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Weighted Sum Capacity Maximisation using a Modified
Leakage-based Transmit Filter Design

Piya Patcharamaneepakorn, Angela Doufexi,Member, IEEE, and Simon Armour

Abstract—This paper proposes a linear transmit filter design to
maximise Weighted Sum Capacity (WSC) in multiuser Multiple-
Input Multiple-Output (MU-MIMO) systems. The proposed
scheme is based on a modified signal-to-leakage-plus-noise ratio
(SLNR) criterion, which integrates receiver structures and power
allocations into the precoder design and can efficiently exploit
unused receiver subspaces. Based on the proposed transmitter
design with receive matched filters, the WSC maximisation
problem can be simplified to power allocation and data stream
selection problems. A power allocation algorithm for finding
a local optimal solution is also proposed and is shown to be
obtained by the iteration of closed-form water-filling solutions.
Furthermore, a low-complexity user and substream selection is
proposed as an alternative solution to maximise WSC. Simulation
results show that the proposed algorithms outperform the con-
ventional scheme and achieve comparable performance to a joint
transceiver design, despite requiring simpler receiver structures.

Index Terms—Multiuser MIMO, linear precoding, signal-to-
leakage-plus-noise ratio (SLNR), iterative water-filling, user se-
lection.

I. I NTRODUCTION

M U-MIMO schemes have attracted considerable interest
in recent years due to the capability of multiplexing

multiple users’ data streams into the same frequency and time
resources and offering high system throughput. The theoretical
sum capacity of MU-MIMO is known to be achieved by
Dirty Paper Coding (DPC) [1]–[3]. In practice, however, the
implementations of DPC are generally difficult as they involve
high complexity in nonlinear coding/decoding of users’ data
streams. The search for practical transceiver designs to achieve
the capacity limit is, therefore, still ongoing. To this end,
linear precoding techniques are often of interest due to their
simplicity. In addition, the weighted sum capacity (WSC)
is normally adopted as an optimisation criterion since it
incorporates users’ priority and fairness into consideration [4].

The problem of finding linear transceiver designs to max-
imise the WSC is known to be non-convex and is generally
difficult to solve. Existing works thus aim to obtain a local
optimum point. These works may be classified into two
major frameworks. The first framework involves the joint
design of transmit and receive filters using iterative algorithms.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received July 13, 2012; revised October 12, 2012; accepted
November 16, 2012. The review of this paper was coordinated byProf. W.
Hamouda.

The authors are with the Centre for Communications Research, Uni-
versity of Bristol, Bristol, BS8 1UB, UK (e-mail:{eezpp, A.Doufexi, Si-
mon.Armour}@bristol.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 00.0000/TVT.0000.000000

The principle is to iterate the computation of transmit fil-
ters, power allocations and receive filters by assuming that
the other components are fixed during each update. In [5],
based on the uplink-downlink duality theory, the design of
downlink transmit filters is assisted by using a virtual uplink
system, in addition to solving associated power allocations
by a Geometric Programming (GP) in each iteration. The
concept of duality is also exploited in [6] in a multi-carrier
context, where the power allocation problem is shown to be
a signomial programming (SP) problem. Another approach is
proposed in [7] based on the relationship between WSC and
weighted minimum mean square error (WMMSE) problems.
In this case, transmit filters with power allocation can be
obtained via an MSE weights update, whereby GP problems
can be avoided. Nevertheless, in the joint transceiver design
approach, the computation of receive filters generally requires
the knowledge of other users’ transmit filters. Although this
can be done by an estimation at the receivers or directly
feeding forward the decoding matrices to the receivers, it may
eventually require additional processing at receivers and/or
large control overhead. It should also be noted that user and
data substream selections are generally embedded into the joint
transceiver design process. Specifically, only users and data
substreams with nonzero allocated power can be scheduled
for data transmission.

The second framework focuses on low-complexity transmit
filter designs by introducing specific criteria on the design
algorithms. Zero-Forcing (ZF) [8] and Block-Diagonalization
(BD) [9], for instance, impose zero multi-user interference
(MUI) constraints when users are equipped with single and
multiple antennas, respectively. Despite zero MUI, the strin-
gent requirement of ZF and BD leads to a transmit power
boost issue [8], causing poor performance in the low signal-
to-noise ratio (SNR) regime. Minimising mean square error
(MMSE) [8], [10] is another well-known criterion to improve
the shortcomings of ZF by incorporating noise power into the
transmit filter design. This idea has been generalised to multi-
antenna cases in Regularised Block Diagonalization (RBD)
[11] and Generalised MMSE Channel Inversion (GMI) [12]
schemes. Maximising the signal-to-leakage-plus-noise ratio
(SLNR) [13] is also an attractive criterion, providing an alter-
native approach to the signal-to-interference-plus-noise ratio
(SINR) maximisation problem. Due to the imposed design
criterion, the transmitter and receiver structures are generally
simplified and are usually obtained by closed-form solutions
at the expense of suboptimal performance. Consequently, the
above precoding schemes are generally not optimal with
respect to the WSC maximisation problems.

This paper aims to apply a low-complexity transmit filter
design approach to the WSC maximisation problems. One

0000–0000/00$00.00c© 2012 IEEE
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major issue inhibiting this approach occurs when users have
multiple antennas and the number of transmission layers is
not fully utilised, i.e. when the number of scheduled data
streams is less than the number of receive antennas. In this
case, there exists unused receiver subspaces which are not
exploited by the transmitter design. The system performance
can thus be improved by an efficient use of these receiver
subspaces. One simple approach is to utilise only a subset
of receive antennas [14], [15] which, however, may lead to
an ineffective exploitation of the available receive diversity.
Another approach involves an estimation of effective receiver
subspaces and uses them to refine the transmit beamforming
vectors which are later used to update the effective receiver
subspaces in an iterative manner. Examples of this include
the Coordinated Tx-Rx BD [9], Iterative nullspace-directed
SVD (iNuSVD) [16], and Iterative RBD (IRBD) [11]. These
techniques deploy the left singular vectors of the equivalent
channel, obtained by the product of the transmit filter and the
channel matrix, as an estimation of the receiver filter. Another
concern regarding WSC maximisation is how to choose a
proper precoding design criterion in order to meet the desired
objective.

This paper adopts the SLNR criterion as it exhibits a po-
tential alternative to the SINR maximisation. A modified def-
inition of SLNR is proposed in order to incorporate effective
receiver subspaces into the precoding design criteria. Thepro-
posed scheme inherits the simple transceiver structures from
the conventional SLNR scheme. Consequently, the problem of
maximising WSC can be simplified to the power allocation and
substream selection problems, which are separately treated in
this paper. On one hand, the problem of finding a local optimal
power allocation is formulated as a nonlinear optimisation
problem and is solved using the Lagrange Multiplier Method
[17]. Similar to the joint transceiver approach, the solution
of power allocation leads to an implicit user and substream
selection as users with zero power are prohibited from data
transmission. On the other hand, a suboptimal algorithm for
substream selection is proposed based on the assumption of
equal power per substream (EPS). It is shown that the proposed
algorithms outperform the receive antenna selection scheme
and the performance is comparable to the joint transceiver
approach, despite requiring simpler receiver structures.In ad-
dition, the proposed suboptimal substream selection can serve
as a highly reliable initial condition for the proposed power
allocation scheme, which can bring further improvement to
the system performance.

The paper is organised as follows. Section II describes the
general model of MU-MIMO systems. In Section III, the
conventional SLNR scheme is briefly reviewed, and the mod-
ified definition of SLNR and the proposed iterative precoding
scheme are presented. The problem of finding a local optimal
power allocation and its convergence properties as well as
the proposed suboptimal substream selection are elaborated in
Section IV. Section V studies the complexity of the proposed
algorithms and their comparisons with existing algorithms.
Simulation results are presented in Section VI and, finally,
a concise summary is given in Section VII.

Notation: Tr(·), (·)T , (·)H denote the trace, transpose and
Hermitian operations, respectively.‖·‖F represents the Frobe-

+

M

1N

2N

KN

U
se

r 
1

|
|
|

U
se

r 
2

|
|
|

U
se

r 
K

|
|
|

|
|
|

+

+

+

Reference point 2 (RP2) : 
for the calculation of the 
modified leakage power

Reference point 1 (RP1) : 
for the calculation of the 

desired signal power and the 
conventional leakage power

A1

Ô1

A2

AK

W1

W2

WK

H1

H2

HK

s1

s2

sK

Ô2

ÔKyK

y2

y1
n1

n2

nK

G1 D1 Æ1

Æ2

ÆK

G2

GK

D2

DK

Fig. 1. Block diagram of a downlink MU-MIMO system.

nius norm.(·)+ denotes the maximum value between the input
argument and zero.diag(·), blkdiag{·} represent an diagonal
matrix and a block diagonal matrix, respectively.IM , 0M×N

denote an identity matrix of sizeM ×M and a zero matrix
of sizeM ×N , respectively.

II. SYSTEM MODEL

Consider a single-cell single-carrier downlink MU-MIMO
system withM transmit antennas at the base station (BS) and
K users, each withNk receive antennas as depicted in Fig. 1.
The userk’s channel matrix is denoted asHk ∈ C

Nk×M . The
transmitted signal at the BS can be given byx = WAs =
∑

k WkAksk. The vectors = [sT1 , s
T
2 , ..., s

T
K ]T denotes the

overall data vector, wheresk ∈ C
Nk and E{sksHk } = INk

.
W = [W1,W2, ...,WK ] is the transmit precoding matrix,
where Wk ∈ C

M×Nk and each column is normalised to
unit norm.A is the power loading matrix defined byA =
blkdiag{A1,A2, ...,AK} with Ak = diag(ak) and ak =
(ak1, ak2, ..., akNk

)T ∈ R
Nk , such that the total transmission

power P =
∑

Pk =
∑

Tr(AkA
H
k ). The additive Gaussian

noise vector for each userk, denoted asnk, has zero mean
and covariance matrixE{nkn

H
k } = σ2

kINk
, and is assumed to

be statistically independent to data and noise from the other
users. The received signal at userk can be given by

yk = HkWkAksk +Hk

∑

j 6=k

WjAjsj + nk. (1)

At user k, the receive processing can be decomposed as
Rk = DkGk, whereGk ∈ C

Nk×Nk is the receive filter nor-
malised such that each row has unity norm andDk ∈ R

Nk×Nk

is a diagonal matrix, wherein the diagonal entries represent the
norms of the associated rows inGk. AssumingGk andDk

are known by the receiver, the received signal at the output of
the receive filter,̂yk, and the estimated data sequence,ŝk, can
be written as

ŷk = Gkyk, (2)

ŝk = Rkyk = Dkŷk. (3)
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III. I TERATIVE SLNR PRECODINGSCHEME

A. The conventional definition of SLNR

In conventional SLNR precoding scheme [13], the SLNR is
defined as

SLNRk

=
E‖HkWkAksk‖2F

∑

j 6=k E‖HjWkAksk‖2F + E‖nk‖2F
(4)

=
Tr

[

HkWkAkA
H
k WH

k HH
k

]

∑

j 6=k Tr
[

HjWkAkA
H
k WH

k HH
j

]

+ Tr (σ2
kINk

)
. (5)

Notice that the leakage power in (4)-(5) is calculated at the
receive antenna output before the receive filter (RP1 in Fig.1).
By assuming equal power for each data substream (denoted
asPs), i.e. Ak =

√
PsINk

, the SLNR in (5) can be rewritten
as

SLNRk =
Tr

[

WH
k HH

k HkWk

]

Tr
[

WH
k

(

∑

j 6=k H
H
j Hj +

σ2

k

Ps
IM

)

Wk

] . (6)

As proposed in [13], the objective of precoding design is to
maximise the above SLNR metric. This leads to the following
optimisation problem:

W
opt
k = arg max

Wk∈CM×Nk

SLNRk (7)

s.t. Tr
(

WH
k Wk

)

= Nk

where SLNRk is defined as in (6).

B. A Modified Definition of SLNR

As noted earlier, the conventional definition of SLNR con-
siders the leakage power at the receive antenna output (RP1 in
Fig. 1). In this case, the precoding algorithm tries to maximise
the received signal power of the intended user, while keeping
the sum of leakage power received at the receive antennas of
the other users as low as possible. However, it is seen that the
leakage signals are later steered by the receive beamforming
vectors. As a result, parts of the leakage signals may be nulled
out by the receive filters. This motivates a new approach to
consider the leakage power at the receive filters’ outputs (RP2
in Fig. 1), which potentially offers a better approximationof
leakage powers. Thus, a modified definition of SLNR can be
given by

SLNRk =
E‖HkWkAksk‖2F

∑

j 6=k E‖GjHjWkAksk‖2F + E‖nk‖2F
. (8)

Notice that the above definition only alters the reference
point for the calculation of leakage powers (the denominator),
while the desired signal power (the nominator) is considered at
the original reference point (RP1). By doing so, the precoding
and receive matrices can be obtained in the same way as the
conventional SLNR scheme. This avoids a precision loss in
the computation of the precoding matrixWk as a result of
using an estimation of the receive filterGk. Similar to the

conventional scheme, assuming EPS, the SLNR in (8) can be
rewritten as

SLNRk

=
Tr

[

W
H
k H

H
k HkWk

]

Tr
[

WH
k

(

∑

j 6=k
HH

j GH
j GjHj +

σ2

k

Ps
IM

)

Wk

] (9)

=
Ps Tr

[

W
H
k H

H
k HkWk

]

Tr
[

WH
k

(

∑

j 6=k
HH

j GH
j (PsINj

)GjHj + σ2

kIM

)

Wk

] (10)

=
Ps Tr

[

W
H
k H

H
k HkWk

]

Tr
[

WH
k

(

∑

j 6=k
HH

j GH
j AH

j AjGjHj + σ2

kIM

)

Wk

] . (11)

Note that (9) resembles the conventional definition of SLNR
(6), with a modification of the equivalent leakage channel to
userj defined byGjHj . It is also noticed that although the
definition in (9) considers the receive beamforming vectors
in the computation of leakage power, each leakage stream
contributes with equal significance regardless of its power
allocation. This has been made explicit in (10) and (11), where
Aj =

√
PsINj

according to the assumption of equal power. In
general cases, to take into account different priorities ofeach
leakage streams in the precoding design, a modified definition
of SLNR is proposed by the inspection of (11) as given by

mSLNRk =
Tr

[

WH
k HH

k HkWk

]

Tr
[

WH
k

(

∑

j 6=k H̄
H
j H̄j + σ2

kIM

)

Wk

] . (12)

In this case, the equivalent leakage channel (ELC) to a user
j is defined as

H̄j = ΩjGjHj (13)

whereΩj is a diagonal matrix, in which each diagonal entry
indicates a weighting factor (priority) of each leakage stream
associated to the userj.

It can be seen that the weight matrixΩj controls the amount
of leakage power to each substream of userj. The precoding
algorithm pays little attention to a substream with a small
weighting factor, allowing other substreams to gain benefits
by adjusting their beamforming vectors although causing high
interference to this substream, while it gives high priority to
a substream with a high weight, e.g. other substreams may be
sacrificed to guarantee low interference to this substream.No-
tice that this effect conforms to the water-filling (WF) power
allocation strategy for sum-capacity maximisation. Thus,it is
seen that, by setting weights equal to allocated powers i.e.
Ωj = Aj , the proposed scheme can facilitate WF strategies.
Hence,Ωj = Aj is assumed throughout this paper.

Notice that the modified definition (12) also supports user
substream selection, i.e. when some data substreams are
allocated zero power (some diagonal entries ofAj become
zero). In this case, the equivalent leakage channel (13) contains
zero row vectors, resulting in zero leakage power in the
computation of modified SLNR (12). In other words, unused
receiver subspaces due to unallocated data substreams do
not contribute to any signal leakage. They can, therefore, be
exploited by the precoding algorithm to improve its transmit
beamforming vectors.
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C. Iterative Algorithms and Choices of Receive Filter

The precoding designs for the modified SLNR criterion can
be obtained by replacing the objective function in (7) with the
modified definition (12). Similar to the conventional scheme,
the optimal precoding matrix can be given by [13]:

W
opt
k = Tk

[

Φk;0(M−Nk)×Nk

]

(14)

where the columns ofTk ∈ C
M×M defines the generalised

eigenspace of the pair
{

HH
k Hk,

(

∑

j 6=k H̄
H
j H̄j + σ2

kIM

)}

andΦk ∈ R
Nk×Nk is a diagonal matrix, the diagonal entries

are nonzero and are chosen to satisfy the power constraint
Tr

(

WH
k Wk

)

= Nk and each column is normalised to unity
norm.

Notice that the computation of the precoding matrixWk

depends on the equivalent leakage channelH̄j of the other
users. This requiresa priori knowledge of the receive filters,
which would technically be known after the precoding matrix
is obtained. To this end, iterative algorithms are normallyused
to cope with this situation as also seen in [9], [11], [16]. Thus,
an iterative SLNR (iSLNR)scheme based on the modified
SLNR definition is proposed as summarised in Algorithm 1.
Notice that the definition in (13) is valid for any types of
receive filter. In this paper, for simplicity, matched filters (MF)
are assumed as in the conventional scheme. Hence, the receive
filter for any userj can be given by

Gj = ΨjW
H
j HH

j (15)

whereΨj ∈ R
Nj×Nj is a diagonal matrix, each diagonal entry

is chosen so that each row is normalised to unity norm. Note
that a study of the iSLNR scheme with other types of receive
filters will be pursued in another work.

Algorithm 1 Iterative SLNR Precoding Scheme (iSLNR)
1: Initialise: Define a user orderingU (e.g. ascending order)

and the number of iteration (niter). Set the power loading
vectors{ak} and initialise ELC, e.g.{H̄k} ← {Hk}.

2: procedure iSLNR({H̄k}, {ak},U , niter)
3: for i← 1, niter do
4: for j ← 1,K do
5: k ← U(j) ⊲ Get user indices
6: computeWk using (14)
7: updateH̄k using (13) and (15)
8: end for
9: end for

10: end procedure

D. iSLNR with imperfect channel information

In previous subsections, it is assumed that the full channel
state information (CSI) is available at the BS. In practice,how-
ever, the CSI is obtained either by reverse channel estimation
(e.g. using uplink-downlink reciprocity) in time-division du-
plexing (TDD) or by quantised feedback in frequency-division
duplexing (FDD) systems. This leads to channel estimation
errors causing the degradation of the system performance.

Similar to the conventional SLNR scheme [13], the proposed
iSLNR scheme can be modified to take into account the
channel estimation errors in the presence of imperfect channel
information. In this case, the channel matrix of each userk
can be modelled as [18], [19]

Hk = H′
k +Ek (16)

whereHk, H′
k , andEk represent the actual channel matrix,

the estimated channel matrix and the estimation error matrix,
respectively. Each elements ofEk are assumed to be i.i.d.
zero-mean complex Gaussian variables with varianceσ2

e and
are spatially uncorrelated. In addition, it is assumed thatH′

k

andEk are independent and are uncorrelated to the data and
noise vectors. Assumingσ2

e is known to the BS, the modified
SLNR definition (12) can be re-evaluated as

mSLNRk

=
E
{

Tr
[

W
H
k H

H
k HkWk

]

/H′
k

}

E
{

Tr
[

WH
k

(

∑

j 6=k
H̄H

j H̄j + σ2

kIM

)

Wk

]

/{H′
j}
} (17)

where the expectation is conditional on the estimated channel
matrices of the userk, H′

k, and of the other users,{H′
j}.

Assuming thatΩj andGj are known and constant during the
evaluation of the modified SLNR values, it can be shown in
Appendix A that (17) can be rewritten as

mSLNRk

=
Tr

[

W
H
k

(

H
′H
k H

′
k +Nkσ

2

eIM

)

Wk

]

Tr
[

WH
k

(

∑

j 6=k
H̄

′H
j H̄′

j + (
∑

j 6=k
θjσ2

e + σ2

k)IM
)

Wk

] (18)

with H̄′
j = ΩjGjH

′
j andθj = Tr

[

GH
j ΩH

j ΩjGj

]

. It follows
that the proposed algorithms in previous sections remain
applicable with the objective function in (7) being replaced
with (18).

IV. W EIGHTED SUM CAPACITY MAXIMISATION USING

THE iSLNR PRECODINGSCHEME

In this section, the proposed iSLNR scheme is applied
to WSC maximisation problems, assuming perfect channel
estimation.

A. Power Allocation to Maximise WSC

Given the set of precoding matrices{Wk} and letpkb =
a2kb, wherek = 1, ...,K andb = 1, ..., Nk, denote the allocated
power to thebth stream of thekth user, the WSC maximisation
problems can be formulated as:

arg max
{pkb}, ∀k,∀b

Cws({pkb}) (19)

subject to
∑

k

∑

b

pkb ≤ P

and pkb ≥ 0

where the weighted sum capacity associated to the (real and
positive) users’ weightsαk can be written as
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Cws =

K
∑

k=1

αk log2det(INk +HkWkPkW
H
k HH

k Z−1
k ) (20)

with Zk = σ2
kINk

+Hk

(

∑

j 6=k WjPjW
H
j

)

HH
k andPk =

AkA
H
k = diag

(

a2k1, ..., a
2
kNk

)

.
Using the Lagrange Multiplier method [17], it is shown

in Appendix B that a local optimal solution of (19) can be
obtained as

pkb =
αk

ν − λkb + tkb
− 1

γkb
(21)

where

γkb = wH
kbH

H
k

(

σ2
kINk

+HkW̃kbP̃kbW̃
H
kbH

H
k

)−1

×Hkwkb, (22)

tkb =
∑

j 6=k

αjw
H
kbH

H
j

(

σ2
j INj

+HjWPWHHH
j

)−1

×
(

HjWjPjW
H
j HH

j

)

×
(

σ2
j INj

+HjW̃jP̃jW̃
H
j HH

j

)−1

Hjwkb (23)

with the Lagrange multipliers ν ≥ 0 and λkb ≥ 0;
∀k, ∀b satisfying the complementary slackness conditions:
ν (

∑

k

∑

b pkb − P ) = 0 andλkbpkb = 0, respectively.W̃kb

and W̃j denote submatrices ofW obtained by removing
columns and/or rows associated to thebth substream of
user k and all substreams of userj from W, respectively.
P̃kb and P̃j are also defined in a similar way andP =
blkdiag{P1, ...,PK}. Notice that (22) and (23) are quadratic
forms associated to a positive definite matrix and a positive
semi-definite matrix, respectively, thusγkb > 0 and tkb ≥ 0.

From (21), it can be seen that an optimal power allocation
of a data streampkb depends on power allocations of the
others through the termsγkb and tkb. Thus, solving (21)-(23)
in general is a complicated task. However, similar techniques
to those in [20] can be applied by iteratively solving the
above conditions. In this case,γkb and tkb are assumed to
be fixed in each iteration and (21) can be recognised as a
modified water-filling problem. By solving the complementary
slackness conditions, the solution to (21) can be written as

pkb =

(

αk

ν + tkb
− 1

γkb

)+

(24)

where the value ofν is determined from the power constraint:

K
∑

k=1

Nk
∑

b=1

(

αk

ν + tkb
− 1

γkb

)+

= P. (25)

As αk, γkb and tkb are nonnegative, (25) is a mono-
tonic function of ν and can be efficiently solved by a one-
dimensional search (e.g. bisection). Note that when no positive
real number satisfies (25), indicating that

∑

k

∑

b pkb ≤ P , ν
becomes zero in conformity with the complementary slack-
ness. Once the allocated power for all users’ data streams

are obtained, the values ofγkb and tkb can be updated.
This procedure can be re-iterated until predefined convergence
criteria are satisfied. Notice that the above iterative procedure
can be considered as ageneralisation of the modified iterative
water-filling (GIWF) in [20] from the case of single-antenna
receivers to multi-antenna receivers.

It is worth noting that (21)-(23) can be computed for any
set of precoding matices{Wj} with multiple data streams
regardless of precoding design criteria. In the case of BD, for
instance, it can be shown thattkb becomes zero asHjwkb = 0
due to the zero-forcing constraint.γkb can also be simplified
to ‖Hkwkb‖2/σ2

k, which is independent to power allocation
of the other streams. Then, the above algorithm reduces to the
conventional water-filling [9], [21] as a result.

This paper focuses on the power allocation strategy for
the modified SLNR precoding (12). Notice that this scheme
requires the knowledge of power allocation (due to the as-
sumption ofΩj = Aj) in the calculation of the precoding
matrix (14). Thus, the precoding design and power allocation
can be integrated into the same process as proposed in
Algorithm 2. Since the WSC maximisation problem is non-
convex, the performance of the algorithm largely depends on
the initial condition. This paper assumes EPS as the initial
power allocation, which performs generally well as can be
seen in Section VI-C. In addition, a better initial condition
can be obtained by a user and substream selection algorithm,
potentially with low complexity implementation. This enables
a systematic approach to finding a reliable initial condition,
which is one of the main advantages compared to a joint
transceiver design scheme.

Algorithm 2 iSLNR with GIWF (version 1)

1: Initialise: Assume EPS and computeW(0)
k , ∀k based on

the conventional SLNR scheme.
i← 0

2: repeat
3: i← i+ 1
4: ∀k, ∀b : computep(i)kb using (24)
5: ∀k : updateH̄(i)

k using (13) and (15)
6: ∀k : updateW(i)

k using (14)
7: until
8: (1) Max. iterations exceedOR
9: (2) |C(i)

ws − C
(i−1)
ws | ≤ ǫ1

B. Discussion on Convergence Property of iSLNR GIWF

As also mentioned in [20], the convergence property of
iterative water-filling is rather hard to establish with full
generality. However, simulation results suggest that Algorithm
2 usually converges when

∑

Nk ≤ M . For
∑

Nk > M ,
oscillation between different power allocation states hasbeen
observed occasionally. Although a mathematical proof is not
given in this paper, it can be shown by simulation (Section
VI-C) that the oscillation issue can be solved by introducing
an update step size (confidence weight)η, where0 < η < 1,
to slow down the update of power allocation as given in
Algorithm 3 (line 8). A normal update (line 6) may be
performed in the firstT iterations before the weighting takes
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effect, to avoid the slow convergence. Notice that Algorithm
3 reduces to Algorithm 2 whenη is set to1. In addition, an
extra exit condition may be added to detect the oscillation.In
this case, the value of the objective function swings arounda
certain average value. By comparing the average WSC of the
current iteration, i.e.C(i)

av = 1
W

∑W−1
n=0 C

(i−n)
ws (W denotes

an Averaging Window Size), with the previous iteration, the
algorithm can be terminated if a sufficiently small change is
observed. The conditionC(i)

ws ≥ C
(i−1)
ws is also checked to

ensure that the algorithm exits when it swings to the better
solution.

Algorithm 3 iSLNR with GIWF (version 2)

1: Initialise: Assume EPS and computeW(0)
k , ∀k based on

the conventional SLNR scheme.
i← 0

2: repeat
3: i← i+ 1
4: ∀k, ∀b : computepkb using (24)
5: if i ≤ T then ⊲ e.g.T = 5

6: ∀k, ∀b : updatep(i)kb ← pkb
7: else
8: ∀k, ∀b : updatep(i)kb ← η · pkb + (1− η) · p(i−1)

kb

9: end if
10: ∀k : updateH̄(i)

k using (13) and (15)
11: ∀k : updateW(i)

k using (14)
12: until
13: (1) Max. iterations exceedOR
14: (2) |C(i)

ws − C
(i−1)
ws | ≤ ǫ1 OR

15: (3) |C(i)
av − C

(i−1)
av | ≤ ǫ2 andC(i)

ws ≥ C
(i−1)
ws

C. Suboptimal Transmission Rank Selection Algorithm

This subsection provides an alternative method for solv-
ing the WSC problem. Unlike the power allocation strategy
where the user and substream selection is obtained implicitly,
an explicit data substream selection is proposed under EPS
assumption. The algorithm is based on a sequential search al-
gorithm, similar to [22], [15]. The pseudo code of the proposed
algorithm is summarised in Algorithm 4. The principle is to
choose substreams in order, starting from a substream with the
maximum weighted capacity. Then, a substream providing the
best WSC with the previously selected ones is added until no
further improvement is attained. The outerfor loop involves
the successive addition of substreams, while the innerfor loop
is concerned with the search for the best candidate substream.
Line 7 in the inner loop represents the iSLNR precoding design
under the EPS assumption, as described in Section III-C.
Notice that the equivalent leakage channels are updated at the
end of each outer loop, providing a good initial condition for
subsequent inner loops. The sufficient number for inner-loop
iterationsniter tends to be reduced as a result. In addition,
unlike [22], [15], the performance of the proposed algorithm
depends on the user ordering, especially whenniter is small.
It is also proposed to update the precoding matrices in reverse
selection order, which appears to further lower the required
number of inner-loop iterations as observed from experimental
simulations.

Among substreams for a particular user, the dominant
eigenmode is known to have highest effective channel gain
[23]. To reduce complexity of the algorithm, only the largest
eigenmode from each user may be included in the initial
candidate list (D). Only when the dominant eigenmode of a
user is selected can the next strongest substream of this user
participate in the candidate selection. This reduces the number
of candidate search to the order ofK, compared to the order of
N =

∑

k Nk for the algorithm in [15], as discussed in Section
V. Furthermore, the proposed algorithm can be viewed as a
Transmission Rank Selection (TRS), whereby the output of the
algorithm indicates the number of eigenmodes (in descending
order) selected for each user.

Algorithm 4 Transmission Rank Selection (TRS)
1: Initialise:
S ←ø , Cmax ← 0 ⊲ Initialise the selection set
D ← the set of indices associated to dominant eigenmodes
B ← min(M,

∑

Nk) ⊲ Number of Spatial Layers
{H̄k} ← {Hk} ⊲ Initialise ELC

2: for i← 1, B do
3: for all d ∈ D do
4: U ← Reverse([S, d]) ⊲ Sort users in reverse order
5: set{ak} ⊲ Assuming EPS for active substreams
6: {H̄(d)

k } ← {H̄k}
7: [{W(d)

k }, {H̄
(d)
k }] ⊲ See Algorithm 1

← iSLNR
(

{H̄(d)
k }, {ak},U , niter

)

8: computeC(d)
ws

9: end for
10: d̄← argmaxC

(d)
ws ⊲ Choose the best substream

11: if C
(d̄)
ws > Cmax then

12: Cmax ← C
(d̄)
ws

13: {Wk} ← {W(d̄)
k }, {H̄k} ← {H̄(d)

k }
14: S ← [S, d̄]
15: D ← replacingd̄ with the subsequent eigenmode
16: else
17: break
18: end if
19: end for

V. COMPLEXITY ANALYSIS

In this section, the computational complexity of the pro-
posed algorithms is approximated in terms of the number
of floating point operations (flops) [24]. It is, in general,
rather tedious and complicated to calculate the exact number
of operations for various algorithms. Hence, for comparison
purposes and simplicity, the complexity is estimated for the
case of real matrices. Although this may not lead the exact
computational complexity, it suffices to illustrate the degree
of complexity of each algorithm. In this case, the complexity
of typical matrix operations can be assumed as follows [24],
[25]:

• Multiplication of anm× n matrix and ann× p matrix:
2mnp.

• Inversion of anm×m matrix: m3.
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TABLE I
AN APPROXIMATION OFCOMPUTATIONAL COMPLEXITY OF THE PROPOSED AND EXISTING ALGORITHMS.

Algorithm iSLNR iSLNR GIWF iSLNR TRS

Complexity K̄niter(2nM
2 + 2BM2 + 14M3) K2(4nM2) + BKniter(

2

3
B2M2 + nBM2 + 7BM3)

(L− 1)Kn(2BM2 + 2nM2 + 4n2M + n3)

Algorithm Conventional SLNR [13] WSRBF-WMMSE [7] URAS1 [15]

Complexity K̄(2nK̄M2 + 14M3) LK2(2n2M + 2n3) BKn( 2
3
B2M2 + nBM2 + 7BM3)

• Generalised eigenvalue decomposition (GED) of a pair of
an m ×m symmetric matrix and anm ×m symmetric
positive definite matrix:14m3.

Consider the case of equal number of receive antennas per
user, denoted asn, with a high number of users, i.e. the total
number of receive antennasN =

∑

k Nk = nK > M . Let
K̄ ≤ K denote the number of users selected for data trans-
mission, which is assumed to be in the order of the number
of available spatial layers,B = min(M,N). Based on these
assumptions, the computational complexity of the proposed
algorithms can be estimated in the following subsections.

A. Estimated complexity of iSLNR (Algorithm 1)

For the conventional SLNR scheme, the computation of
each user’s precoding matrix involves matrix multiplications
(for HH

k Hk and
∑

j 6=k H
H
j Hj ; the matrix addition withσ2

kIM
is omitted as low complexity order) and one GED, which
requires the complexity ofO(2nK̄M2) and O(14M3), re-
spectively. For iSLNR, on one hand, the complexity is slightly
increased in the computation of equivalent leakage channel
(ELC) (13), e.g. in the order ofO(2nM2) < O(2nK̄M2).
On the other hand, ELC may contain several zero row vec-
tors, reducing the complexity of the matrix multiplications
to O(2nM2 + 2BM2). Thus, it may be concluded that
each iteration of iSLNR requires approximately a comparable
complexity order to that of the conventional SLNR scheme.
This number, however, increases with the number of iteration
of iSLNR, niter, as given in Table I.

B. Estimated complexity of iSLNR GIWF (Algorithm 2, 3)

Compared to Algorithm 1, Algorithm 2 involves addi-
tional tasks in the computation ofγkb and tkb, and a bi-
section for water-filling. It can be seen that the complexity
of the former dominates the latter as it involves several
matrix multiplications and inversions. Thus, the additional
complexity order can be estimated from the complexity of
the calculation of γkb and tkb. At the initial stage, all
substreams are assigned non-zero powers, resulting in the
estimated overall complexity ofO

(

K2(4nM2)
)

. In subse-
quent iterations, however, the complexity reduces to approx-
imately O

(

Kn(2BM2 + 2nM2 + 4n2M + n3)
)

as several
substreams are given zero powers. Thus, denotingL as the
number loops required for the algorithm to converge, the
complexity of Algorithm 2 can be estimated as given in Table
I. Note that Algorithm 3 differs from Algorithm 2 only in
the power-updating step, thus it has approximately the same
complexity order as Algorithm 2.

C. Estimated complexity of iSLNR TRS (Algorithm 4)

In Algorithm 4, the outer loop involves a successive incre-
ment of substreams, which requires at mostB iterations. The
inner loop involves the precoding designs and the searches
for the best eigenmode from the candidate list of sizeK,
therefore requiring approximatelyKniter iterations (including
niter iterations for iSLNR precoding loops). Thus, the overall
complexity is proportional toBKniter as estimated in Table
I.

D. Comparison with existing algorithms

The estimated complexity of an antenna selection method
(URAS1) [15] and a joint transceiver design based on
WMMSE (WSRBF-WMMSE) [7] are also given in Table I
for comparison purposes. URAS1 requires to search over the
entire unselected antennas during the inner loop, resulting
in the overall complexity proportional toBN = BKn,
compared toBKniter for the case of iSLNR TRS. Therefore,
the advantage of iSLNR TRS over URAS1 depends on the
ratio n/niter. Thus, assuming a fixedniter, the complexity of
iSLNR TRS can be significantly reduced compared to URAS1
if users are equipped with a large number of receive antennas,
n, as a result of the reduced candidate search from the entire
antenna list in URAS1 to the dominant eigenmode list in
iSLNR TRS.

The complexity of iSLNR GIWF in the first iteration (the
term K2(4nM2)) increases quadratically with the number
of user K, similar to the case of WSRBF-WMMSE (i.e.
K2(2n2M + 2n3)). However, due to zero allocated-power
in most substreams, the complexity of iSLNR GIWF greatly
reduces to a linear growth, i.e.Kn(2BM2+2nM2+4n2M+
n3), in subsequent loops. Furthermore, it is seen that the
quadratic complexity order of iSLNR GIWF can be improved
if a good initial power allocation is given, e.g. obtained by
iSLNR TRS, for which the complexity linearly increases with
K. In this case, the overall complexity of iSLNR TRS+GIWF
can be approximated as a linear function ofK.

VI. SIMULATION RESULTS

The performance of the proposed algorithms is evaluated
in this section. For all simulations, spatially uncorrelated
MIMO channels generated as i.i.d. Gaussian random variables
CN (0, 1) and equal noise variance for all receivers (σ2

k =
σ2, ∀k) are assumed. The SNR is defined asP/σ2. The
thresholdsǫ1, ǫ2 and the maximum number of iterations are
set to 0.001, 0.0001 and 100, respectively, in all simulations.



8 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, ACCEPTED FOR PUBLICATION

−10 0 10 20 30 40
0

10

20

30

40

50

60

SNR (dB)

S
um

 C
ap

ac
ity

 (
bi

t/s
/H

z)

 

 

cSLNR−MF (EPS)
iSLNR−MF (EPS), n

iter
=1

iSLNR−MF (EPS), n
iter

=2

iSLNR−MF (EPS), n
iter

=3

iSLNR−MF (EPS), n
iter

=4

iSLNR−MF (EPS), n
iter

=5

iSLNR−MF (EPS), n
iter

=11

Fig. 2. Ergodic sum capacity for Dominant Eigenmode Transmission, with
M = 4; Nk = 2, ∀k; K = 4.
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Fig. 3. Average uncoded BER (QPSK modulation) for Dominant Eigenmode
Transmission, withM = 4; Nk = 2, ∀k; K = 4.

A. iSLNR with EPS

This subsection examines the proposed iSLNR precoding
scheme with matched filters (iSLNR-MF), assuming the Dom-
inant Eigenmode Transmission (only the strongest eigenmode
for each user is transmitted) and equal power allocation for
each active substream. Compared to the conventional SLNR
scheme (cSLNR-MF), the iSLNR-MF can efficiently exploit
the receiver subspaces by taking into account the receiver
structures in the transmit filter design. This leads to the
improvement in the ergodic sum capacity and the average
uncoded BER as depicted in Fig. 2 and Fig. 3, respectively.
Note that the performance of iSLNR-MF improves as the
number of iterations (niter) increases due to the higher ac-
curacy of the receiver subspaces estimation. Nevertheless,
no significant gain can be obtained after a sufficient high
number of iterations. It is also observed that an optimal
number of iterations seems to increase with the operating
SNR. For practical purposes, 3-5 iterations are recommended
as suggested by the simulation results.
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Fig. 4. BER performance of iSLNR-MF (niter = 5) compared to cSLNR-
MF with imperfect channel estimation,σ2
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Fig. 5. BER performance of iSLNR-MF vs. estimation error variance at
SNR = 15 dB, withM = 4; Nk = 2, ∀k; K = 2.

B. iSLNR with EPS and imperfect channel estimation

The performance of iSLNR-MF EPS with imperfect channel
estimation is given in Fig. 4. Compared to the case of perfect
CSI, error floors can be observed in the BER performance at
high SNR due to CSI estimation errors. It can also be seen
that iSLNR-MF leads to identical performace as cSLNR-MF
in the multi-stream (MS) case (no unused receiver subspaces
as a result of full-eigenmode transmission). In contrast, the
advantage of iSLNR-MF over cSLNR-MF can again be ob-
served in the single-stream (SS) case. In addition, it is noticed
that the improvement of iSLNR-MF is mainly attributed to
the exploitation of unused receiver subspaces; the knowledge
of estimation error variance marginally contributes to the
overall improvement. Compared to cSLNR-MF, the statistical
knowledge of estimation errors (i.e. error variance) at the
transmitter has less influence to the performance of iSLNR-
MF. Therefore, iSLNR-MF tends to be more robust to the
channel estimation errors than the cSLNR-MF scheme.

The performance with various estimation errors is also
plotted in Fig 5. The performance gap between iSLNR-MF
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and cSLNR-MF can be clearly seen for low error variance,
while it becomes smaller as error variance increases. For very
high error variance (e.g. about the same order as channel
gain), no significant gain of iSLNR-MF can be observed as no
information about unused receiver subspaces can be reliably
extracted from the available channel knowledge.

C. iSLNR with GIWF

This subsection evaluates the performance of iSLNR with
the proposed power allocation algorithm. Firstly, the conver-
gence property for the case of

∑

Nk > M is presented in
Fig. 6(a)-(b). At high SNR, it is seen that iSLNR-MF GIWF1
(η = 1) usually converges in most cases (more than 99.5%),
while iSLNR-MF GIWF2 (η = 0.5, 0.1) converges in all
cases. In addition, both algorithms always converge at low
SNR, with slow convergence forη = 0.1 due to small updating
steps. This suggests that choosing0.5 ≤ η ≤ 0.9 tends to
be a reasonable setting. It is also noticed in Fig. 6(c)-(d)
that the proposed algorithms converge within 10 iterations
in most cases, with a slightly faster rate at low SNR than
that at high SNR. This demonstrates a good convergence
property of the proposed algorithms. For high SNR, a typical
converged case can be presented byChannel Realisation 1in
Fig. 7, whereby the algorithms converge after a few iterations.
In this case, iSLNR-MF GIWF1 and iSLNR-MF GIWF2
have almost identical performance. In contrast, an oscillation
may occasionally occur for iSLNR-MF GIWF1 as can be
represented byChannel Realisation 2. Clearly, iSLNR-MF
GIWF2 can avoid the oscillation issue by incorporating the
update step sizeη, which is set to 0.5 in this simulation.
Consequently, iSLNR-MF GIWF2 is assumed in subsequent
simulations.

Secondly, the sum capacity is evaluated for the case of
∑

Nk ≤ M in Fig. 8. In this case, iSLNR-MF GIWF serves
as a typical power allocation strategy as no user selection is
required. An improvement over cSLNR-MF can clearly be
seen at low SNR, where the algorithm tends to allocate fewer
substreams than the available spatial layers as also shown
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Fig. 7. Examples of convergence properties of iSLNR-MF GIWF (two cases
of channel realisations) at SNR = 25 dB, withM = 4; Nk = 2, ∀k; K = 5.

in Fig. 9(a). This allows more power for each substream
to overcome noise. Notice that the selected substreams are
often the dominant eigenmodes as high channel gain can be
expected, and the power is almost equally distributed among
the selected substreams.

For
∑

Nk > M , iSLNR-MF GIWF exhibits both user and
substream selection as depicted in Fig. 9(b). The pair(k, b)
denotes thebth substream of thekth user and substreams are
sorted from the largest to the smallest eigenvalues. Notice
that the number of selected data streams respects the number
of available spatial layers (i.e. four, in this simulation)and
it tends to be fewer at low SNR as discussed earlier. The
ergodic sum capacity is also given in Fig. 10. It is seen
that iSLNR-MF GIWF attains significant gain compared with
the conventional scheme (cSLNR-MF GIWF) as the modified
scheme efficiently considers the receiver subspaces and power
allocations in the precoding design. In addition, cSLNR-MF
GIWF seems to suffer from high fluctuations during iteration
process, causing poor selection outcomes especially at high
SNR.

D. iSLNR-MF with TRS

As noted in Section IV-C, the performance of iSLNR-MF
with TRS depends on the number of inner-loop iterationsniter,
as can be seen from Fig. 10. However, a sufficient number
of iterations can be fewer than that of required by iSLNR-
MF EPS due to the update of equivalent leakage channels
at the end of each outer loop. In Fig. 10, the majority of
potential capacity gain can be achieved with only 2 iterations,
compared to approximately 4 iterations required by iSLNR-
MF EPS. In addition, the algorithm only needs to search over
at mostB (the number of available spatial layers) outer loops.
This strongly suggests that iSLNR-MF TRS yields an efficient
low complexity algorithm. Furthermore, iSLNR-MF TRS can
be complemented by GIWF (power allocation) which can
bring further improvement, although only slight gain can be
observed as almost equally distributed power can be expected
at a local optimal point.

The proposed methods achieve a significant gain compared
to an antenna selection scheme (URAS1 EPS) in [15] and
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attain comparable performance to a joint transceiver design
(WSRBF-WMMSE with transmit matched filter [TxMF] ini-
tialisation) in [7], albeit with a simpler receiver structure. Note
that the initialisation of the transmit filters remains an issue
for WSRBF-WMMSE [7], while iSLNR-MF GIWF seems to
work reasonably well with EPS initialisation and can also be
accompanied by iSLNR-MF TRS as a highly reliable initial
condition.

VII. C ONCLUSIONS

This paper proposed an iterative transmit filter design based
on a modified definition of SLNR. In contrast to the con-
ventional scheme, the proposed method considers the receiver
filters and power allocations into the transmit filter designin
order to efficiently use and estimate the receiver subspacesat
user terminals. The resulting transceiver structures remain sim-
ple and inherit the closed-form solutions from the conventional
scheme. As a result, the WSC maximisation problems can
be simplified to power allocation and user/substream selection
problems. A power allocation algorithm was proposed in this
paper, which implicitly integrates the user and substream selec-
tion functionalities into its algorithm. An explicit user and sub-
stream selection was also proposed as an alternative method
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Fig. 10. Ergodic sum capacity withM = 4; Nk = 2, ∀k; K = 5.

to maximise WSC. Both proposed methods can potentially be
combined, which could bring further improvement, subjected
to the complexity trade-off. Numerical results show that the
proposed algorithms outperform the conventional scheme and
the antenna selection approach. They also achieve a com-
parable performance to a joint transceiver design approach,
despite using simple receive matched filters. The proposed
schemes, therefore, provide potential alternatives for practical
implementations.

APPENDIX A
DERIVATION OF THE MODIFIED SLNR WITH IMPERFECT

CSI

By substituting (16) into (17), it can be shown that

mSLNRk

=
Tr

[

W
H
k (H

′H
k H

′
k + E

{

E
H
k Ek

}

)Wk

]

Tr
[

WH
k

(

∑

j 6=k
(H̄

′H
j H̄′

j + E
{

EH
j BjEj

}

) + σ2

kIM

)

Wk

] (26)

with Bj = GH
j ΩH

j ΩjGj . Let brc be the(r, c)th element of
Bj andec denote thecth column vector ofEj , it follows that
the (m,n)th element ofE

{

EH
j BjEj

}

can be expressed as

[

E
{

EH
j BjEj

}]

mn
= E

{

eHmBjen
}

(27)

=

Nj
∑

r=1

Nj
∑

c=1

brcE{e∗rmecn} (28)

=

{

Tr (Bj)σ
2
e if m = n,

0 otherwise
(29)

where (29) follows from the uncorrelated property ofEj ,
i.e. E{e∗rmecn} equal to σ2

e if r = c and m = n, and
equal to0 otherwise. Thus,E

{

EH
j BjEj

}

can be written as
θjσ

2
eIM , with θj = Tr (Bj) = Tr

[

GH
j ΩH

j ΩjGj

]

. Similarly,
E
{

EH
k Ek

}

= Nkσ
2
eIM . It can be easily seen that (18) is

obtained from (26) accordingly.
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APPENDIX B
DERIVATIVE OF THE LAGRANGIAN

The Lagrangian of the problem (19) can be written as
(in this case, the base-2 logarithmic function in (19) can be
replaced by the natural logarithm without loss of generality,
due to the monotonic property of logarithmic functions):

L =

K
∑

j=1

αj ln det(Cj)− ν





∑

j

∑

s

pjs − P





+
∑

j

∑

s

λjspjs (30)

with Cj = INj
+HjWjPjW

H
j HH

j Z−1
j . Recall the following

relationships for Matrix derivatives with respect to a scalar t
[26]:

d

dt
ln detA = Tr

[

A−1

(

d

dt
A

)]

, (31)

d

dt
A−1 = −A−1

(

d

dt
A

)

A−1. (32)

Taking the derivative of the Lagrangian (30) with respect to
the allocated powerpkb (for the bth stream of thekth user)
and equating it to zero result in

K
∑

j=1

αjTr

(

C−1
j

∂Cj

∂pkb

)

− ν + λkb = 0. (33)

For userj = k,

Tr

(

C−1
k

∂Ck

∂pkb

)

= Tr

(

C−1
k Hk

∂

∂pkb

(

∑

wkbpkbw
H
kb

)

HH
k Z−1

k

)

= Tr
(

C−1
k Hkwkbw

H
kbH

H
k Z−1

k

)

= Tr
(

Hkwkbw
H
kbH

H
k (CkZk)

−1
)

= wH
kbH

H
k (CkZk)

−1Hkwkb. (34)

Define

Tk = CkZk

=
(

INk
+HkWkPkW

H
k HH

k Z−1
k

)

Zk

= Zk +HkWkPkW
H
k HH

k

= σ2
kINk

+Hk





K
∑

j=1

WjPjW
H
j



HH
k

= σ2
kINk

+HkW̃kbP̃kbW̃
H
kbH

H
k +Hkwkbpkbw

H
kbH

H
k .

(35)

Let A = σ2
kINk

+ HkW̃kbP̃kbW̃
H
kbH

H
k (invertible), u =

Hkwkb andvH = pkbw
H
kbH

H
k . Applying the matrix inversion

lemma:
(

A+ uvH
)−1

= A−1 − A
−1

uv
H
A

−1

1+vHA−1u
to (35) and

substituting into (34) results in

Tr

(

C−1
k

∂Ck

∂pkb

)

= γkb −
pkbγ

2
kb

1 + pkbγkb
(36)

whereγkb is defined as in (22). Similary, for usersj 6= k,

Tr

(

C−1
j

∂Cj

∂pkb

)

= Tr

(

C−1
j HjWjPjW

H
j HH

j Z−1
j

(

− ∂Zj

∂pkb

)

Z−1
j

)

= Tr
(

HjWjPjW
H
j HH

j Z−1
j

(

−Hjwkbw
H
kbH

H
j

)

(CjZj)
−1

)

= Tr
(

HjWjPjW
H
j HH

j Z−1
j

(

−Hjwkbw
H
kbH

H
j

)

T−1
j

)

= −wH
kbH

H
j T−1

j HjWjPjW
H
j HH

j Z−1
j Hjwkb. (37)

Substituting (36)-(37) into (33) leads to

αk

pkb +
1

γkb

= ν − λkb + tkb (38)

wheretkb is defined as in (23). It follows that (21) is obtained
from (38).
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