}\left(A_{\alpha, B}^{2}\right)$.

We remark that also in the case when $-1<\alpha<0, \mathcal{H}_{\alpha}(B)=H_{\alpha}(\bar{B})$. It follows from Douglas criterion that $H_{\alpha}(\bar{B}) \subset H_{\alpha}(B)$ (see [4]). Moreover, it was showed in [5] that for $-1<\alpha<0, \mathcal{H}_{\alpha}(B)$ is equal to a Hilbert space with the reproducing kernel $K_{w}^{\alpha}(z)=(1-\bar{w} z)^{-(1+\alpha)}$. It is easy to see that the norm in such a space is given by

$$
\begin{equation*}
\|f\|_{\alpha}^{2}=\frac{1}{(\alpha+1)(\alpha+2)}\left\|f^{\prime}\right\|_{A_{\alpha+1}}^{2}+\|f\|_{A_{\alpha}}^{2} . \tag{3.2}
\end{equation*}
$$

Indeed, for $z, w \in \mathbb{D}$ we have

$$
K_{w}^{\alpha}(z)=k^{\alpha}(\bar{w} z)
$$

where

$$
k^{\alpha}(z)=\sum_{k=0}^{\infty} \frac{\Gamma(k+1+\alpha)}{k!\Gamma(1+\alpha)}(\bar{w} z)^{k} .
$$

This means that this space is the weighted Hardy space introduced in [2] with the generating function k^{α}. Hence

$$
\left\|z^{k}\right\|^{2}=\frac{k!\Gamma(\alpha+2)}{\Gamma(k+\alpha+2)}
$$

and formula (3.2) follows. Thus, also for $-1<\alpha<0, \mathcal{H}_{\alpha}(B)=\mathcal{D}(\alpha+1)$ $=\mathcal{H}_{\alpha}(\bar{B})$. Finally, we note that in this case H^{∞} is not contained in $\mathcal{H}_{\alpha}(B)=$ $\mathcal{H}_{\alpha}(\bar{B})$. This follows, for example, from the result proved in [10] that H^{∞} is contained in the weighted Hardy space $H^{2}(\beta)$ if and only if β is bounded.

References

[1] Abkar, A., Jafarzadeh, B., Weighted sub-Bergman Hilbert spaces in the unit disk, Czechoslovak Math. J. 60 (2010), 435-443.
[2] Cowen, C., MacCluer, B., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[3] Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Spinger-Verlag, New York, 2000.
[4] Sarason, D., Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.
[5] Sultanic, S., Sub-Bergman Hilbert spaces, J. Math. Anal. Appl. 324 (2006), 639-649.
[6] Symesak, F., Sub-Bergman spaces in the unit ball of \mathbb{C}^{n}, Proc. Amer. Math. Soc. 138 (2010), 4405-4411.
[7] Zhu, K., Sub-Bergman Hilbert spaces in the unit disk, Indiana Univ. Math. J. 45 (1996), 165-176.
[8] Zhu, K., Sub-Bergman Hilbert spaces in the unit disk, II, J. Funct. Anal. 202 (2003), 327-341.
[9] Zhu, K., Operator Theory in Function Spaces, Dekker, New York, 1990.
[10] Zorboska, N., Composition operators induced by functons with supremum strictly smaller than 1, Proc. Amer. Math. Soc. 106 (1989), 679-684.

Maria Nowak
Instytut Matematyki UMCS
pl. M. Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: mt.nowak@poczta.umcs.lublin.pl

Renata Rososzczuk
Politechnika Lubelska
Katedra Matematyki Stosowanej
ul. Nadbystrzycka 38
20-618 Lublin
Poland
e-mail: renata.rososzczuk@gmail.com

Received April 7, 2013

