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Abstract—Explicit characterization of network coding capacity
for multi-source multi-sink networks is an extremely hard prob-
lem. The linear programming bound is an explicit outer bound on
network coding capacity but it is computationally very intensive.
An edge-cut bound called functional dependence bound is an
easily computable relaxation of the linear programming bound.
However, the functional dependence bound is still very loose, even
for two source unicast networks. In this paper, we characterize
a set of Shannon-type inequalities for a given network that leads
to new weighted bounds providing strict improvement over the
functional dependence bound.

I. INTRODUCTION

By allowing intermediate nodes to combine the input data,

network coding can achieve higher throughput than pure

routing. For single-source networks, the capacity region is

given by the max-flow bound. However, the max-flow bound

is not tight for multi-source networks. An exact expression of

capacity region for multi-source networks is given in terms

of entropy region Γ�
n in [1]. Unfortunately, characterization

of Γ�
n is still open for n ≥ 3. Characterizing the network

capacity is proved to be as difficult as finding the entropy

region, Γ�
n, which is equivalent to the determination of the

set of all possible information inequalities [2]. By replacing

the set of entropy function Γ�
n with the set of polymatroidal

functions Γn (which is characterized by elemental Shannon-

type inequalities), a computable outer bound for the network,

called linear programming (LP) bound, is obtained. However,

the number of variables and constraints for this linear program-

ming problem grows exponentially with the network size. An

easily computable relaxation of the LP bound is proposed in

[3] called functional dependence (FD) bound.

Besides the FD bound, the cut-set bound, the PdE bound

[4], the network sharing bound [5] and the bounds based on

information dominance [6] are well known edge-cut bounds

in the literature. Theoretical comparisons of various edge-

cut bounds are given in [7]. All these edge-cut bounds are

for the sum of source rates for some subset of sources in

a network (see e.g., (10)) also known as sum-rate bounds.

It is shown in [8] that sum-rate bounds are not sufficient for

characterizing the capacity for general multi-source multi-sink

networks, even for simple two-unicast networks. Therefore,

weighted bounds are required for improving the existing sum-

rate edge-cut bounds. A simple way for finding weighted

bound is introduced in [9] for multi-source multicast networks.

The weighted bound of [9] uses “multicast” argument and

hence it is not applicable for multiple-unicast networks.

In this paper, we give weighted sum-rate functional de-

pendence bound for multi-source multi-sink networks using

Shannon-type inequalities. For a given multi-source multi-sink

network, we characterize a set of Shannon-type inequalities

that renders weighted sum-rate functional dependence bound.

An algorithm for finding the weighted bound for networks is

also given. It is shown that the weighted bound strictly improve

the FD bound. Therefore, the gap between the FD bound and

the “computationally infeasible” LP bound is further reduced.

In section II, a network model and two explicit outer

bounds are presented: the linear programming bound and the

functional dependence bound. The notion of irreducible sets

introduced in [3] will also be discussed. The main contribution

of the paper is presented in Section III. In particular, a utility

of Shannon-type (submodular) inequality to derive a weighted

bound is described by example. Then a class of shannon-

type inequalities is characterized for a given network to derive

weighted bounds and an algorithm to find weighted bounds is

given. Finally, the paper is concluded in section IV.

In the sequel, set elements are denoted by numbers or capital

letters e.g., 1, A, sets are denoted by font e.g., A and sets of

sets are denoted by bold font e.g., A. The power set of a

set A is denoted by P(A). The notation AB means the set

{AB : B ∈ B}.
II. BACKGROUND

A noise-free point-to-point network is represented by a

directed acyclic graph G = (V, E), where V is the set of nodes

and E is the set of edges. For an edge E = (A,B) ∈ E ,

define Head(E) = B (means B is the head node of E)

and Tail(E) = A. For A ∈ V , the set of edges entering

into A and leaving A are denoted by In(A) and Out(A)
respectively, i.e. In(A) = {E ∈ E : Head(E) = A},
Out(A) = {E ∈ E : Tail(E) = A}.

Let S = {1, . . . , |S|} denote the set of independent infor-

mation sources available at some nodes (called source nodes)

in a network via mapping a : S �→ V . The sources are

demanded by some nodes in the network called sink nodes.

A set of sources demanded by a given sink node is described

by mapping b : V �→ P(S), e.g., the set of sources demanded

by the node A is b(A). If each source is demanded by exactly

one sink, the network is called multiple-unicast network. For
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multiple-unicast network, imaginary sink nodes can be added

to make the mapping b become bijective and the mapping from

S �→ V is denoted as b−1.

Following the definition of a network code for graph G in

[10, Section 21.4], an information rate tuple R = (RS : S ∈
S) is achievable if there exists network codes such that every

source S can be transmitted at rate RS from its source node

and the corresponding sink nodes can decode the source with

arbitrarily small probability of error. The capacity region of a

network is the set of all achievable rate tuples.

A. Linear Programming Bound

Given a network G = (V, E) with sets of random variables

{YS : S ∈ S} and {UE : E ∈ E} representing the information

generated by sources and carried by edges, a valid network

code for the network must satisfy the following constraints:

RS ≤ H(YS) (1)

H(YS) =
∑

S∈S
H(YS) (2)

H(UOut(V )|Y{S:a(S)=V }, UIn(V )) = 0, V ∈ V (3)

H(Yb(V )|UIn(V )) = 0, V ∈ V (4)

H(UE) ≤ CE , E ∈ E (5)

where CE denotes the capacity constraint for edge E ∈ E .

The constraint (2) specifies independence of source random

variables. (3) and (4) correspond to encoding and decoding

requirements respectively; (5) means that the entropy of the

random variable carried by any link cannot exceed the link

capacity.

The LP bound is the set of all rate tuples satisfying (2)-(5)

together with the basic inequalities. The basic inequalities are

non-negativity of entropy, conditional entropy and conditional

mutual information. The set of the elemental basic inequalities

H(A|{YS , UE} \A) ≥ 0, A ∈ {YS , UE} (6)

I(A;B|C) ≥ 0, A �= B �= ∅, A,B ∈ {YS , UE},
C ⊆ {YS , UE} \ {A,B} (7)

represents (implies) all Shannon-type inequalities for the ran-

dom variables YS , UE and is minimal [10]. Note that con-

straints (1)-(7) are linear and hence weighted sum-rate LP

bound can be computed by solving the linear programm

maximize
∑

S∈S
wSH(YS) subject to (2)− (7) (8)

where wS is any non-negative constant for source S called

weight coefficient.

The simple and elegant formulation of the weighted sum-

rate LP bound in (8) is deceptive since it is computationally

very expensive. In fact, the number of variables (all possible

joint entropies) and the constraints (7) for the LP bound com-

putation increase exponentially with the number of random

variables. Hence the LP bound is not useful for most practical

network scenarios.

B. Functional Dependence Bound

An easily computable relaxation of the LP bound is in-

troduced in [3], called functional dependence (FD) bound.

The notion of irreducible sets in the functional dependence

graphs (FDG) was developed to characterize the functional

dependence bound. FDG is defined in [3] as:

Definition 1 (Functional dependence graph [3]): Let V̄ be

a set of random variables. A directed graph Ḡ = (V̄, Ē) is

called a functional dependence graph for V̄ if and only if for

all V ∈ V̄
H(V |{U : (U, V ) ∈ Ē}) = 0. (9)

Note that, using the encoding and decoding constraints (3)-

(4) for a given network G (i.e., local functional dependence

constraints at nodes), an FDG can be constructed for the set

of source and edge random variables. For two disjoint sets

A,B ⊂ V̄ in an FDG Ḡ = (V̄, Ē), we say A determines B,

denoted as A → B, if no elements in B are left in the FDG

after deleting all outgoing edges from A and subsequently the

nodes and edges with no incoming edges or nodes respectively.

The largest set of nodes that is determined by A is denoted by

φ(A). It is shown in [3] that, if A → B, we have H(B|A) = 0.

A set of nodes A ⊂ V̄ is called irreducible if there is no

proper subset of A dominates A, i.e., � ∃B � A : B → A. An

irreducible set A is maximal if A → V̄ , which is equivalent to

V̄ = φ(A) or YS ⊂ φ(A) [3]. Following the same notations

in [7], we use K to represent the set of all irreducible sets for

Ḡ, M to denote the set of all maximal irreducible sets and

thus Mc � K \M is the set of all non-maximal irreducible

sets. The functional dependence bound [3] is obtained by

invoking the sub-additivity of entropy of elements in maximal

irreducible sets.

Theorem 1: [3] Let G = (V, E) be a given network with

source and edge random variables YS , UE , mappings a, b and

constraints (1)-(5). Let Ḡ = (V̄, Ē) be a functional dependence

graph for the given network and let M be the collection of

all maximal irreducible sets. Then
∑

S∈W
RS ≤ C(W) � min

∑

E∈A,{UA,YWc}∈M
CE (10)

where W ⊆ S,Wc � S \W and CE is the capacity of edge

E ∈ E .

III. MAIN RESULT

In this section, given a network, we characterize a class of

Shannon-type inequalities that are useful to obtain a weighted

sum-rate bound and thus improve the FD bound. We first give

an example to elaborate the main idea.

Example 1: For the network shown in Fig.1(a), assume that

each edge has unit capacity. The maximal irreducible sets

obtained based on its reduced FDG [11] shown in Fig.1(b)
are {Y1, Y2}, {Y2, U6, U12}, {Y2, U9, U12}, {Y2, U6, U15},
{Y2, U6, U15}, {U6, U9, U15} and {U6, U12, U15}. Thus, the

FD bound of this network is formed by the following inequal-

ities:
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Fig. 1. A 2-unicast network counter-example for FD bound

H(Y1, Y2) = H(Y2, U6, U12) (11)

H(Y1) +H(Y2) ≤ H(Y2) +H(U6) +H(U12) (12)

R1 ≤ 2 (13)

H(Y1, Y2) = H(U6, U12, U15) (14)

H(Y1) +H(Y2) ≤ H(U6) +H(U12) +H(U15) (15)

R1 +R2 ≤ 3 (16)

However, the FD bound for the network is not tight since the

rate tuple (R1, R2) = (2, 1) satisfying (13) and (16) is not

achievable. We prove this using a submodular inequality as

follows.

H(Y1) +H(Y2) = H(Y1, Y2)

=H(U6, U12, U15)

≤H(U6) +H(U12, U15)

=H(U6) +H(U12, U15) +H(Y1, Y2)−H(Y1, Y2)

(a)
=H(U6) +H(U12, U15) +H(U12, U15, Y1, Y2)−H(Y1, Y2)

(b)

≤H(U6) +H(U12, U15, Y1) +H(U12, U15, Y2)−H(Y1, Y2)

(c)

≤H(U6) +H(U9, U15) +H(U12, Y2)−H(Y1, Y2)

≤4−H(Y1)

Hence

2R1 +R2 = 2H(Y1) +H(Y2) ≤ 4 (17)

where (a) follows since in the FDG {U12, U15} ⊂ φ(Y1, Y2)
and hence H(U12, U15, Y1, Y2) = H(Y1, Y2), (b) follows from

the submodularity of entropy

H(U12, U15) +H(Y1, Y2, U12, U15)

≤ H(U12, U15, Y1) +H(U12, U15, Y2) (18)

and (c) follows since {U12, Y1} ⊂ φ(U9, U15) and U15 ∈
φ(U12, Y2), which imply H(U12, U15, Y1) ≤ H(U9, U15) and

H(U12, U15, Y2) = H(U12, Y2) respectively.

Note that, the inequality (17) is not implied by (13) and

(16) and hence its inclusion strictly improves the functional

dependence bound as shown in Fig.1(c). The region defined by

(13), (16) and (17) together with non-negativity of information

rates is in fact the capacity region of this network. To prove

this, we only need to show the achievement of rate pair

(R1, R2) = (1, 2) and other points are achieved simply by

pure routing and time sharing. Assume that source 1 want

to transmit the packet a and source 2 wants to transmit two

packets (b1, b2) to their corresponding receivers. This can be

achieved by letting head nodes of the edges 6, 9, 12, 15
perform network coding as indicated in the FDG (Fig.1(b))

while letting head nodes of remaining edges perform routing.

A. A Class of Shannon-type Inequalities
Now, we characterize a class of Shannon-type inequalities

that renders, together with sub-additivity of entropy, weighted

sum-rate bounds and is guaranteed to improve the functional

dependence bound. Let L � {A : A ∈M, YS �∈ A, ∀S ∈ S}
be the set of all maximal irreducible sets that contain edge

variables only. Consider A ∈ L and B ⊂ UE , for any W ⊂ S .

H(YW) +H(YWc) = H(YW , YWc) = H(A) = H(A,B)
≤H(B) +H(A \ B) +H(YS)−H(YS)
=H(B) +H(A \ B) +H(YW , YWc)−H(YS)
(a)

≤H(A \ B) +H(YW ,B) +H(YWc ,B)−H(YW , YWc)

where (a) follows from the submodular inequality

H(YW , YWc) +H(B) ≤ H(YW ,B) +H(YWc ,B). (19)

Proposition 1: For a maximal irreducible set A ∈ L and

some B ⊂ UE , Shannon-type inequalities of the form (19)

render weighted sum-rate bound and improve the functional

dependence bound if following three conditions are satisfied.

1) There exists some set of edge random variables UX such

that (YW ,B) ⊆ φ(UX ),
2) There exists some set of edge random variables UZ such

that B ⊆ φ(YWc , UZ) and

3)
∑

E∈A\B
CE +

∑

E∈X
CE +

∑

E∈Z
CE < C(S) + C(W).

Proof: Condition 1, (YW ,B) ⊆ φ(UX ), is equivalent to

UX → (YW ,B). Hence, by [3, Theorem 1], H(YW ,B|UX ) =
0. Expressing this conditional entropy in the elemental form

(6) leads to

H(UX ) = H(UX , YW ,B) ≥ H(YW ,B). (20)

Similarly, Condition 2 implies

H(YWc , UZ) ≥ H(YWc , UZ ,B) ≥ H(YWc ,B). (21)

A weighted sum-rate bound can be obtained by utilizing (20),

(21) and (19) as follows.

H(YW) +H(YWc) = H(YW , YWc) = H(A) = H(A,B)
≤ H(A \ B) +H(YW ,B) +H(YWc ,B)−H(YS)
(a)

≤ H(A \ B) +H(UX ) +H(YWc , UZ)−H(YW)−H(YWc)

≤ H(A \ B) +H(UX ) +H(UZ)−H(YW) (22)
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where (a) follows from (20) and (21). Hence, by (1) and (5)

2
∑

S∈W
RS +

∑

S∈Wc

RS ≤ 2H(YW) +H(YWc)

≤ H(A \ B) +H(UX ) +H(UZ)

≤
∑

E∈A\B
CE +

∑

E∈X
CE +

∑

E∈Z
CE .

(23)

The FD bound states
∑

S∈W RS ≤ C(W);
∑

S∈Wc RS ≤
C(Wc);

∑
S∈S RS ≤ C(S). The trivial weighted bounded

implied by these FD bounds is 2
∑

S∈W RS +
∑

S∈Wc RS ≤
C(S)+C(W). Thus, (23) provides improvement over the FD

bound if Condition 3 is satisfied.

B. An Algorithm to Find the Weighted Bound

Proposition 1 provides sufficient conditions to obtain the

weighted bound. However, it does not tell how to find the sets

of variables B, UX and UZ . In this subsection, we examine the

properties of these variables and describe the steps for finding

UX , A \ B, UZ and B sequentially. Finally, an algorithm is

constructed to obtain the weighted bounds.

Lemma 1: For W1,W2 ⊆ S , let UC ⊆ UE be a subset of

edge variables. If YW2
⊆ φ(YS\(W1∪W2), UC) in the FDG Ḡ,

then C is an edge-cut separating a(W1) and b−1(W2) in G.

Proof: Suppose the edge cut C does not separate a(W1)
and b−1(W2) in G and hence there exists a path from a(W1)
to b−1(W2) in G which does not contain any edge from the

set C. Then there must exist a directed path from YW1 to YW2

in Ḡ which does not contain any node from the set UC . But,

this contradicts the assumption YW2
⊆ φ(YS\(W1∪W2), UC).

To simplify the description, let ΓW1−W2
(G) denote the

collection of all minimal edge-cuts1 separating b−1(W2) and

a(W1) in G.

As YW ∈ φ(UX ), according to Lemma 1, UX must be a

cut separating a(S) from b−1(W) in G. To tighten the resulted

weighted bound, we search for suitable UX from ΓS−W(G).
Lemma 2:

∑
E∈X CE < C(S)

Proof: Assume that
∑

E∈X CE ≥ C(S). This assump-

tion, together with Condition 3 in Proposition 1, gives
∑

E∈A\B
CE +

∑

E∈Z
CE < C(W). (24)

However, Condition 2 in Proposition 1 states (YWc ,B) ⊆
φ(YWc , UZ). Thus, φ(YWc , UZ ,A\B) ⊇ φ(YWc ,B,A\B) ⊇
φ(A) = V̄ . Therefore, according to the definition of C(W)
in (10), we have

∑
E∈A\B CE +

∑
E∈Z CE ≥ C(W) which

contradicts (24).

Denote D = A \ B. Since φ(D, UX ) ⊇ φ(D,B) = V̄ ,

D must be an edge-cut separating b−1(Wc) from a(Wc) in

G[V\UX ]2. Thus, we search for D from ΓWc−Wc(G[V\UX ]).
1If the cut contains any edge that is not present in the reduced FDG, it is

not included in ΓW1−W2 (G).
2For a graph G = (V, E) and K ⊂ V , G[V \ K] denotes the subgraph of

G induced by V \K and it is defined by the node set V \K and the edge set
{E = (A,B) ∈ E : A,B ∈ V \ K}.

Since φ(D, YWc , UZ) ⊇ φ(D,B) = V̄ , UZ must separate

b−1(W) from a(W) in G[V \ D]. Therefore, we search UZ
from ΓW−W(G[V \ D]).

Lemma 3: C(W)−
∑

E∈D
CE ≤

∑

E∈Z
CE < C(S)+C(W)−

∑

E∈X
CE −

∑

E∈D
CE

Proof: The lower bound on
∑

E∈Z CE follows from

the definition of C(W) and the upper bound results from

Condition 3 in Proposition 1.

To sum up, the search space for UZ is reduced to

OZ = {UZ : UZ ∈ ΓW−W(G[V \ D]), C(W)−
∑

E∈D
CE

≤
∑

E∈Z
CE < C(S) + C(W)−

∑

E∈X
CE −

∑

E∈D
CE}.

(25)

Finally, we need to determine the set B. According to Con-

dition 1 and Condition 2 in Proposition 1, B ⊆ φ(UX ) ∩
φ(YWc , UZ) \ YS . The weighted bound in (22) is valid if

φ(D,B) = V̄ . Therefore, we maximize the set B by setting

B = φ(UX ) ∩ φ(YWc , UZ) \ YS .

The procedures of computing weighted bounds based on

above lemmas are summarized in Algorithm 1.

Algorithm 1 WeightedBd(G = (V, E), {CE , E ∈ E}, Ḡ,M)

for W � S do
Find ΓS−W(G)
OX = {UX : UX ∈ ΓS−W ,

∑
E∈X CE < C(S)}

for UX ∈ OX do
Find ΓWc−Wc(G[V \ UX ])
for D ∈ ΓWc−Wc(G[V \ UX ]) do

Find ΓW−W(G[V \ D])
Find OZ (refer (25))

for UZ ∈ OZ do
B = φ(UX ) ∩ φ(YWc , UZ) \ YS
if φ(D,B) = V̄ then

Output (23)

end if
end for

end for
end for

end for

Example 2: Consider the 2-unicast network shown in

Fig.2(a) with its reduced FDG shown in Fig.2(b). Assume

unit edge capacity. We can obtain:

M = {{Y1, U17}, {Y1, U6, U13}, {Y2, U6, U7}, {Y2, U6, U13},
{Y2, U12, U7}, {Y2, U12, U7}, {Y2, U12, U13},
{U6, U7, U13}, {U6, U12, U13}, {U17, U6, U7},
{U17, U6, U13}, {U17, U12, U7}, {U17, U12, U13}}

Consider YW = Y2, we have C(W) = 2, C(S) = 3
and ΓS−W = {{U12, U13}, {U6, U7, U13}}. Combining with
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the capacity constraint, the search space of UX is further

reduced to OX = {{U12, U13}}. Given UX = {U12, U13},
ΓWc−Wc(G[V \ UX ]) = {{U6}, {U17}}.

When D = {U6}, ΓW−W(G[V \ D]) =
{{U7}, {U13}}, OZ = {{U7}, {U13}}. Note that

φ(UX ) = {Y2, U12, U13, U7}. When UZ = {U7},
φ(YWc , UZ) = {Y1, U7, U13}. Therefore, B = {U7, U13}
which forms a maximal set with D. We can obtain the

nontrivial weighted bound: R1 +2R2 ≤ |D|+ |X |+ |Z| = 4.

However, when UZ = {U13}, φ(YWc , UZ) = {Y1, U13}
which leads to B = {U13} and no weighted bound can be

obtained as φ(B,D) �= V̄ .
When D = {U17}, ΓW−W(G[V \ D]) =

{{U6, U7}, {U6, U13}, {U12, U13}} and OZ = ∅. It does not

render any weighted bound.

Fig. 2. A 2-unicast network example

C. Discussion
The weighted bound obtained in Algorithm 1 can be in-

terpreted as follows: when the sources W are transmitting

at their maximal possible sum rate C(W), data carried by

edge set B can no longer be independent and H(B) ≤∑
E∈X CE+

∑
E∈Z CE−H(YW) <

∑
E∈B CE . If Condition

3 in Proposition 1 is satisfied, it strictly improves the FD bound

together with
∑

S∈S RS ≤ H(D) +H(B).
For computing this weighted bound, proposed algorithm

can be much more efficient than the LP bound for small to

medium size networks. Consider Example 2, to find the bound

of (R1 + 2R2) using linear programming method requires

solving the problem of dimension 31 with 691 constraints.

Although proposed algorithm contains 3 for-loops, the number

of iterations is actually very small, as |OX | = 1 and with the

unique element in OX , |ΓWc−Wc(G[V \ UX ])| = 2. For the

two choices of D, we have |OZ | = 2 and 0 respectively.

Moreover, there exists efficient polynomial-time algorithm for

finding the minimal cuts between a pair of nodes in a directed

acyclic graph [12].

IV. CONCLUSION

While LP bound is one of the tightest explicit upper bound,

it is “computationally infeasible”. On the other hand, the FD

bound is an easily computable upper bound but it is quite

loose. In this paper, we develop an algorithm for computing

weighted bounds that strictly improves the FD bound. The

weighted bound with weight coefficients wS ∈ {0, 1, 2}, S ∈
S is obtained using a set of submodular inequalities of

entropy by examining the maximal irreducible sets of a given

network. Along this line of research, the following problems

are interesting to investigate: (1) Characterize Shannon-type

inequalities leading to weighted bounds with broader values

of wS . (2) Characterize non-Shannon-type inequalities leading

to weighted bounds for a given network.
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