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Weighted sub-Bergman Hilbert spaces

Abstract. We consider Hilbert spaces which are counterparts of the de
Branges–Rovnyak spaces in the context of the weighted Bergman spaces A2

α,
−1 < α < ∞. These spaces have already been studied in [8], [7], [5] and [1].
We extend some results from these papers.

1. Introduction. Let D denote the unit disk in the complex plane. For
−1 < α < ∞, the weighted Bergman space A2

α is the space of holomorphic
functions f in D such that∫

D

|f(z)|2dAα(z) < ∞,

where

dAα(z) = (α+ 1)(1− |z|2)αdxdy
π

= (α+ 1)(1− |z|2)αdA(z), z = x+ iy.

The space A2
α is a Hilbert space with the inner product 〈f, g〉α inherited

from L2(D, dAα). It then follows that if

f(z) =

∞∑

n=0

f̂(n)zn and g(z) =
∞∑

n=0

ĝ(n)zn

are functions in A2
α, then

〈f, g〉α =
∞∑

n=0

n!Γ(2 + α)

Γ(n+ 2 + α)
f̂(n)ĝ(n).
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Clearly, A2
0 = A2 is the Bergman space on the unit disk.

For ϕ ∈ L∞(D) the Toeplitz operator Tα
ϕ on A

2
α is defined by

Tα
ϕ (f) = Pα(ϕf), f ∈ A2

α,

where Pα : L2(D, dAα) → A2
α is the projection operator

Pα(f)(z) =

∫

D

f(w)

(1− w̄z)α+2
dAα(w).

Suppose that T is a contraction on a Hilbert space H. Following [4], we

define the space H(T ) to be the range of the operator (I−TT ∗)1/2 with the
inner product given by〈
(I − TT ∗)1/2f, (I − TT ∗)1/2g

〉
H(T )

= 〈f, g〉, f, g ∈ (ker(I − TT ∗)1/2)⊥.

For ϕ in the closed unit ball of H∞, the spaces H(Tα
ϕ ) and H(Tα

ϕ ) are

denoted by Hα(ϕ) and Hα(ϕ), respectively. For the case when α = 0 these
spaces were studied by Kehe Zhu in [7], [8]. He proved that the spacesH0(ϕ)
andH0(ϕ) coincide as sets and both the spaces containH

∞. Zhu also proved
that if ϕ is a finite Blaschke product B, then, as sets, H0(B) = H0(B̄) = H2,
the Hardy space on the unit disk. These results were extended to positive
α in [5], where the author proved that

Hα(B) = Hα(B̄) = A2
α−1.

For α as above, we define the space D(α) to be the set of holomorphic
functions in D and such that f ′ ∈ L2(D, dAα). Here we further extend the
above-mentioned result and show that for −1 < α < ∞,

Hα(B) = Hα(B̄) = D(α+ 1) as sets.

After sending this paper for publication we found that a different proof
of these equalities was given by F. Symesak in [6].
For a ∈ D, set

ϕa(z) =
a− z

1− āz
.

Let Kα
a (z) =

1
(1−āz)α+2 be a reproducing kernel for A

2
α and let

kαa (z) =
(1− |a|2)1+α

2

(1− āz)α+2

be the normalized kernel. Since the linear operator A : A2
α → A2

α defined by

Af(z) = kαa f ◦ ϕa

is a surjective isometry, the functions

ea,n =
kαaϕ

n
a√

(α+ 1)β(n+ 1, α+ 1)

form an orthonormal basis for A2
α.
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The following formula for the operator (I − Tα
ϕa
Tα
ϕa
)1/2 = (Tα

1−|ϕa|2
)1/2

has been derived in [5]:

(Tα
1−|ϕa|2

)1/2 =
∞∑

n=0

√
α+ 1√

n+ α+ 2
ea,n ⊗ ea,n,

where ea,n ⊗ ea,n(f) = 〈f, ea,n〉αea,n for f ∈ A2
α.

In this paper we obtain the analogous formula for the operator (I −
Tα
ϕa
Tα
ϕa
)1/2. We also find the formulas for the inner products in Hα(ϕa) and

Hα(ϕa) in terms of the Fourier coefficients with respect to the orthonormal
basis {ea,n}.
We note that since

ϕn
a(z) =

n∑

k=0

(
n

k

)
(−1)kan−k (1− |a|2)kzk

(1− āz)k

(see [5]), we have

〈f, ϕn
aK

α
a 〉α =

n∑

k=0

(
n

k

)
(−1)kān−k(1− |a|2)k

〈
f,

zk

(1− āz)k+α+2

〉

α

= ānf(a) +
n∑

k=1

(
n

k

)
(−1)kān−k(1− |a|2)kf (k)(a)

(α+ 2)(α+ 3) . . . (α+ k + 1)
.

So, in particular, the constant function f1 ≡ 1 can be written as follows

1 ≡ f1 =
∞∑

n=0

ān

‖ϕn
aK

α
a ‖

ea,n(z) =
∞∑

n=0

ān(1− |a|2)α
2
+1

√
(α+ 1)β(n+ 1, α+ 1)

ea,n

=
(1− |a|2)α+2

(1− āz)α+2

∞∑

n=0

Γ(n+ 2 + α)

n!Γ(α+ 2)
ān

(
z − a

1− āz

)n

.

2. The spaces Hα(ϕa) and Hα(ϕa). The following theorem describes

the operator (I − Tα
ϕa
Tα
ϕa
)
1

2 .

Theorem 2.1. For a ∈ D,

(I − Tα
ϕa
Tα
ϕa
)
1

2 =

∞∑

n=0

√
α+ 1

n+ α+ 1
ea,n ⊗ ea,n.

Proof. Our aim is to prove that the functions ϕn
aK

α
a , n = 0, 1 . . ., are

eigenvectors of the operator (I − Tα
ϕa
Tα
ϕa
)
1

2 with corresponding eigenvalues
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√
α+1

n+α+1 . We have

Tα
ϕa
(ϕn

aK
α
a )(z) =

∫

D

ϕa(w)ϕ
n
a(w)

(1− āw)α+2(1− zw̄)α+2
dAα(w)

=

∫

D

ūun

(1− ūa− zā+ zū)2+α dAα(u)

= Kα
a (z)

∫

D

ūun

(1− ūϕa(z))
2+α dAα(u)

= Kα
a (z)

∫

D

∞∑

k=0

Γ(k + 2 + α)

k!Γ(2 + α)
(ūϕa(z))

kūun dAα(u)

=
Γ(n+ 1 + α)

(n− 1)!Γ(2 + α)
Kα

a (z)ϕ
n−1
a (z)

∫

D

|u|2n dAα(u)

=
n

n+ 1 + α
Kα

a (z)ϕ
n−1
a (z).

Hence

(I − Tα
ϕa
Tα
ϕa
)(ϕn

aK
α
a )(z) =

α+ 1

n+ α+ 1
ϕn
aK

α
a ,

and consequently,

(I − Tα
ϕa
Tα
ϕa
)
1

2 (ϕn
aK

α
a )(z) =

√
α+ 1

n+ α+ 1
ϕn
aK

α
a .

Expanding f ∈ A2
α in the Fourier series with respect to the basis {ea,n}

f =

∞∑

n=0

〈f, ea,n〉ea,n,

we find that

(
I − Tα

ϕa
Tα
ϕa

) 1

2 f =

∞∑

n=0

〈f, ea,n〉
(
I − Tα

ϕa
Tα
ϕa

) 1

2 ea,n

=
∞∑

n=0

〈f, ea,n〉
√

α+ 1

n+ α+ 1
ea,n

=

∞∑

n=0

√
α+ 1

n+ α+ 1
(ea,n ⊗ ea,n)f. �

By Proposition 1.3.10 in [9] we also get

Corollary 2.1. (I − Tα
ϕa
Tα
ϕa
)
1

2 is a compact operator on A2
α.
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In our next result we give formulas for inner products 〈f, g〉Hα(ϕa) and

〈f, g〉Hα(ϕa) in terms of the Fourier coefficients f̂a(n) = 〈f, ea,n〉α and ĝa(n)
= 〈f, ea,n〉α.
Proposition 2.1. For a ∈ D,

〈f, g〉Hα(ϕa) = 〈f, g〉α +

∞∑

n=1

n

α+ 1
f̂a(n)ĝa(n)

and

〈f, g〉Hα(ϕa) = 〈f, g〉α +
∞∑

n=0

n+ 1

α+ 1
f̂a(n)ĝa(n).

Proof. We shall prove the first formula. The other can be proved analo-
gously. By Sarason ([4], p. 3) we know that f , g ∈ Hα(ϕa) if and only if
Tα
ϕa
f ∈ Hα(ϕa) and

〈f, g〉Hα(ϕa) = 〈f, g〉α + 〈Tα
ϕa
f, Tα

ϕa
g〉Hα(ϕa).

It follows from the proof of Theorem 2.1 that

Tα
ϕa
(ϕn

aK
α
a )(z) =

n

n+ 1 + α
Kα

a (z)ϕ
n−1
a (z)

and consequently,

Tα
ϕa
(ea,n) =

√
n

n+ 1 + α
ea,n−1.

Hence

〈Tα
ϕa
f, Tα

ϕa
g〉Hα(ϕa) =

∞∑

n=1

n

n+ 1 + α
f̂a(n)ĝa(n)‖ea,n−1‖2Hα(ϕa)

.

Since
(
I − Tα

ϕa
Tα
ϕa

) 1

2 (ea,n) =

√
α+ 1

n+ α+ 2
ea,n,

we have

‖ea,n−1‖2Hα(ϕa)
=

n+ 1 + α

α+ 1
. �

3. Finite Blaschke products. Throughout this section B will stand for a
finite Blaschke product. The spaces Hα(B) and Hα(B) have been described
for α ≥ 0 in [8] and [1]. We will use the methods developed in these papers
to extend the result for −1 < α < 0.
For −1 < α < ∞ let D(α) denote the Hilbert space consisting of analytic
functions in D whose derivatives are in L2(D, dAα) with the inner product

〈f, g〉D(α) = f̂(0)ĝ(0) +

∫

D

f ′(z)g′(z)dAα(z).
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We shall show the following

Theorem 3.1. For −1 < α < ∞,
Hα(B) = D(α+ 1)

as sets.

Proof. As in [7] and [1] we define the Hilbert space A2
α,B consisting of

functions f analytic in D and such that
∫

D

|f(z)|2(1− |B(z)|2) dAα(z) < ∞

with the inner product

〈f, g〉A2
α,B

=

∫

D

f(z)g(z)(1− |B(z)|2) dAα(z).

Since, for z ∈ D,

1− |B(z)2| ∼ 1− |z|2 (see, e.g., Lemma 1 of [8]),

the function g ∈ A2
α,B if and only g ∈ A2

α+1 and the norms in these spaces
are equivalent.
It was proved in [8] and [1] that the space Hα(B) consists of analytic
functions of the form

(3.1) f(z) = Sα(g)(z) =

∫

D

1− |B(w)|2
(1− zw̄)α+2

g(w) dAα(w),

where g ∈ A2
α,B. It then follows that if f ∈ Hα(B), then

f ′(z) = (α+ 2)

∫

D

w̄(1− |B(w)|2)
(1− zw̄)α+3

g(w) dAα(w).

By Theorem 1.9 of [3] the operator

Λg(z) =

∫

D

(1− |w|2)α+1

|1− zw̄|α+3
|g(w)| dA(w)

is bounded on L2(D, dA2
α+1). Therefore, there is a constant C > 0 such that

∫

D

|f ′(z)|2 dAα+1(z) ≤ ‖Λg‖L2(D,dA2
α+1

) ≤ C‖g‖A2
α+1

,

which proves the inclusion Hα(B) ⊂ D(α + 1). To prove that D(α + 1) ⊂
Hα(B) we consider the operator Rα : D(α+ 1) → A2

α,B given by

Rαf(z) = (α+ 2)zf ′(z) + f(0).
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Using the Fubini Theorem, one can easily check that Rα = S∗
α, where Sα :

A2
α,B → D(α+ 1) is given by (3.1). Indeed, for f ∈ D(α+ 1),

〈f, Sαg〉D(α+1) = f̂(0)Ŝαg(0)

+ (α+ 2)

∫

D

f ′(z)

∫

D

(1− |B(w)|2)w
(1− z̄w)α+3

g(w)dAα(w) dAα+1(z)

= f̂(0)〈1, g〉A2
α,B

+

∫

D

(1− |B(w)|2)wg(w)(α+ 2)f ′(w) dAα(w)

= 〈Rαf, g〉A2
α,B

.

Since Rα is invertible, the image of the unit ball of D(α + 1) under Rα

contains a ball of radius r > 0 centered at zero. As in [8], [1], for every unit
vector g ∈ A2

α,B we have

‖Sαg‖D(α+1) = sup
{∣∣〈Sαg, f〉D(α+1)

∣∣ : ‖f‖D(α+1) ≤ 1
}

= sup
{∣∣∣〈g,Rαf〉A2

α,B

∣∣∣ : ‖f‖D(α+1) ≤ 1
}

= sup

⎧
⎨
⎩

∣∣∣∣∣∣

∫

D

g(w)Rαf(w)(1− |B(w)|2) dAα(w)

∣∣∣∣∣∣
: ‖f‖D(α+1) ≤ 1

⎫
⎬


≥ sup

⎧
⎨
⎩

∣∣∣∣∣∣

∫

D

g(w)h(w)(1− |B(w)|2) dAα(w)

∣∣∣∣∣∣
: ‖h‖A2

α,B
≤ r

⎫
⎬


= r‖g‖A2
α,B

= r.

This means that Sα is bounded from below, so that its range is closed in
D(α + 1). Since polynomials are dense in the space D(α + 1), it is enough
to prove that Sα(A

2
α,B) contains all polynomials. To show that z

n is in

Sα(A
2
α,B) consider the closed subspaceM of A

2
α,B spanned by functions z

m,

m �= n, m ∈ N. Let g be a unit vector in A2
α,B �M . Then

Sα(g)(z) =

∫

D

1− |B(u)|2
(1− zū)α+2

g(u) dAα(u) =
Γ(n+ 2 + α)

n!Γ(2 + α)
zn〈g, un〉A2

α,B

for every z ∈ D. If 〈g, un〉A2
α,B

= 0 for every unit vector g in A2
α,B�M , then

it will follow that zn ∈ M , which is clearly impossible. So, there is cn �= 0
such that cnz

n ∈ Sα(A
2
α,B). �
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We remark that also in the case when −1 < α < 0, Hα(B) = Hα(B). It
follows from Douglas criterion that Hα(B) ⊂ Hα(B) (see [4]). Moreover, it
was showed in [5] that for −1 < α < 0, Hα(B) is equal to a Hilbert space

with the reproducing kernel Kα
w(z) = (1− w̄z)−(1+α). It is easy to see that

the norm in such a space is given by

(3.2) ‖f‖2α =
1

(α+ 1)(α+ 2)
‖f ′‖2A2

α+1

+ ‖f‖2Aα
.

Indeed, for z, w ∈ D we have

Kα
w(z) = kα(w̄z)

where

kα(z) =
∞∑

k=0

Γ(k + 1 + α)

k!Γ(1 + α)
(w̄z)k.

This means that this space is the weighted Hardy space introduced in [2]
with the generating function kα. Hence

‖zk‖2 = k!Γ(α+ 2)

Γ(k + α+ 2)

and formula (3.2) follows. Thus, also for −1 < α < 0, Hα(B) = D(α + 1)
= Hα(B). Finally, we note that in this caseH∞ is not contained inHα(B) =
Hα(B). This follows, for example, from the result proved in [10] that H∞

is contained in the weighted Hardy space H2(β) if and only if β is bounded.
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