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Weighted Sum Capacity Maximisation using a Modified
Leakage-based Transmit Filter Design

Piya Patcharamaneepakorn, Angela Doufédember, IEEE and Simon Armour

Abstract—This paper proposes a linear transmit filter designto  The principle is to iterate the computation of transmit fil-
maximise Weighted Sum Capacity (WSC) in multiuser Multiple-  ters, power allocations and receive filters by assuming that
Input Multiple-Output (MU-MIMO) systems. The proposed na other components are fixed during each update. In [5],

scheme is based on a modified signal-to-leakage-plus-noise rati . . . .
(SLNR) criterion, which integrates receiver structures and pover %hased on the uplink-downlink duality theory, the design of

allocations into the precoder design and can efficiently exploit downlink transmit filters is assisted by using a virtual ogli
unused receiver subspaces. Based on the proposed transmitte system, in addition to solving associated power allocation

design with receive matched filters, the WSC maximisation py a Geometric Programming (GP) in each iteration. The
problem can be simplified to power allocation and data stream concept of duality is also exploited in [6] in a multi-camie

selection problems. A power allocation algorithm for finding text. wh th locati bl is sh to b
a local optimal solution is also proposed and is shown to be context, where the power allocation problem IS shown to be

obtained by the iteration of closed-form water-filing solutions. @ Signomial programming (SP) problem. Another approach is
Furthermore, a low-complexity user and substream selection is proposed in [7] based on the relationship between WSC and
proposed as an alternative solution to maximise WSC. Simulation weighted minimum mean square error (WMMSE) problems.
results show that the proposed algorithms outperform the con- |, this case, transmit filters with power allocation can be
ventional scheme and achieve comparable performance to a joint . . .
transceiver design, despite requiring simpler receiver structues. obtained V'a an MSE weights update, .W_hereby GF_) prOblems
can be avoided. Nevertheless, in the joint transceivergdesi
approach, the computation of receive filters generally irequ
the knowledge of other users’ transmit filters. Althoughsthi
can be done by an estimation at the receivers or directly
l. INTRODUCTION feeding forward the decoding matrices to the receiversay m
eventually require additional processing at receivers/and
U-MIMO schemes have attracted considerable interggkge control overhead. It should also be noted that user and
in recent years due to the capability of multiplexin@jata substream selections are generally embedded intoitite |
multiple users’ data streams into the same frequency arel tiffansceiver design process. Specifically, only users ama da
resources and offering high system throughput. The thieatet substreams with nonzero allocated power can be scheduled
sum capacity of MU-MIMO is known to be achieved byfor data transmission.
Dirty Paper Coding (DPC) [1]-[3]. In practice, however, the The second framework focuses on low-complexity transmit
implementations of DPC are generally difficult as they imeol filter designs by introducing specific criteria on the design
high complexity in nonlinear coding/decoding of users’aata|gorithms. Zero-Forcing (ZF) [8] and Block-Diagonalipat
streams. The search for practical transceiver designshiev® (BD) [9], for instance, impose zero multi-user interferenc
the capacity limit is, therefore, still ongoing. To this end(MuUI) constraints when users are equipped with single and
linear precoding techniques are often of interest due to thenultiple antennas, respectively. Despite zero MUI, thestr
simplicity. In addition, the weighted sum capacity (WSCyent requirement of ZF and BD leads to a transmit power
is normally adopted as an optimisation criterion since Hoost issue [8], causing poor performance in the low signal-
incorporates users’ priority and fairness into considerafd].  to-noise ratio (SNR) regime. Minimising mean square error
The problem of finding linear transceiver designs to maxMMSE) [8], [10] is another well-known criterion to improve
imise the WSC is known to be non-convex and is generaliffe shortcomings of ZF by incorporating noise power into the
difficult to solve. Existing works thus aim to obtain a locatransmit filter design. This idea has been generalised tdi-mul
optimum point. These works may be classified into twantenna cases in Regularised Block Diagonalization (RBD)
major frameworks. The first framework involves the joinf11] and Generalised MMSE Channel Inversion (GMI) [12]
design of transmit and receive filters using iterative athars. schemes. Maximising the signal-to-leakage-plus-nois® ra
(SLNR) [13] is also an attractive criterion, providing anea
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major issue inhibiting this approach occurs when users have N, yl $
multiple antennas and the number of transmission layers is [=] u
P y E e S A

n,

not fully utilised, i.e. when the number of scheduled data Al ‘
streams is less than the number of receive antennas. In tﬁi‘s \ "

N A
. . . 2 Y2 ¥
case, there exists unused receiver subspaces which are @.Az.Wz— * . .
!. i . } A
exploited by the transmitter design. The system performanc : Ha[ ™ °""_’ 52
can thus be improved by an efficient use of these receiver | \

subspaces. One simple approach is to utilise only a subset | 1 |
of receive antennas [14], [15] which, however, may lead té& —>—>J N 9
Hipoled-bis

[User2 |

an ineffective exploitation of the available receive dsibr.
Another approach involves an estimation of effective nesrei
subspaces and uses them to refine the transmit beamforming | Srlmiencopo s 7 (RA

[Userk]

. . 3 forthgcalculauonof(he

vectors which are later used to update the effective receive f i modified leakage power
. . . . . Reference point 1 (RP1) :
subspaces in an iterative manner. Examples of this include Jorthe alulation o the
. . . esired signal power and the
the Coordinated Tx-Rx BD [9], Iterative nullspace-dirette conventional leakage power

SVD (iNuSVD) [16], and Iterative RBD (IRBD) [11]. These

techniques deploy the left singular vectors of the equivalefig- 1. Block diagram of a downlink MU-MIMO system.

channel, obtained by the product of the transmit filter ared th

channel matrix, as an estimation of the receiver filter. Arot . .

concern regarding WSC maximisation is how to choose "Us norm.(-)* denotes the maximum value between the input

proper precoding design criterion in order to meet the ddsird’gument and zeraliag(-), blkdiag{-} represent an diagonal

objective. matrix and a blqck dmg_onal matrlx, respectivelyy, 0,/ N
This paper adopts the SLNR criterion as it exhibits a pélenote an identity matrix of sizé/ x M and a zero matrix

tential alternative to the SINR maximisation. A modified defof Size M x N, respectively.

inition of SLNR is proposed in order to incorporate effeetiv

receiver subspaces into the precoding design criteriapftie II. SYSTEM MODEL

posed scheme inherits the simple transceiver structuces fr

the conventional SLNR scheme. Consequently, the problem o

maximising WSC can be simplified to the power allocation an . X . T
g P P users, each witlv, receive antennas as depicted in Fig. 1.

substream selection problems, which are separately tréate ; o N M
this paper. On one hand, the problem of finding a local optim-ghe userk’s channel matrix is denoted a8, € C™+*". The

power allocation is formulated as a nonlinear optimisatio%‘i’msm'tted signal at the BS can be given by= WAs =

— T T 1T
problem and is solved using the Lagrange Multiplier Metho k“ﬂ’“?’f[s’“' Trt]e vecgors = [%1(52 ) "a’zK] ge”‘fels the
[17]. Similar to the joint transceiver approach, the saloti overil “a;av\(fec Or’WW ey, ti ¢ an i {Skskd} - th
of power allocation leads to an implicit user and substrea)% = [W1, Wy, ..., Wg] is the transmit precoding matrix,

M X Ny, i i
selection as users with zero power are prohibited from dat: .(tare WkAE'Cth * and leaccj:.h CO'“T.” Ids fr_worglahseg 0
transmission. On the other hand, a suboptimal algorithm fi ZPI .norm. IS the power loading ma‘rlx efined by =
ﬁizag{Al,Ag,...,AK} with A, = diag(a;) and a; =

substream selection is proposed based on the assumptio % ..
prop P . arn,)T € RN%, such that the total transmission

equal power per substream (EPS). It is shown that the propos&k? #2; -

7 B " o i
algorithms outperform the receive antenna selection seheHP\_NerP ? Xf:P’“ N ;T;(TAS’Ak,{)'dThe adﬁhtlve Gaussian
and the performance is comparable to the joint transcei\}g?'dse vector for eatc.Eus ,Hen_o eQI as, dgs Z€r10 m((ajatn
approach, despite requiring simpler receiver structuresd- and covariance matri®{nn; } = o;ly,, and is assumed to

dition, the proposed suboptimal substream selection msebe statistically independent to data and noise from therothe

as a highly reliable initial condition for the proposed pmweusers. The received signal at ugecan be given by

allocation scheme, which can bring further improvement to

TConsider a single-cell single-carrier downlink MU-MIMO
stem withM transmit antennas at the base station (BS) and

the system performance. yi = HiWiAps, +Hy ) WAjs; +n. (1)
The paper is organised as follows. Section Il describes the i#k
general model of MU-MIMO systems. In Section Ill, the At yser &, the receive processing can be decomposed as

conventional SLNR scheme is briefly reviewed, and the mogy, _ p, G, whereG,, € CN+*Nx is the receive filter nor-
ified definition of SLNR and the proposed iterative precodingajised such that each row has unity norm nde RVx* N

scheme are presented. The problem of finding a local optimgl; giagonal matrix, wherein the diagonal entries repretben
power allocation and its convergence properties as well @§rms of the associated rows @j.. AssumingGj, and D;,
the proposed suboptimal substream selection are eladdrate;re known by the receiver, the received signal at the output o

Section 1V. Section V studies the complexity of the proposele receive filtery,,, and the estimated data sequerige,can
algorithms and their comparisons with existing algorithms,s \ritten as

Simulation results are presented in Section VI and, finally,

a concise summary is given in Section VII. Vi = GkYk, (2)
Notation: Tr(-), ()T, (-)¥ denote the trace, transpose and

Hermitian operations, respectivell|| » represents the Frobe- 8t = Rixyr = Dy¥s. 3)
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Ill. I TERATIVE SLNR PRECODING SCHEME
A. The conventional definition of SLNR

In conventional SLNR precoding scheme [13], the SLNR isS

conventional scheme, assuming EPS, the SLNR in (8) can be
rewritten as

. LNR
defined as - » T W H, W] o
SLNR, T [WE (30, HY GH Gy H; + 51ar ) Wi
E| WA sk 4) Py Tr [WIHEH W, |
>0 EIH; Wi Agsil[F + Ellne 7 = —Twr e e T
Tr [H, W A A W/H]] - [WE (S e (Pl )Gy + o ) Wil
> T [HW A AFWIHE] 1 Tr (071, ) _ P, Tr [Wi H He W] 1)

Tr [ng (Z#k HAGHAA;G,H, + agIM) Wk]
Notice that the leakage power in (4)-(5) is calculated at the

receive antenna output before the receive filter (RP1 inBig. Note that (9) resembles the conventional definition of SLNR
By assuming equal power for each data substream (denotéjl with a modification of the equivalent leakage channel to
asP,), i.e. A, = /P,Iy,, the SLNR in (5) can be rewritten userj defined byG;H;. It is also noticed that although the
as definition in (9) considers the receive beamforming vectors
in the computation of leakage power, each leakage stream
contributes with equal significance regardless of its power
allocation. This has been made explicit in (10) and (11),r&he
A; = \/P,Iy, according to the assumption of equal power. In

As proposed in [13], the objective of precoding design is @€neral cases, to take into account different prioritiesaufh

maximise the above SLNR metric. This leads to the followint§akage streams in the precoding design, a modified definitio
optimisation problem: of SLNR is proposed by the inspection of (11) as given by

Tr [WH (3, 0 HIHL + 51 ) W

SLNR;, = . (6)

Tr [WHHIH, W, |

szt =arg —
Tr [Wf (Zj?ék HfHJ + O'I%IM) Wk}

SLNRy, MSLNR; =

max
W, €CM X Ny,

s.t. Tr(WW,) = N,

(7) . (12)

In this case, the equivalent leakage channel (ELC) to a user

where SLNR, is defined as in (6). j is defined as

H; = Q;G,H; (13)
B. A Modified Definition of SLNR ) ) o ) )
. . _ where(2; is a diagonal matrix, in which each diagonal entry

.As noted earlier, the conventlonal_deflnltlon of SLNR CONw dicates a weighting factor (priority) of each leakagean
siders the leakage power at the receive antenna output tRP%\ésociated to the usgr
Fig. 1). In this case, the precoding algorithm tries to masen It can be seen that the weight matfi; controls the amount
the received signal power of the_ intended user,_while keppig; leakage power to each substream of useFhe precoding
the sum of leakage power received at the receive antennas,afyihm pays little attention to a substream with a small
the other users as low as possible. However, it is seen that\}\'/'bighting factor, allowing other substreams to gain besefit

leakage signals are later steered by the r_eceive beamf@rmbrg/ adjusting their beamforming vectors although causirgg hi
vectors. As a result, parts of the leakage signals may bemu"nterference to this substream, while it gives high prioti

out by the receive filters. This motivates a new approach 10 bstream with a high weight, e.g. other substreams may be
consider the leakage power at the receive filters’ outpuP2(R

D ) . P sacrificed to guarantee low interference to this substré&m.
in Fig. 1), which potentially offers a better approximation  yce that this effect conforms to the water-filling (WF) power
leakage powers. Thus, a modified definition of SLNR cal

N Bfiocation strategy for sum-capacity maximisation. Thuss

given by seen that, by setting weights equal to allocated powers i.e.
Q; = A;, the proposed scheme can facilitate WF strategies.
SLNR, — E|H W, Ays;|% (8 HenceQ; = A, is assumed throughout this paper.

Notice that the modified definition (12) also supports user
substream selection, i.e. when some data substreams are

Notice that the above definition only alters the referen@dlocated zero power (some diagonal entriesAof become
point for the calculation of leakage powers (the denominatozero). In this case, the equivalent leakage channel (13aotmn
while the desired signal power (the nominator) is consid@te zero row vectors, resulting in zero leakage power in the
the original reference point (RP1). By doing so, the preegdi computation of modified SLNR (12). In other words, unused
and receive matrices can be obtained in the same way asriseeiver subspaces due to unallocated data substreams do
conventional SLNR scheme. This avoids a precision loss mot contribute to any signal leakage. They can, therefoee, b
the computation of the precoding matiW, as a result of exploited by the precoding algorithm to improve its trartsmi
using an estimation of the receive filt€¥;. Similar to the beamforming vectors.

> ik Bl G H WL Aysi |5 + Elng |7
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C. lterative Algorithms and Choices of Receive Filter Similar to the conventional SLNR scheme [13], the proposed

The precoding designs for the modified SLNR criterion cad®L-NR sch_eme_ can be m0d|f|ed to take Into account the
be obtained by replacing the objective function in (7) wie t _channel estimation errors in the presence of_ imperfectraian
modified definition (12). Similar to the conventional schemdnformation. In this case, the channel matrix of each user
the optimal precoding matrix can be given by [13]: can be modelled as [18], [19]

o 2 U
WP =Ty, [®4; 001N, )x N, | (14) Hy = Hy, + By (16)

i _ whereH;, H), , andE;, represent the actual channel matrix,
where the columns off), € CM> ¥ defines the generalisedihe estimated channel matrix and the estimation error matri
eigenspace of the pai{HkHHk-, (Z#k HIH; + 071y respectively. Each elements & are assumed to be i.i.d.
and ®;, € RV+*Nx js a diagonal matrix, the diagonal entriegero-mean complex Gaussian variables with variant@nd
are nonzero and are chosen to satisfy the power constrdfg spatially uncorrelated. In addition, it is assumed Hgt
Tr (wak) = N, and each column is normalised to unity@nd E; are independent and are uncorrelated to the data and
norm. noise vectors. Assuming? is known to the BS, the modified

Notice that the computation of the precoding mafi#%, SLNR definition (12) can be re-evaluated as
depends on the equivalent leakage charielof the other
users. This requirea priori knowledge of the receive filters, MSLNRs
which would technically be known after the precoding matrix _ B {Tr [W{HH,W,] /H; } 17)
is obtained. To this end, iterative algorithms are normaigd E {Tr [Wf (Zj;ék HIH, + U%I]W) ij| /{H}}}
to cope with this situation as also seen in [9], [11], [16]u$h
an iterative SLNR (iSLNRjscheme based on the modifiedynere the expectation is conditional on the estimated adlann
SLNR definition is prpposgd as sqmma_nsed in Algorithm }natrices of the uset, Hj, and of the other usergH}.
Notice that the definition in (13) is valid for any types OfAssuming that2,; and G, are known and constant during the

receive filter. In this paper, for simplicity, matched filgMF)  eyajuation of the modified SLNR values, it can be shown in
are assumed as in the conventional scheme. Hence, theaecgiypendix A that (17) can be rewritten as

filter for any user; can be given by

don MSLNRx
G; = ¥,WiH! (15) Tr [WE (B HG, + NioPTar ) Wi a8)
_ B 18
Tr [ng (E#k HPH, + (3,4, 002 + UE)IM) Wk]

where®; € RYi*j js a diagonal matrix, each diagonal entry

is chosen so that each row is normalised to unity norm. NoteTth ﬁ; — 0,G,H, and, = Tr [GfﬂfQjGﬂ. It follows

;ir:f:rsVs\ltiﬁdgEOfJ?:uleSdL:\rllRaig?f:3V\évrllt<h other types of recelqéat the proposed algorithms in previous sections remain
P ' applicable with the objective function in (7) being repldce
with (18).

Algorithm 1 Iterative SLNR Precoding Scheme (iSLNR)

1: Initialise: Define a user orderiny (e.g. ascending order)
and the number of iteratiom{,.,.). Set the power loading V. WEIGHTED SuM CAPACITY MAXIMISATION USING

vectors{a;,} and initialise ELC, e.g{H}} + {Hj}. THE iSLNR PRECODING SCHEME
2: procedure iSLNR({Hy}, {ar}, U, niter) In this section, the proposed iSLNR scheme is applied
3 for i < 1,njer do to WSC maximisation problems, assuming perfect channel
4 for j «1,K do estimation.
5: kE—U(j) > Get user indices
6: computeWy, using (14)
7 updateH,, using (13) and (15) A. Power Allocation to Maximise WSC
8 end for Given the set of precoding matricé3V,.} and letpy, =
9:  end for a?,, wherek = 1, ..., K andb = 1, ..., Nj, denote the allocated
10: end procedure power to theb!” stream of the!” user, the WSC maximisation
problems can be formulated as:
D. iSLNR with imperfect channel information arg  max  Cus({pro}) (19)
In previous subsections, it is assumed that the full channel {Pro}, Vk,Vb
state information (CSI) is available at the BS. In practiomy- subjectto > > pu, < P
ever, the CSl is obtained either by reverse channel estmati E b
(e.g. using uplink-downlink reciprocity) in time-divisiodu- and prb >0

plexing (TDD) or by quantised feedback in frequency-dvisi
duplexing (FDD) systems. This leads to channel estimatiovhere the weighted sum capacity associated to the (real and
errors causing the degradation of the system performanpesitive) users’ weights;, can be written as
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are obtained, the values of;, and ¢;;, can be updated.
This procedure can be re-iterated until predefined converye

K
Cps = Zo‘k log,detIny + Hy WP W HH ) (20) criteria are satisfied. Notice that the above iterative gdoce

k=1 can be considered asgeneralisation of the modified iterative
water-filling (GIWF)in [20] from the case of single-antenna
with Zy = o3Iy, + Hy (E];&k WijWf) H;' andP). = receivers to multi-antenna receivers.
A AT = diag (akp . aka) It is worth noting that (21)-(23) can be computed for any

Using the Lagrange Multiplier method [17], it is showrset of precoding matice$W;} with multiple data streams
in Appendix B that a local optimal solution of (19) can beegardless of precoding design criteria. In the case of BD, f

obtained as instance, it can be shown thigf, becomes zero & ;wy;, = 0
due to the zero-forcing constrainfy, can also be simplified
- Qg 1 1) |Hjwys || /o2, which is independent to power allocation
v—Agp+lee Vb of the other streams. Then, the above algorithm reducesto th
where conventional water-filling [9], [21] as a result.

This paper focuses on the power allocation strategy for
the modified SLNR precoding (12). Notice that this scheme

-1
_ HyyH 2 X D x7H y1H
o = WipH (J’“INk JerkaPkaka’f) requires the knowledge of power allocation (due to the as-

X Hpwis, (22) sumption of2; = A;) in the calculation of the precoding
trp = Z ajwkHbe (UJ2.1NJ_ + HjWPWHHf)*l matrix (14). Thus, thg precoding design and power allocatio '
2k can be integrated into the same process as proposed in
(HijPvWHHf) Algorithm 2. Since the WSC maximisation problem is non-

. convex, the performance of the algorithm largely depends on
X (UJQ.INJ_ +HjV~ij’jVVfo) H,wy, (23) the initial condition. This paper assumes EPS as the initial
power allocation, which performs generally well as can be
with the Lagrange multipliersy > 0 and Ay, > 0; Seen in Section VI-C. In addition, a better initial conditio
Vk,Vb satisfying the complementary slackness condition§an be obtained by a user and substream selection algorithm,
(Z&Zb pro — P) = 0 and Apppry = 0, respectively.-Wy, potentially with low complexity implementation. This erneb
and W, denote submatrices oW obtained by removing & systematic approach to finding a reliable initial conditio
columns and/or rows associated to th# substream of Which is one of the main advantages compared to a joint
user k and all substreams of userfrom W, respectively. transceiver design scheme.
P, and P are also defined in a similar way arld =
blkdmg{Pl, ,Px}. Notice that (22) and (23) are quadratuf\'gor'thm 2 iSLNR with GIWF (version 1)
forms associated to a positive definite matrix and a positive- |nijtialise: Assume EPS and comquk , Vk based on
semi-definite matrix, respectively, thug, > 0 andty, > 0. the conventional SLNR scheme.
From (21), it can be seen that an optimal power allocation ; +
of a data streanp,, depends on power allocations of the . repeat
others through the termsg,;, and¢;,. Thus, solving (21)-(23) 3. i—i+1
in general is a complicated task. However, similar techesqu 4. Vk, Vb : computep using (24)
to those |n_[_20] can b_e applied by iteratively solving the. vk - updateH(Z) using (13) and (15)
above conditions. In this casey; and ¢y, are assumed to vk - updateW(i) using (14)
be fixed in each iteration and (21) can be recognised as ;1 until k
modified water- fll_llng problem. By solving the complemerytar & (1) Max |terat|ons exceedOR
slackness conditions, the solution to (21) can be written as o (2 ICwé _ C i—1) | <q

- (= Ly 24
Pro =\ 1 tes Vb (24) B Discussion on Convergence Property of iISLNR GIWF

As also mentioned in [20], the convergence property of
where the value of is determined from the power constraint:iterative water-filling is rather hard to establish with Iful
K Ny N generality. However, simulation results suggest that Atgm
ZZ( 1 ) _p (25) 2 usually converges whep N, < M. For > N, > M,
s \Vt thy Vkb oscillation between different power allocation states lbasn
observed occasionally. Although a mathematical proof is no
As «ai, Yk and tg, are nonnegative, (25) is a mono-given in this paper, it can be shown by simulation (Section
tonic function of v and can be efficiently solved by a one¥VI-C) that the oscillation issue can be solved by introdgcin
dimensional search (e.g. bisection). Note that when ndipesi an update step size (confidence weightwhere0 < n < 1,
real number satisfies (25), indicating tha}, >, pry < P, v to slow down the update of power allocation as given in
becomes zero in conformity with the complementary slackgorithm 3 (line 8). A normal update (line 6) may be
ness. Once the allocated power for all users’ data streapesformed in the firsfl" iterations before the weighting takes
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effect, to avoid the slow convergence. Notice that Alganth Among substreams for a particular user, the dominant
3 reduces to Algorithm 2 when is set tol. In addition, an eigenmode is known to have highest effective channel gain
extra exit condition may be added to detect the oscillation. [23]. To reduce complexity of the algorithm, only the larges
this case, the value of the objective function swings arcandeigenmode from each user may be included in the initial
certain average value. By comparing the average WSC of ttendidate list D). Only when the dominant eigenmode of a
current iteration, i.eC\) = # Zf}:ol CSs™ (W denotes user is selected can the next strongest substream of this use
an Averaging Window Size), with the previous iteration, thparticipate in the candidate selection. This reduces theben
algorithm can be terminated if a sufficiently small change &f candidate search to the orderféf compared to the order of
observed. The conditio®) > C%; YV is also checked to N =Y, Ny for the algorithm in [15], as discussed in Section
ensure that the algorithm exits when it swings to the bett¥ Furthermore, the proposed algorithm can be viewed as a

solution. Transmission Rank Selection (TR&hereby the output of the
algorithm indicates the number of eigenmodes (in descegndin
Algorithm 3 iSLNR with GIWF (version 2) order) selected for each user.
1: Initialise: Assume EPS and comqu,(CO), Yk based on i _ :
the conventional SLNR scheme. Algorithm 4 Transmission Rank Selection (TRS)
i+0 1: Initialise:
2: repeat S8 ,Chas <0 > Initialise the selection set
3 i—i+1 D <« the set of indices associated to dominant eigenmodes
4 vk, Vb : computepy, using (24) B < min(M, Y Ny) > Number of Spatial Layers
5: if i <T then >eg.T =5 {Hy} + {Hy} > Initialise ELC
6: Vk, Vb : updatep’) < ppp 2: for i 1, B do
7 else 3 for all d € D do
8 Vk, Vb : Updatepz(fb) —n-pw+(1—n) .p](:b*) 4 U + Revers€[S, d]) > Sort users in reverse order
9 end if 5: set{ay} © Assuming EPS for active substreams
10:  Vk: updateA\” using (13) and (15) 6 (A} {1}
11 Vk: updateW,(f) using (14) 7: [{W,(cd)}7 {H;d)}] > See Algorithm 1
12: unti  iSUNR ({H("}, (), U, miver
13: (1) Max. iterations exceedOR _ )
u @cY-ciV<e, OR 8 computeCus
@) _ G- (@) 5 A=) o:  end for
15 (3)[Cav — Cav | < e2 andCus > Cuss 10: d < argmax Cf,f? > Choose the best substream

11: if C,S,i) > Chas then

C. Suboptimal Transmission Rank Selection Algorithm 12 O e WD
This subsection provides an alternative method for solys. (W} « {Wl(f)}, (H)} + {ﬂ;d)}
ing the WSC problem. Unlike the power allocation strategy,. S« [S,d] ’
where the user and substream selection is obtained intylicit, 5. D « replacingd with the subsequent eigenmode
an explicit data substream selection is proposed under ER$  g|se
assumption. The algorithm is based on a sequential search gl break

gorithm, similar to [22], [15]. The pseudo code of the pragmbs 1.  end if
algorithm is summarised in Algorithm 4. The principle is t0,9. end for

choose substreams in order, starting from a substream hgth t
maximum weighted capacity. Then, a substream providing the

best WSC with the previously selected ones is added until no V. COMPLEXITY ANALYSIS
further improvement is attained. The oufer loop involves ] . ) )
the successive addition of substreams, while the iforeioop !N this section, the computational complexity of the pro-

is concerned with the search for the best candidate substreR0S€d algorithms is approximated in terms of the number
Line 7 in the inner loop represents the iSLNR precoding desi§f floating point operations (flops) [24]. It is, in general,
under the EPS assumption, as described in Section I1I{@ther tedious and complicated to calculate the exact numbe
Notice that the equivalent leakage channels are updatéu:at@f Operations for various algorithms. Hence, for compariso
end of each outer loop, providing a good initial condition foPUrPoses and simplicity, the complexity is estimated fa& th
subsequent inner loops. The sufficient number for innep-lo§2se of real matrices. Although this may not lead the exact
iterations ., tends to be reduced as a result. In additiofomputational complexity, it suffices to illustrate the deg
unlike [22], [15], the performance of the proposed algarith of complexny (_)f each a]gonthm. In this case, the complexit
depends on the user ordering, especially whep, is small. of typical matrix operations can be assumed as follows [24],
It is also proposed to update the precoding matrices in sevel25]:

selection order, which appears to further lower the reguire « Multiplication of anm x n matrix and am x p matrix:
number of inner-loop iterations as observed from expertaien 2mnp.

simulations. « Inversion of amm x m matrix: m?.
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TABLE |
AN APPROXIMATION OF COMPUTATIONAL COMPLEXITY OF THE PROPOSED AND EXISTING ALGORITHMS

Algorithm iSLNR iISLNR GIWF iSLNR TRS

Complexity || Knjter(2nM? +2BM? + 14M3) K?(4nM?) + BEnier(2B*M? + nBM? + TBM?)
(L —1)Kn(2BM? + 2nM? + 4n? M + n?3)

Algorithm Conventional SLNR [13] WSRBF-WMMSE [7] URASL1 [15]

Complexity K(2nKM? + 14M3) LK2?(2n?M + 2n3) BEn(2B?M? +nBM? + 7TBM?)

« Generalised eigenvalue decomposition (GED) of a pair &f. Estimated complexity of iISLNR TRS (Algorithm 4)
anm x m symmetric matrix and am x m symmetric

positive definite matrix14m>. In Algorithm 4, the outer loop involves a successive incre-

] ] ment of substreams, which requires at mBsiterations. The
Consider the case of equal number of receive antennas pgfar |oop involves the precoding designs and the searches
user, denoted as, with a high number of users, i.e. the totat,, the pest eigenmode from the candidate list of ske
number of receive antennas = >, Ny = nK > M. Let i erefore requiring approximatelini.. iterations (including
K < K denote the number of users selected for data trans- jterations for iISLNR precoding loops). Thus, the overall

missio_n, which i§ assumed to be in the order of the n“mb&Smplexity is proportional ta3Kn;;., as estimated in Table
of available spatial layers3 = min(M, N). Based on these |

assumptions, the computational complexity of the proposed
algorithms can be estimated in the following subsections.

D. Comparison with existing algorithms

A. Estimated complexity of iISLNR (Algorithm 1) The estimated complexity of an antenna selection method
. ~ (URAS1) [15] and a joint transceiver design based on
For the conventional SLNR scheme, the computation @f\vsE (WSRBF-WMMSE) [7] are also given in Table |
each user's precoding matrix involves matrix multiplicas o comparison purposes. URAS1 requires to search over the
(for Hi?Hk and)_; 4y Hijl? the matrix addition withr?I, _entire unselected antennas during the inner loop, regultin
is omitted as low complexity order) and one GED, whick, ihe overall complexity proportional tBN = BKn,
requires the complexity oD (2nKM?) and O(14M?), re- compared taB K n;., for the case of iSLNR TRS. Therefore,
spectively. For iSLNR, on one hand, the complexity is slight o advantage of iISLNR TRS over URAS1 depends on the
increased in the computation of equivalent leakage chanpgf, n/niter. Thus, assuming a fixed.,, the complexity of
(ELC) (13), e.g. in the order 00(2”M2) < O(2nKM?). i NR TRS can be significantly reduced compared to URAS1
On the other hand, ELC may contain several zero row Vegy,sers are equipped with a large number of receive antennas
tors, reducing the complexity of the matrix multiplicat®n ,, 55 5 result of the reduced candidate search from the entire
to O(_2”M_2 + QBMZ)- Thus, it may be concluded thatynienna list in URASL to the dominant eigenmode list in
each iteration of iSLNR requires approximately a comp&abls| NR TRS.
complexity order to that of the conventional SLNR scheme. The complexity of iSLNR GIWF in the first iteration (the

Th!s number, howevt—;r, ingreases with the number of itenati?erm K2(4nM?2)) increases quadratically with the number
Of ISLNR, nirer, as given in Table I. of user K, similar to the case of WSRBF-WMMSE (i.e.
K?(2n?M + 2n3)). However, due to zero allocated-power

. . _ ) in most substreams, the complexity of iISLNR GIWF greatly
B. Estimated complexity of iISLNR GIWF (Algorithm 2, 3) reduces to a linear growth, i.&n(2BM? +2n M2 +4n>M +

Compared to Algorithm 1, Algorithm 2 involves addi-n®), in subsequent loops. Furthermore, it is seen that the
tional tasks in the computation ofi, and ¢, and a bi- guadratic complexity order of iISLNR GIWF can be improved
section for water-filling. It can be seen that the complexitj @ good initial power allocation is given, e.g. obtained by
of the former dominates the latter as it involves severB?LNR TRS, for which the complexity linearly increases with
matrix multiplications and inversions. Thus, the additibn /- In this case, the overall complexity of iISLNR TRS+GIWF
complexity order can be estimated from the complexity &@n be approximated as a linear functionsof
the calculation of~., and ty,. At the initial stage, all
substreams are assigned non-zero powers, resulting in the
estimated overall complexity of (K?(4nM?)). In subse- VI. SIMULATION RESULTS
quent iterations, however, the complexity reduces to appro
imately O (Kn(2BM? +2nM? + 4n®M +n?)) as several The performance of the proposed algorithms is evaluated
substreams are given zero powers. Thus, denafings the in this section. For all simulations, spatially uncorretht
number loops required for the algorithm to converge, tHdIMO channels generated as i.i.d. Gaussian random vasable
complexity of Algorithm 2 can be estimated as given in TableN (0,1) and equal noise variance for all receivers; (=
. Note that Algorithm 3 differs from Algorithm 2 only in o, Vk) are assumed. The SNR is defined Bgs>. The

the power-updating step, thus it has approximately the sathéesholdse;, e; and the maximum number of iterations are
complexity order as Algorithm 2. set to 0.001, 0.0001 and 100, respectively, in all simutetio
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Fig. 2. Ergodic sum capacity for Dominant Eigenmode Transworissiith  Fig. 4. BER performance of iSLNR-MFnf:.,» = 5) compared to cSLNR-

M =4; N, =2, Vk; K =4. MF with imperfect channel estimation2 = 0.1, and M = 4; Ny, = 2, Vk;
K =2.
10° , . 10"
—e— cSLNR-MF (EPS)(SS, Err. Var. unknown
=0= ' cSLNR-MF (EPS)(SS, Err. Var. known)
—©— iSLNR-MF (EPS)(SS, Err. Var. unknown
10 E : : E 10| = = =iSLNR-MF (EPS)(SS, Err. Var. known)
_ \‘\A; A n A =~
o i &
& 107} 7 @ 10°
@ o
g &
5 —d— cSLNR-MF (EPS) | s .,
i 10° ISLNR-MF (EPS), n, =1 : 3 @ 10
2 —— ISLNR-MF (EPS), n, =2 @
iSLNR-MF (EPS), n__ =3
4 iter 10°
10 ; _ _ : ; |
- =0~ ISLNR-MF (EPS), n, =4 . :
—+— ISLNR-MF (EPS), n, =5 \ :
= = =iSLNR-MF (EPS), n, =11 o
10° iter ) i 10 = 1 0
-10 0 10 20 30 40 10 10 10
SNR (dB)

Fig. 3. Average uncoded BER (QPSK modulation) for Dominanekigode Fig. 5. BER performance of iSLNR-MF vs. estimation error vace at
Transmission, withM = 4; Ny, = 2, Vk; K = 4. SNR = 15 dB, withM = 4; Ny =2, Vk; K = 2.

A iSLNR with EPS B. iSLNR with EPS and imperfect channel estimation

The performance of iISLNR-MF EPS with imperfect channel

This subsection examines the proposed iSLNR precodiegtimation is given in Fig. 4. Compared to the case of perfect
scheme with matched filters (ISLNR-MF), assuming the DonEGSl, error floors can be observed in the BER performance at
inant Eigenmode Transmission (only the strongest eigeemdugh SNR due to CSI estimation errors. It can also be seen
for each user is transmitted) and equal power allocation ftirat iISLNR-MF leads to identical performace as cSLNR-MF
each active substream. Compared to the conventional SLNRthe multi-stream (MS) case (no unused receiver subspaces
scheme (cSLNR-MF), the iISLNR-MF can efficiently exploias a result of full-eigenmode transmission). In contras, t
the receiver subspaces by taking into account the receieglvantage of iISLNR-MF over cSLNR-MF can again be ob-
structures in the transmit filter design. This leads to theerved in the single-stream (SS) case. In addition, it icedt
improvement in the ergodic sum capacity and the averatimt the improvement of iSLNR-MF is mainly attributed to
uncoded BER as depicted in Fig. 2 and Fig. 3, respectivetiie exploitation of unused receiver subspaces; the kngeled
Note that the performance of iISLNR-MF improves as thef estimation error variance marginally contributes to the
number of iterationsr(;.,.) increases due to the higher aceverall improvement. Compared to cSLNR-MF, the statitica
curacy of the receiver subspaces estimation. Nevertheldgsowledge of estimation errors (i.e. error variance) at the
no significant gain can be obtained after a sufficient highansmitter has less influence to the performance of iISLNR-
number of iterations. It is also observed that an optim8F. Therefore, iISLNR-MF tends to be more robust to the
number of iterations seems to increase with the operatinjannel estimation errors than the cSLNR-MF scheme.
SNR. For practical purposes, 3-5 iterations are recomntende The performance with various estimation errors is also
as suggested by the simulation results. plotted in Fig 5. The performance gap between iISLNR-MF
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Fig. 6. Cumulative distribution function of iISLNR-MF GIWF fdt0,000 Fig. 7. Examples of convergence properties of iSLNR-MF GIWo(tases
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in Fig. 9Ya). This allows more power for each substream
~ to overcome noise. Notice that the selected substreams are
and cSLNR-MF can be clearly seen for low error variancgsten the dominant eigenmodes as high channel gain can be

while it becom_es smaller as error variance increases. Fyr vg, ected, and the power is almost equally distributed among
high error variance (e.g. about the same order as Cha”ﬂfé)selected substreams.

gain), no significant gain of iISLNR-MF can be observed as no g, S™Nj, > M, iSLNR-MF GIWF exhibits both user and
information about unused receiver subspaces can be selialpstream selection as depicted in Figh)9 The pair (k, b)

extracted from the available channel knowledge. denotes thé!" substream of thé!" user and substreams are
sorted from the largest to the smallest eigenvalues. Notice
C. iISLNR with GIWF that the number of selected data streams respects the number

This subsection evaluates the performance of iSLNR wifff available spatial layers (i.e. four, in this simulatioaid
the proposed power allocation a|gorithm_ Firsﬂy, the aav it tends to be fewer at low SNR as discussed earlier. The
gence property for the case ENk > M is presented in ergOdiC sum Capacity is also given in Flg 10. It is seen
Fig. 6(a)-(b). At high SNR, it is seen that iISLNR-MF GIWF1 that iISLNR-MF GIWF attains significant gain compared with
(77 = 1) usua”y converges in most cases (more than 9950/%,7,6 conventional scheme (CSLNR-MF GlWF) as the modified
while iISLNR-MF GIWF2 ¢ = 0.5, 0.1) converges in all scheme efficiently considers the receiver subspaces anerpow
cases. In addition, both algorithms always converge at Iglocations in the precoding design. In addition, cSLNR-MF
SNR, with slow convergence for= 0.1 due to small updating GIWF seems to suffer from high fluctuations during iteration
steps. This suggests that choosing < 1 < 0.9 tends to Process, causing poor selection outcomes especially &t hig
be a reasonable setting. It is also noticed in Fig:)gd) SNR.
that the proposed algorithms converge within 10 iterations
in most cases, with a slightly faster rate at low SNR thad- ISLNR-MF with TRS
that at high SNR. This demonstrates a good convergencéAs noted in Section IV-C, the performance of iSLNR-MF
property of the proposed algorithms. For high SNR, a typicalith TRS depends on the number of inner-loop iteratieps.,
converged case can be presenteddhynnel Realisation in  as can be seen from Fig. 10. However, a sufficient number
Fig. 7, whereby the algorithms converge after a few iterstio of iterations can be fewer than that of required by iSLNR-
In this case, iISLNR-MF GIWF1 and iSLNR-MF GIWF2MF EPS due to the update of equivalent leakage channels
have almost identical performance. In contrast, an osicifia at the end of each outer loop. In Fig. 10, the majority of
may occasionally occur for iISLNR-MF GIWF1 as can b@otential capacity gain can be achieved with only 2 iteratjo
represented byChannel Realisation .2Clearly, iSLNR-MF compared to approximately 4 iterations required by iSLNR-
GIWF2 can avoid the oscillation issue by incorporating thBIF EPS. In addition, the algorithm only needs to search over
update step size), which is set to 0.5 in this simulation. at mostB (the number of available spatial layers) outer loops.
Consequently, iISLNR-MF GIWF2 is assumed in subsequeTihis strongly suggests that iISLNR-MF TRS yields an efficient
simulations. low complexity algorithm. Furthermore, iISLNR-MF TRS can

Secondly, the sum capacity is evaluated for the case wd complemented by GIWF (power allocation) which can
> Nr < M in Fig. 8. In this case, iISLNR-MF GIWF servesbring further improvement, although only slight gain can be
as a typical power allocation strategy as no user selectionobserved as almost equally distributed power can be expecte
required. An improvement over cSLNR-MF can clearly bat a local optimal point.
seen at low SNR, where the algorithm tends to allocate fewerThe proposed methods achieve a significant gain compared
substreams than the available spatial layers as also shderran antenna selection scheme (URAS1 EPS) in [15] and
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=% ‘ T r—" to maximise WSC. Both proposed methods can potentially be
< 6of I User 1, subtream 2 combined, which could bring further improvement, subjdcte
E=1 U 2, 1t 1 . .
S sl B Uscr 2, subtream 2 to the complexity trade-off. Numerical results show that th
T proposed algorithms outperform the conventional schende an
20 . .
3 the antenna selection approach. They also achieve a com-
0

parable performance to a joint transceiver design approach
despite using simple receive matched filters. The proposed

0 15
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40 ‘ ) schemes, therefore, provide potential alternatives factpral
g )| jmplementations.
5 307 . 22 P
g C_ 16y
2 20f . 3.2)
3 10] Egjg APPENDIXA
z ,
& G DERIVATION OF THE MODIFIED SLNRWITH IMPERFECT
0
0 15 30 I 5.2 CS|
SNR (dB)

Fig. 9. Power allocation of iSLNR-MF GIWF for a randomly sekstt By substituting (16) into (17), it can be shown that
channel realisation at SNR = 0, 15 and 30 dB, with= 4; N, = 2, Vk;

and(a) K =2, (b) K =5.
MSLNR,

attain comparable performance to a joint transceiver desig Tr [WE(HLH ;cJFE{EkHEk})Wk]
(WSRBF-WMMSE with transmit matched filter [TXMF] ini- — H o H T Hp 2
tialisation) in [7], albeit with a simpler receiver struotu Note m [W’“ (E#’“(Hj )+ B{E]'B,E;}) + U’“IM) Wk]
that the initialisation of the transmit filters remains asuis

for WSRBF-WMMSE [7], while iSLNR-MF GIWF seems to with B; = G#QYQ,;G;. Let b, be the(r,c)" element of
work reasonably well with EPS initialisation and can also bB; ande. denote the:'" column vector ofE;, it follows that
accompanied by iSLNR-MF TRS as a highly reliable initiathe (m, )" element ofE {Ef'B,E;} can be expressed as
condition.

(26)

VIl. CONCLUSIONS [E{EIB,E;}| =E{e/Bje,} (27)
This paper proposed an iterative transmit filter designdbase N; Nj
on a modified definition of SLNR. In contrast to the con- =3 breE{efpeen} (28)
ventional scheme, the proposed method considers the eeceiv r=1c=1
filters and power allocations into the transmit filter design Tr(B;)o? if m=n
order to efficiently use and estimate the receiver subspaices = e - (29)
. . . o 0 otherwise
user terminals. The resulting transceiver structures iregia-

ple and inherit the closed-form solutions from the convai

scheme. As a result, the WSC maximisation problems cafere (29) follows from the uncorrelated property Bf,
be simplified to power allocation and user/substream detecti.e. E{e},e.,} equal tos? if » = ¢ and m = n, and
problems. A power allocation algorithm was proposed in thggual to0 otherwise. Thusf {EB,E;} can be written as
paper, which implicitly integrates the user and substrealecs 0,021, with 6; = Tr(B;) = Tr (G QI Q;G;]. Similarly,
tion functionalities into its algorithm. An explicit usend sub- E{EkHEk} = N,o2I,. It can be easily seen that (18) is
stream selection was also proposed as an alternative methbthined from (26) accordingly.
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APPENDIXB
DERIVATIVE OF THE LAGRANGIAN (c; ) E)Ck U Prv Y2 (36)
The Lagrangian of the problem (19) can be written as s 1+ pryyes

(in this case, the base-2 logarithmic function in (19) can be
replaced by the natural logarithm without loss of generalitwhere~y, is defined as in (22). Similary, for usejs# k,
due to the monotonic property of logarithmic functions): ac,
c! )
< J Oprb

L= Zajln detC;) Zijs - P —Tr (C;lHjoPjWJHHij—l ( 5 ) ; )
pkb
= Tr (H;W,P,WI'H['Z;"! Wb Wi, C,Z;)
+Zz)‘jspjs (30) ( o (~Hywipwi ) ( 31] )
» =Tr(H,W,P,WIHZ " (—-Hwwi,H]) T; ")
~wi,H' T, "H,W,P,WI'H'Z 1Hjka~ (37)

with C; = Iy, +H,;W,P,WH!Z . Recall the following
relationships for Matrix derivatives with respect to a acal Substituting (36)-(37) into (33) leads to
[26]:

d _ 1 (d & =V = App + kb (38)
aIn detA =Tr {A (thﬂ , (31) b + ﬂ

wherety, is defined as in (23). It follows that (21) is obtained
EA_ A_1 d N A— (32) from (38)
dt dt
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