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ABSTRACT Recently, reconfigurable intelligent surfaces (RISs) have been identified as one potential
solution to avoid performance degradation of using millimeter wave (mmWave) frequencies in vehicular
communications. In this paper, we investigate the use of an RIS in a mmWave vehicular communication
network. The problem of weighted sum-rate maximization in the uplink is considered, where an RIS is
used to assist the communication. We focus on both single-user and multi-user cases. Single user case is
solved using successive refinement algorithm, where two phase-optimization schemes that help reducing
the channel estimation overhead are considered. In multi-user case, fractional programming technique
is used to reformulate the original problem into a more convenient form, and an algorithm based on
alternating optimization is proposed. The validity of the proposed methods is confirmed by numerical
simulations. A significant performance increase is seen when utilizing an RIS in both cases. Considered
phase optimization schemes are shown to result in a significant reduction in channel estimation at a cost
of small performance degradation compared to the full channel state information beamforming scenario.
We perform simulations to investigate the effects of mobility, and the results demonstrate the ability of an
RIS to mitigate the effects of mobility to some extent. Furthermore, to get practical insights into vehicular
communications aided by an RIS, we use a commercial ray-tracing tool to evaluate the performance.

INDEX TERMS Alternating optimization, fractional programming, mmWave communications, passive
beamforming, ray tracing, reconfigurable intelligent surfaces, vehicular communications.

I. INTRODUCTION

TODAY we rely heavily on real time information such as
traffic conditions, weather changes and updates on road

regulations to have a smooth and efficient driving experience.
Also, vehicle manufacturers are putting more and more safety
mechanisms into vehicles. A vehicle in the future will need to
communicate with a lot of devices nearby consisting of other
vehicles, roadside sensors and wireless access points, to pro-
vide autonomous driving capabilities giving additional safety
and comfort for the passengers. All these applications depend
on wireless communication to connect to devices with high
reliability, low latency, and higher data rates. However, the
inherent randomness in the wireless propagation environment
brings challenges to the connectivity. Recently, RISs have

been introduced into the wireless communication landscape
as a means to control the wireless propagation environment
with software-controlled reflections [1].
Generally, an RIS consists of large number of passive

reflecting elements arranged in a planar array. The phase
shift of each of the reflecting elements can be controlled
independently in an intelligent manner to improve the com-
munication. Advanced relaying, which was a significant topic
some time ago, also controls the signal propagation between
endpoints. However, reflecting elements of RIS are passive
and they do not have any active transmit radio frequency
(RF) chains, making it possible to be implemented with low
hardware complexity and operated with low energy costs [2].
Also, RIS can naturally operate in full-duplex (FD) mode
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and is free of noise amplification at antennas as well as
self-interference [3]. An RIS will be a low-profile auxiliary
device that can be easily integrated into an existing com-
munication network transparently, providing great flexibility
and compatibility in terms of deployment [3].
The information transfer capabilities of RISs are analyzed

in [4] and it is established that the normalized capacity
is linearly proportional to the average transmitted energy
per square meter, which is an improvement over massive
multiple-input multiple-output (MIMO) systems. The exist-
ing communication in the wireless network can be improved
by using an RIS. For example, the received signal power at
the user can be increased by controlling RIS phase shifts
with the reflected signal being added constructively. The
interference can be reduced by controlling RIS phase shifts
with the reflected signal being added destructively. When
utilizing an RIS we need to optimize the phase shifts at
the RIS in addition to transmit/receive beamforming. This is
known as passive beamforming or phase optimization. The
problem of solving joint transmit beamforming and passive
beamforming is considered in [5]. They propose an efficient
algorithm based on the alternating optimization of phase
shifts and transmit beamforming vector in an iterative man-
ner. In [6], this is further extended to consider discrete phase
shifts at the RIS, which is an important consideration since
practical implementation is possible with only discrete phase
shifts.
The effective channel through RIS consists of three com-

ponents, namely, the direct channel from BS to the user,
indirect channel from BS to RIS and reflection channel
from RIS to user. A reflecting element in the RIS captures
the transmitted signal and re-scatters it in every direc-
tion [7], [8]. As a result of the scattering nature of RIS
elements, the total path loss through RIS is the product of
the path losses through transmitter to RIS and RIS to receiver
links [8]. A large number of reflecting elements are needed
to compensate for this severe path loss by means of pas-
sive beamforming. Furthermore, the careful positioning of
the RIS is important in order to get the full benefits of RIS
as pointed out by the simulations in [7].
Passive beamforming depends on accurate channel esti-

mates being available. However, estimating the channel at
the RIS is difficult since the reconfigurable surface consists
of passive elements and limited processing power is avail-
able at the RIS. In [9], a scheme that divides RIS elements
into groups which shares a common reflection coefficient
has been considered. This reduces the channel estimation
overhead, since only the combined channel of each group
needs to be estimated. In [10], a scheme that only lever-
ages the angle of arrival (AoA) of the line-of-sight (LoS)
BS-RIS channel and the angle of departure (AoD) of the
LoS RIS-User channel to design the reflecting matrix has
been utilized, to reduce computational complexity of RIS
reflection matrix. Two schemes that can be used for RIS
channel estimation are proposed in [11]. In their work they
consider an RIS having few active elements in addition to

the passive elements. These active elements can be used to
take measurements of the channel. The first method uses
compressive sensing to construct the complete channel state
information (CSI) from the sparse measurements taken. In
the second method, a deep learning model is trained to inter-
act with the incident signal, given the channel measured by
the active elements.
However, most theoretical work assumes full CSI being

available at the BS, which will be hard to obtain in prac-
tice as pointed out earlier. Therefore, it is important to
investigate robust transmission strategies for RIS aided com-
munications. Robust active precoder and passive reflection
beamforming design is investigated in [12] based on the
assumption of an imperfect reflection channel. The reflection
channel uncertainties are addressed using an ellipsoid model.
They consider the transmit power minimization problem at
the BS by jointly designing active precoder at the BS and
passive beamforming at RIS while ensuring the quality of
service (QoS) requirements of all users are met under all
channel error realizations. Robust transmission design based
on imperfect cascaded BS-RIS-user channels is presented
in [13]. They consider the design of a robust active and
passive beamforming scheme to minimize the total trans-
mit power under both the bounded CSI error model and
statistical CSI error model.
Vehicular communications have been heavily studied in

literature to realize the concept of intelligent transportation
systems (ITS) [14]. There are various vehicular applica-
tions emerged including safety related, passenger comfort
and entertainment applications. Autonomous driving vehi-
cles are also being heavily focused and invested [15], and
they will soon be ready for everyday use. However, they
bring great challenges in terms of wireless communications.
The reason is they consist of various data intensive sensors
such as light detection and ranging (LiDAR) sensors, radio
detection and ranging (RADAR) sensors and cameras [16].
Intel has estimated that on average an autonomous vehi-
cle will generate about 4TB of data per day, with LiDARs
and cameras generating between 10-70 MB and 20-40 MB
per second respectively [17]. Traditionally, dedicated short-
range communication (DSRC) standard has been used to
support vehicular communications. It can support data rates
up to 27 Mb/s within a 1 Km radius. However, recent usage
of data intensive sensors has resulted in vehicular commu-
nication networks having to support Gb/s data rates [14].
These high data rates require a large system bandwidth
which can be hardly supported by existing sub-6 GHz
cellular networks. These facts have motivated the utiliza-
tion of mmWave frequency band (10 GHz-300 GHz) that
has a largely available bandwidth [14] for vehicular com-
munications. However, mmWave frequencies experience a
higher path loss, thus reducing the transmission range. Large
antenna arrays that can achieve a significant beamforming
gain, are needed in order to compensate for this severe
path loss [18]. On the other hand, the high directivity in
mmWave communication make it vulnerable to blockages,
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which will be frequent in urban environments where vehicles
will be driven normally. Recently, RISs have been proposed
in [19] to overcome these challenges. They consider a sce-
nario where multiple RISs are deployed to assist downlink
mmWave communication. The received power is maximized
by jointly optimizing transmit beamforming at the BS and
passive beamforming at the RIS.
RIS assisted vehicular communication has recently gained

some attention in the literature. In [20], an RIS enabled
vehicular network is investigated to improve the physical
layer security. They have presented two vehicular network
models, one with an RIS based access point (AP) and
another model with an RIS based relay. The outage prob-
ability of an RIS assisted vehicular networks is analyzed
in [21]. They have compared the outage performance of tradi-
tional vehicular networks and RIS aided vehicular networks.
Resource allocation for an RIS assisted vehicular com-
munications is studied in [22], where vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) links with differ-
ent QoS requirements share spectrum. They consider the
sum V2I capacity maximization problem while guarantee-
ing the signal-to-interference-plus-noise ratio (SINR) of the
V2V links. This is associated with the joint optimization of
power coefficients, RIS reflection coefficients and spectrum
allocation.
To the best of authors’ knowledge, the RIS aided weighted

sum rate (WSR) maximization problem for mmWave vehic-
ular uplink is not investigated in the literature. Although,
WSR maximization for RIS aided communication systems
are investigated in [23], [24] and [25], those did not con-
sider the vehicular scenario, and a continuous phase shift
model is used for the RIS. WSR maximization for an RIS
aided multiple-input single-output (MISO) downlink com-
munication system is investigated in [25], where the authors
use fractional programming (FP) techniques [26] to decom-
pose the original problem into four disjoint blocks and to
design a low-complexity algorithm based on the non-convex
block coordinate descent (BCD) method. The achievable rate
maximization in uplink of a mmWave vehicular communi-
cation network is investigated in the conference article [27],
which we extend to consider multiple vehicles with the
current work.
In this paper, we consider the uplink of a mmWave vehicu-

lar network. Specifically, we model the network with a single
BS having multiple antennas and multiple vehicles each with
a single antenna. We introduce an RIS to improve the uplink
communication between the vehicles and the BS. We con-
sider discrete phase shifts at the RIS to closely resemble
the practical implementation, and we focus on the problem
of WSR maximization and provide solutions for single user
and multi-user cases separately. The main contributions of
this paper are summarized as follows:
1) For the single-user case, we focus on the phase

optimization problem at the RIS. The proposed algo-
rithm is based on successive refinement, and it has
much lower complexity than an exhaustive search. In

addition, we also consider two other schemes for RIS
phase optimization. One method is based on group-
ing reflecting elements in a large RIS, and the other
one is based on position-based passive beamforming.
Both these methods help to reduce the channel esti-
mation overhead, and we evaluate the applicability of
these two methods in the mmWave vehicular network
considered.

2) For the multi-user case, we reformulate the original
problem to a convenient form by using FP, and then
the proposed solution approach is based on alternating
optimization.

3) We perform simulations focusing on the time varying
channel of a moving vehicle, to better understand the
impact of an RIS in a vehicular network.

The numerical results show that the performance can be
significantly improved by utilizing an RIS in both single-
user and multi-user cases. The considered phase optimization
scheme with grouping provides a significant reduction in
the number of channel paths to be estimated while having
only a small performance degradation compared to full CSI.
Position based passive beamforming is also shown to be
useful in reducing the channel estimation overhead while
reaching the performance of full CSI for a large reflecting
array of 256 elements. For the multi-user case, it is observed
that the RIS can facilitate a user in close vicinity to com-
municate with a high rate. The numerical results also show
that the effects of the mobility can be mitigated to an extent
through the use of an RIS, which enables its usage in a
vehicular network. Furthermore, to gain practical insights in
a vehicular network, we have used a commercial ray-tracing
tool [28] and evaluated the proposed algorithms.
Notations: All boldface lower case and upper-case letters

represent vectors and matrices, respectively, and calligraphy
letters represent sets. The notation C

M denotes the set of
complex M-dimensional vectors, C

M×N denotes the set of
complex M×N sized matrices, |x| denotes the absolute value
of scalar x and ‖x‖ denotes the l2-norm of vector x. The
notation CN (µ,N0) denotes the complex circular Gaussian
distribution with mean µ and variance N0. The superscripts
()H and ()T are used to denote the Hermitian transpose
and the transpose of a matrix, and ()∗ denotes the complex
conjugate. Further, the notation diag(x) denotes a diagonal
matrix constructed from the vector x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a vehicular communication system with K users
and we label each user with an integer value k = 1, . . . ,K.
We assume that the BS is equipped with M antennas and
each vehicle has a single antenna. An RIS with N reflecting
elements is introduced to assist the communication. Network
is assumed to be communicating in time slots where nor-
malized time slot t ∈ {0, 1, . . . , }. Furthermore, we assume
that all the users are communicating simultaneously in each
time slot.
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FIGURE 1. System model for RIS assisted uplink.

The signal transmitted by the kth user during time slot t
is given by

xk(t) = √
pkmk(t), (1)

where mk(t) ∈ C represent the information bearing symbol
and pk is the transmit power of the kth user. We assume
that information bearing symbols are normalized such that
E[|mk(t)|2] = 1, therefore, E[|xk(t)|2] = pk. Furthermore, we
assume that all the users transmit their signals independently,
resulting E[xj(t)x

∗
k(t)] = 0 when j �= k.

The channel from each vehicle to the BS consists of 3
components. The channel from vehicle to RIS, channel from
RIS to BS and the direct channel from vehicle to BS. Out of
these channels, the channel from RIS to BS is common for
all the users. Let Hr ∈ C

M×N be the channel between the RIS
and BS, hv,k ∈ C

N be the channel between the kth vehicle
and RIS, and hd,k ∈ C

M be the direct channel between the
kth vehicle and BS, for k = 1, . . . ,K. The system model is
shown in Fig. 1 depicting the channels of the kth vehicle.
When the incoming signals reach the RIS, each reflecting

element of the RIS induces a phase shift to the signal and
scatter it back to the BS. We assume that the amplitude of
the signal does not change over the range of phase shifts.
We consider these phase shifts to be one of L discrete levels.
For simplicity, we assume these phase shifts take one of the
values obtained by uniformly quantizing the interval [0, 2π).
Thus, the set of discrete phase shifts for each reflecting
element is given by

F = {0, �θ, . . . , (L− 1)�θ}, (2)

where �θ = 2π/L. Let the, phase shifts of nth reflector of
RIS be, θn ∈ F .
The effective channel from vehicle to BS utilizing the nth

reflecting element can be expressed as

gn = exp(jθn)H
(n)
r h

(n)
v,k, (3)

where H(n)
r is the nth column of Hr and h

(n)
v,k is the nth

element of the vector hv,k. All the reflecting elements of
the RIS scatter the incoming signal in a similar manner.
The received signal for a certain user consists of the sum
of all the signal paths. The received signal of the kth user
consisting of reflection signal paths and the direct path can
be expressed as

yk =
(

N
∑

n=1

exp(jθn)H
(n)
r h

(n)
v,k + hd,k

)

xk, (4)

without considering the receiver noise. In-order to express
this in a more compact form we denote the reflection
matrix of the RIS by the diagonal matrix �, where � =
diag([ exp(jθ1), exp(jθ2), . . . , exp(jθN)]T). The received sig-
nal at the BS consists of the sum of the signals from all the
users. This can be expressed as

y =
K

∑

k=1

(

Hr�hv,k + hd,k
)

xk + n, (5)

where n = [n1, n2, . . . , nM] with nm ∼ CN (0,N0) being
the complex additive white Gaussian noise (AWGN) at BS
antennas.
The BS applies a linear beamforming vector wk ∈ C

M to
decode kth user’s message xk, the decoded symbol is

ŷk =
K

∑

k=1

wHk
(

Hr�hv,k + hd,k
)

xk + wHk n, for k = 1, . . . ,K.

(6)

Let us define �k = Hrdiag(hv,k) and v =
[ exp(jθ1), exp(jθ2), . . . , exp(jθN)]T . For notational simplic-
ity, we also define hd,k = bk. Then, the decoded signal for
the kth vehicle can be equivalently represented as

ŷk =
K

∑

k=1

wHk (�kv+ bk)xk + wHk n, for k = 1, . . . ,K. (7)

We assume that beamforming vectors at the BS are unit
vectors, i.e., ‖wk‖2 = 1, for k = 1, 2, . . . ,K. Then SINR
for the signal of the kth vehicle received at the BS can be
written as

SINRk =
pk|wHk (�kv+ bk)|2

∑

j �=k pj|wHk
(

�jv+ bj
)

|2 + N0

. (8)

Using the SINR expression in (8), the achievable rate for
kth vehicle can be expressed as

Rk = log(1 + SINRk)bit/s/Hz, for k = 1, . . . ,K. (9)

Let W = [w1, . . . ,wK] and p = [p1, . . . , pK]. For this
setup the WSR can be expressed as

f0(v, p,W) =
K

∑

k=1

ukRk, (10)

where uk is the weight associated with the kth user.
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Now the optimization problem can be formulated as
follows,

maximize f0(v, p,W)

subject to vi ∈ V, for i = 1, . . . ,N

pk ≤ Pmax, for k = 1, . . . ,K

‖wk‖2 = 1, for k = 1, . . . ,K, (11)

where vi for all i = 1, 2, . . . ,N, pk for all k = 1, 2, . . . ,K

and wk for all k = 1, 2, . . . ,K are the optimization variables.
Here, Pmax is the maximum transmit power level allowed for
the users and V is the set of discrete reflection coefficients
corresponding to the set of discrete phase shifts F , i.e.,

V = {exp(jθ)|θ ∈ F}. (12)

A. SINGLE USER ACHIEVABLE RATE MAXIMIZATION

Optimization problem (11) considers the joint optimization
of transmit powers of the users, receiver filtering coefficients
and phase shifts at the RIS. In order to get insights into the
phase optimization aspects, we first consider the single user
rate maximization problem. We denote the channel between
vehicle and RIS by hv ∈ C

N and the direct channel between
the vehicle and BS by hd ∈ C

M . The channel from RIS to
BS is denoted same as before.
In the single vehicle scenario, we do not have any

interference, therefore we can set the transmit power P =
Pmax. We set the receiver filtering coefficients using max-
imal ratio combining (MRC), which is optimal for single
user case, i.e.,

w = Hr�hv + hd

‖Hr�hv + hd‖
. (13)

Now the signal to noise ratio (SNR) can be written as

SNR = P‖Hr�hv + hd‖2

N0
. (14)

Using the SNR expression (14) the achievable rate can be
expressed as

R = log

(

1 + P‖Hr�hv + hd‖2

N0

)

bit/s/Hz. (15)

As we see from (15), the achievable rate is dependent on
the phase shifts at the RIS. Therefore, it should be possible
to achieve higher rates by properly tuning the reflection
matrix. This is known as passive beamforming or phase
optimization. We consider the phase optimization problem at
the RIS, where the achievable rate is maximized by choosing
the optimum discrete phase shifts, i.e.,

maximize R

subject to vi ∈ V, for i = 1, 2, . . . ,N, (16)

where vi for all i = 1, 2, . . . ,N are the optimization
variables.

III. ALGORITHM DEVELOPMENT FOR SINGLE USER

COMMUNICATIONS

In single user scenario we focus on finding the optimal
phase shifts that maximize the rate as given in optimization
problem (16). This problem is non-convex because of the
discrete phase shifts and the nature of the objective function.
It is possible to use exhaustive search to obtain the optimal
solution. This means that the algorithm must go through NL

possibilities to obtain the optimal solution, which is compu-
tationally infeasible for large reflecting arrays. However, it is
possible to develop a simple algorithm based on successive
refinement [6].
Let us define � = Hrdiag(hv) and v =

[ exp(jθ1), exp(jθ2), . . . , exp(jθN)]T . Also, let A = �H� and
b = �Hhd. RIS provides us with a way to control the chan-
nel conditions in a favorable way. We can increase the user
rate by improving the channel gain. Let us examine the
channel gain expression by expanding it. The channel gain
is given by

‖Hr�hv + hd‖2 = ‖�v+ hd‖2

= (�v+ hd)
H(�v+ hd)

= vHAv+ 2Re
{

vHb
}

+ ‖hd‖2. (17)

We can further simplify this expression by focusing on
a single reflecting element. We focus on the nth reflecting
element, keeping all the other reflecting elements i �= n

fixed. The simplified channel gain expression is given by

2Re
{

v∗nκn
}

+ τn, (18)

where κn =
∑

j �=n Anjvj + bn and τn =
∑

j �=n
∑

i �=n v
∗
i Aijvj +

2Re{
∑

i �=n v
∗
i bi} + Ann + ‖hd‖2. Here, Aij and bi represent

the individual elements of A and b respectively.
We see that expression (18) is linear in terms of vn, and

we know that the product of two complex quantities are
maximized when they are in phase. This enable us to find
the optimal phase shift for the nth reflector simply with
a linear search over discrete phase shift levels. Thus, the
optimal phase shift of the nth reflecting element is given by

θ
opt
n = arg min

θ∈F
|θ − κn|. (19)

Similarly, we can set the phase shifts of all the reflecting
elements. We do this in N steps optimizing a single reflect-
ing element at a time. We can express this procedure in
Algorithm 1.

A. EFFICIENT PHASE OPTIMIZATION SCHEMES

The phase optimization Algorithm 1 depends on the avail-
ability of full CSI for all the channels involved. An RIS
consists of large number of passive reflecting elements.
When utilizing the RIS, we need to estimate the channel
through each reflecting element in addition to the channel
between the vehicle and BS. Since reflecting elements are
not active, we need to depend on the pilots received at the
BS for channel estimation. We need to allocate a lot of
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Algorithm 1: Successive Refinement Algorithm

initialization: set � = �(0), set R
(0) = 0, set k = 1, set

R
(k) using equation (15)

while |R(k) − R
(k−1)| > ǫ do

for n=1 to N do
set θn using equation (19)

end
k = k + 1
set R

(k) using equation (15)
end

FIGURE 2. Reflect array divided into subgroups.

resources in order to estimate all the channels. Therefore, it
is important to investigate on ways to reduce this channel
estimation overhead. In the next 2 sections we will intro-
duce two phase optimization schemes that reduce the channel
estimation overhead.

1) GROUPING-BASED RIS PHASE OPTIMIZATION

The reflecting elements in the RIS are arranged in a pla-
nar array. We can group these elements together based on
the adjacency. After dividing the reflecting elements into
subgroups, we consider a subgroup as a single unit. We
perform channel estimation on subgroup basis instead of
element wise, resulting only one channel estimate for each
subgroup. Also, the phase optimization algorithm is per-
formed subgroup wise. Later, phase shifts of all the reflecting
elements in the subgroup are set to the same value for the
subgroup. This reduces the number of channels we need to
estimate considerably. For simplicity we consider uniform
grouping of reflecting elements.
For example, Fig. 2 shows a reflecting array consisting

of 6 × 6 reflecting elements. It is divided into 2 × 2 sized
subgroups. Each subgroup is considered as a single reflect-
ing element. Therefore, passive beamforming is effectively
done for a 3 × 3 reflecting array. This reduces the channel
estimation overhead as well as the complexity of the succes-
sive refinement algorithm. After the phase shifts are found,
phase shifts of all the reflectors in the group are set to the
same value for the subgroup.

2) POSITION-BASED PASSIVE BEAMFORMING

The directional angles change much slower than change of
CSI in the mmWave frequency band [29]. The position and

velocity can be used to determine the beam direction of a
vehicle undergoing vehicle to infrastructure (V2I) commu-
nication [30]. LoS links are prominent in this scenario [30].
Therefore, the system should be able to perform beamform-
ing solely based on LoS links. We can assume that BS
tracks the vehicle position, velocity, and also the arrival and
departure angles. Then, the LoS channel can be calculated
from this information. Assuming planar arrays at both the
BS and RIS, the LoS channel between BS and RIS can be
expressed as,

Hr,los =
√

Llos exp

(−j2πd

λ

)

abs

(

φbs, θbs
)

aHirs

(

φirs, θ irs
)

,

(20)

where d is the distance between BS and RIS, abs(φbs, θbs) ∈
C
M is the array response of BS for the considered azimuth

and elevation arrival angles, and airs(φ
irs, θ irs) ∈ C

N is the
array response of RIS for the considered azimuth and ele-
vation departure angles. Similarly, hv,los and hd,los can be
defined. In order to obtain full CSI, we need to estimate the
channels through each reflecting element. Here, we need to
only estimate the arrival and departure angles for the whole
array along with the position and velocity of the vehicle.
Therefore, this takes less overhead. After the LoS channel is
estimated the system can then perform passive beamforming.

IV. ALGORITHM DEVELOPMENT FOR MULTI-USER

COMMUNICATIONS

Compared to the optimization problem for single user
communication, the optimization problem for multi-user
communication is more complex. Now, the interference
between users must be taken into account. User power
allocation problem must be tackled in addition to phase
optimization and receive filtering. Also, the phase shifts at
the RIS must be optimized considering all the users.
The optimization problem described in (11) is non-convex

due to discrete phase shifts and also because of the com-
position of objective function. Yet, we can decompose the
original problem into a more tractable form by applying the
FP techniques presented in [26]. We were inspired by the
work presented in [25]. However, our optimization problem
is different since we consider uplink and an RIS with discrete
phase shifts. Also, we consider more general update rules
instead of BCD based update rules. First, we will introduce
the two FP transformations that we will use to reformulate
our problem.

A. FP TECHNIQUES

1) LAGRANGIAN DUAL TRANSFORM

Consider the following optimization problem of maximizing
the sum rate.

maximize
K

∑

k=1

log(1 + γk(x))

subject to x ∈ X , (21)
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where γk(x) is the SINR with x being the optimization
variable with domain X , where X is the feasible set. By
introducing auxiliary variables α = [α1, . . . , αk]

T , it can be
shown that problem (21) can be equivalently represented
as [26],

maximize
K

∑

k=1

log(1 + αk) − αk + (1 + αk)
γk(x)

1 + γk(x)

subject to x ∈ X

αk ≥ 0, for k=1,. . . , K, (22)

where x and α are the optimization variables. This trans-
form has enabled us to take the SINR expression out of the
logarithm. We can easily verify the equivalence of expres-
sions (21) and (22) by substituting αk = γk(x) in (22). For
given α, the problem (22) reduces to a SINR maximization
problem.

2) QUADRATIC TRANSFORM

Note that our SINR expression in (8) can be represented

in the form |A(x)|2
B(x)

. Then, we can formulate the SINR
maximization problem as,

maximize
K

∑

k=1

|Ak(x)|2
Bk(x)

subject to x ∈ X , (23)

where x is the optimization variable. By introducing auxiliary
variables β = [β1, . . . , βk]

T , this problem is equivalently
represented as [26],

maximize
K

∑

k=1

2Re
{

β∗
kAk(x)

}

− |βk|2Bk(x)

subject to x ∈ X , (24)

where x and β are the optimization variables. With these
results, we are now ready to reformulate our optimization
problem in a different form.

B. PROBLEM REFORMULATION

First, let us apply the Lagrangian dual transform (22) defined
in the last section to our original problem. This results in
the new objective function,

f1(θ , p,W,α) =
K

∑

k=1

uk log(1 + αk) −
K

∑

k=1

ukαk

+
K

∑

k=1

uk(1 + αk)|wHk (�kv+ bk)|2pk
∑K

j=1 |wHk
(

�jv+ bj
)

|2pj + N0

.

(25)

Next, we apply the quadratic transform (24) defined in
the last section. The resulting objective function can be

written as,

f2(v, p,W,α,β)

=
K

∑

k=1

uk log(1 + αk) −
K

∑

k=1

ukαk

+
K

∑

k=1

2
√

uk(1 + αk)pkRe
{

β∗
kw

H
k (�kv+ bk)

}

−
K

∑

k=1

|βk|2
⎛

⎝

K
∑

j=1

|wHk
(

�jv+ bj
)

|2pj + N0

⎞

⎠. (26)

The optimization problem (11) can now be represented as
follows,

maximize f2(v, p,W,α,β)

subject to vi ∈ V, for i = 1, 2, . . . ,N

pk ≤ Pmax, for k = 1, . . . ,K

‖wk‖2 = 1, for k = 1, . . . ,K

αk ≥ 0, for k = 1, . . . ,K, (27)

where v, p,W,α and β are the optimization variables. Still,
this problem is non-convex due to the form of the objective
function and discrete reflection coefficients. The optimization
variables are tightly coupled. However, now this problem is
analytically more tractable.

C. ALTERNATING OPTIMIZATION ALGORITHM

We tackle the optimization problem (27) by using alternating
optimization of variables. Here, we optimize one variable at
a time, keeping the other variables constant. We update the
optimization variables v, p,W,α, and β in 5 steps.

1) UPDATING AUXILIARY VARIABLES

The auxiliary variables α and β can be updated based on
the values of v, p, and W. An update rule can be derived
by setting the partial derivatives ∂f1

∂αk
and ∂f2

∂βk
to zero. Thus,

the update rules can be expressed as

αk =
p̄k

∣

∣w̄k
H(�kv̄+ bk)

∣

∣

2

∑

j �=k p̄j
∣

∣w̄k
H
(

�jv̄+ bj
)
∣

∣

2 + N0

, (28)

and

βk =
√
uk(1 + ᾱk)p̄kw̄k

H(�kv̄+ bk)
∑K

j=1 p̄j
∣

∣w̄k
H
(

�jv̄+ bj
)
∣

∣

2 + N0

. (29)

Note that αk it the SINR of the kth user. Therefore, it will
always be a real positive number and it will satisfy the
positive constraint in the optimization problem (27). Here,
βk corresponds to the decoded symbol of the kth user and
it is normalized by a number that depend on total signal,
interference and noise power.
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Algorithm 2: Receiver Filter Update Algorithm for kth
User

initialization: µ
upper
k , µlower

k
while µk = (µ

upper
k + µlowerk )/2

µ
upper
k − µlowerk > ǫ1 And |‖wk‖ − 1| > ǫ2 do

update wk using equation (31)
if ‖wk‖ > 1 then

µlower
k = µk

else

µ
upper
k = µk

end
end

2) UPDATING RECEIVER FILTER

The optimum receiver filter coefficients W are found using
the current values of the other optimization variables v, p,α
and β. This optimization problem can be expressed as

maximize f1
(

v̄, p̄,W, ᾱ, β̄
)

subject to ‖wk‖2 = 1, for k = 1, . . . ,K, (30)

where W is the optimization variable. The optimization
problem (30) has been studied extensively in the literature.
We can find a stationary solution to this problem by solving
the Lagrangian dual problem [31], and thus have

wk =
√

uk(1 + ᾱk)p̄kβ̄k

⎛

⎝µkIM + |β̄k|2
K

∑

j=1

p̄jh̄jh̄j
H

⎞

⎠

−1

h̄k,

(31)

where h̄j = �jv̄+bj and µk is the optimal dual variable such
that the unit gain constraint for receiver filter coefficient wk
is satisfied. We can search for the dual variable efficiently
through bisection [31] method. Algorithm 2 expresses the
calculation of wk based on the bisection method. Here, ǫ1

and ǫ2 are the error tolerances for the algorithm.

3) UPDATING TRANSMIT POWER OF USERS

We consider the uplink power control problem based on the
current values of the optimization variables v,W,α, and β.
This optimization problem can be expressed as

maximize f2
(

v̄, p, W̄, ᾱ, β̄
)

subject to pk ≤ Pmax, for k = 1, . . . ,K, (32)

where pk, for k = 1, . . . ,K are the optimization variables.
We find the optimum power coefficients by setting partial
derivatives ∂f2

∂pk
for k = 1, . . . ,K to zero. Thus the update

rule for the power coefficients is

pk = min(p̃k,Pmax), (33)

where

p̃k = uk(1 + ᾱk)

⎡

⎣

Re
{

β̄k
∗
w̄k

H(�kv̄+ bk)
}

∑K
j=1 |β̄j|2|w̄jH(�kv̄+ bk)|

2

⎤

⎦

2

, (34)

for k = 1, . . . ,K.

4) PHASE OPTIMIZATION

Based on the current values of other optimization vari-
ables we can consider the phase optimization problem. Let
us define cj,k = wHk φj and dj,k = wHk bj. We can rewrite
the optimization problem after dropping all the irrelevant
terms as

maximize f3(v)

subject to vi ∈ V, for i = 1, 2, . . . ,N, (35)

where f3(v) = vHQv + 2Re{rHv} and v is the optimization
variable. Here Q and r are defined as

Q = −
K

∑

k=1

|β̄k|2
K

∑

j=1

¯cj,kH ¯cj,k, (36)

and

r =
K

∑

k=1

⎡

⎣

√

uk(1 + ᾱk)p̄kβ̄k ¯ck,kH − |β̄k|2
K

∑

j=1

¯dj,k ¯cj,kH
⎤

⎦.

(37)

Optimization problem (35) is still non-convex due to dis-
crete phase shifts. It is possible to find the optimal solution
by brute force. However, this is not feasible for large reflect-
ing arrays, because the algorithm has to go through NL

possibilities. However, note that the objective function f3(v)
has the same form as the expression (17). Therefore, we can
alternatively optimize the phase shift of each reflecting ele-
ment individually keeping the other elements fixed. This will
yield a sub-optimal solution with much lower complexity.
We can focus on a single reflecting element, vn considering
all the other reflecting elements (vi, i �= n) fixed. We can
write the objective function as

f4(v) = 2Re
{

v∗nκn
}

+ τn, (38)

where κn =
∑

j �=n Qn,jvj+rn and τn =
∑

j �=n
∑

i �=n v
∗
i Qi,jvj+

2Re{
∑

i �=n v
∗
i ri} +Qn,n. Here, Qi,j and ri represent the indi-

vidual elements of Q and r respectively. The optimal phase
shift of each reflecting element can be obtained as

θ
opt
n = arg min

θ∈F
|θ − κn|. (39)

We can formulate the successive refinement algorithm sim-
ilar to algorithm 1. The complete alternating optimization
algorithm steps can be stated as Algorithm 3. Here, ǫ3 is the
threshold that determine the convergence of the algorithm.

D. OPTIMIZATION WITHOUT RIS

We intend to evaluate the gains of RIS aided communication.
Therefore, we need an algorithm to solve the optimization
problem without RIS assistance, which can be stated as
follows.

maximize f2(p,W,α,β)

subject to pk ≤ Pmax, fork = 1, 2, . . . ,K

‖wk‖2 = 1, fork = 1, 2, . . . ,K
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Algorithm 3: Alternating Optimization Algorithm for
RIS Aided Communications

initialization: v, p, W, set R(0) = 0, set t = 1, set R(1) with
equation (10)

while |R(t) − R(t−1)| > ǫ3 do
update αk using equation (28) for all k = 1, . . . ,K
update βk using equation (29) for all k = 1, . . . ,K
update v using Algorithm 1 with objective function (38))
update wk using Algorithm 2 for all k = 1, . . . ,K
update pk using equation (33) for all k = 1, . . . ,K
t = t + 1
calculate R(t) with equation (10)

end

αk ≥ 0, fork = 1, 2, . . . ,K, (40)

with

f2(p,W,α,β) =
K

∑

k=1

uk log(1 + αk) −
K

∑

k=1

ukαk

+
K

∑

k=1

2
√

uk(1 + αk)pkRe
{

β∗
kw

H
k bk

}

−
K

∑

k=1

|βk|2
⎛

⎝

K
∑

j=1

∣

∣

∣
wHk bj

∣

∣

∣

2
pj + N0

⎞

⎠, (41)

where p,W,α and β are the optimization variables.
This problem is also nonconvex due to the coupling of
optimization variables in the objective function. However,
we can use the same optimization procedure developed with
RIS while discarding phase optimization. Algorithm 4 illus-
trates this procedure. Here, ǫ4 is the error threshold of the
algorithm that determines the convergence.
The problem reformulation with the FP technique has

decoupled the signal and interference terms in the objective
function, also, enabling the application of successive refine-
ment. It has allowed the variables to exist in their original
discrete form, thus avoiding the additional step of rounding
to the closest discrete value. This is an efficient solution
which is scalable with the number of reflecting elements.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms and schemes. We consider two types of simula-
tions, based on stochastic channel modeling and ray tracing
using Wireless InSite [28]. In stochastic simulations we do
not take mobility into account and perform the simulations
using random channel realizations. Then, we carry out ray
tracing simulations taking mobility into account. First, we
present the results of single-user communication and then
multi-user communications. Finally, we perform stochastic
simulations using a time varying channel model to evaluate
mobility.
In stochastic simulations, we use the Rician fading model

for all the channels involved. In this model the channel

Algorithm 4: Alternating Optimization Algorithm
Without RIS Assistance

initialization: p, W, set R(0) = 0, set t = 1, set R(t) with
equation (10)

while |R(t) − R(t−1)| > ǫ4 do
update αk using equation (28) for all k = 1, . . . ,K
update βk using equation (29) for all k = 1, . . . ,K
update wk using Algorithm 2 for all k = 1, . . . ,K
update pk using equation (33) for all k = 1, . . . ,K
t = t + 1
calculate R(t) with equation (10)

end

FIGURE 3. Device positions in the stochastic simulation.

matrix is given by,

H = 1√
β + 1

Hnlos +
√

β

β + 1
Hlos, (42)

where Hnlos consists of independent and identically dis-
tributed Rayleigh fading coefficients, Hlos is the deterministic
LoS component, and β is the Rician factor. Let βr, βv and βd
be the Rician factors for RIS-BS, vehicle-RIS and vehicle-
BS links respectively. We use βr = ∞, which corresponds to
a pure LoS channel, βv = 1, and βd = 0, which corresponds
to a non-LoS channel. To model path loss, 3GPP TR 38.901
UMi - Street Canyon path loss model [32] is used.

A. SINGLE-USER COMMUNICATION

In this section, we evaluate the performance of algorithms
developed in Section III.

1) STOCHASTIC SIMULATIONS

Fig. 3 shows the position of the devices in the stochastic
simulation. BS is equipped with a 4 × 2 uniform planar
array (UPA) antenna panel. RIS consists of a planar array
of 16 × 16 passive reflecting elements. We consider a single
antenna transmitter at the vehicle. RIS is placed on the YZ
plane at a height airs = 1 m. BS is placed on the XZ plane
at a height abs = 2 m and at distances of bbs = 20 m, and
cbs = 10 m from the origin. Vehicle antenna is placed at
a height av = 1 m and at distances of bv = 1.5 m, and cv
from the origin.
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FIGURE 4. Variation of achievable rate as vehicle position is changed.

The variation of the achievable rate while changing the
position of the vehicle by changing cv is shown in Fig. 4. It
is obtained by averaging out over a large number of channel
realizations. A significant increase in the achievable rate
by utilizing the RIS is seen at the point cv = 0, which is
the closest point to the RIS. The performance improvement
decreases as the vehicle moves further away from the RIS.
Therefore, the vehicle needs to be in close proximity of the
RIS in-order to get a significant benefit. Otherwise, the path
loss will be severe, compromising the passive beamforming
gain.
Next, the position of the vehicle is fixed at cv = 0, which

is the closest point to the RIS. The transmit power is changed
and the achievable rate is observed for reconfigurable array
sizes of 16×16 and 8×8. Two phase optimization schemes
proposed in the last section are compared with full CSI
results as shown Fig. 5. We can see that both schemes per-
form close to each other. However, for the 16 × 16 array,
position-based beamforming is slightly better, and for the
8 × 8 array, grouping-based beamforming is better.

A degradation in the performance is observed when group-
ing is used instead of full CSI. However, there is still a
significant performance gain by utilizing the RIS with group-
ing compared to performance without RIS. Also, it should be
noted that, when a 16×16 reflecting array is used with 2×2

grouping, it effectively acts as an 8 × 8 panel in-terms of
passive beamforming. This reduces the number of reflection
paths to be estimated at the RIS by 75%. Yet, it provides
a better performance than utilizing an 8 × 8 reflecting array
with full CSI. Therefore, grouping facilitates the usage of
large reflecting arrays while keeping the channel estimation
overhead low.
The performance of position-based beamforming also

shows a reduction compared to beamforming with full CSI.
Nevertheless, it shows a good performance for the 16 × 16

array with only a small decrease in rate compared to full
CSI. However, the performance of the 8 × 8 array is not
satisfactory, and the rate curve lies closely to the rate curve

FIGURE 5. Comparison of variation of achievable rate with transmit power with

grouping and position-based beamforming.

FIGURE 6. Convergence of the successive refinement algorithm.

without RIS. Therefore, position-based beamforming is more
suitable for large reflecting arrays.
The convergence of the successive refinement based phase

optimization algorithm for a single channel realization is
shown in Fig. 6. We see that, the algorithm converges in just
3 iterations for 8 × 8 reflecting array. It converges in just 2
iterations for 16×16 array. Therefore, we can conclude that
the algorithm converges fast for reflecting arrays of different
sizes. Here, we have set the initial values of phase shifts to
zero (θi = 0, for all i = 1, 2, . . . ,N).

The effect of the number of discrete phase shift levels
available at the RIS is illustrated in Fig. 7. It shows that
using 1-bit phase shifts hardly provides any benefits to the
existing communication. As we increase this to 2-bit, a dra-
matic increase in the performance is seen. However, there
is only a slight performance improvement when we increase
phase shift levels to 3-bit. Therefore, we can get a good
performance just by utilizing a reflecting array with 2-bit
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FIGURE 7. Illustrating the effects of quantizing the phase shifts.

FIGURE 8. Simulating RIS aided system in Remcom Wireless InSite [28].

phase shifts. This is convenient since, the practical imple-
mentation of RISs allows only a limited number of discrete
phase shift levels.

2) RAY TRACING SIMULATIONS

Stochastic simulations have provided us with many insights
into RIS aided communications. However, they rely on
simplified assumptions such as static conditions and a sim-
ple channel model, and mobility is not taken into account
either. Since we focus on vehicular communications, we
need to perform a more complex simulation to model
mobility and the environmental conditions in detail. Ray
tracing is considered as a reliable methodology to estimate
complex propagation characteristics in mmWave vehicular
networks [33].
Fig. 8 shows the vehicular communication system mod-

eled in Remcom Wireless InSite [28]. Here, we consider an
urban scenario with surrounding building and roads. The BS
is placed at one side of the road. The RIS is placed at the
other side of the road to improve the performance of the
communication for a vehicle travelling closer to the RIS.
The route of the vehicle is defined with an average speed
of 10 m/s. Vehicular traffic is not considered for simplicity.
We model the RIS as a rectangular array of patch antennas.
We obtain the channel matrices after running the ray tracing
simulation. Then we consider the closest point of the vehi-
cle to the RIS and phase optimization is performed while
changing the transmit power. Fig. 9 shows the variation of

FIGURE 9. Variation of achievable rate with transmit power for the ray tracing

simulation.

achievable rate with transmit power for reflecting array sizes
of 8×8 and 16×16. There is a significant performance gain
for the 16 × 16 reflecting array. However, the 8 × 8 array
only shows a slight improvement over the communication
without RIS. This suggests that large reflecting arrays are
needed to improve the system performance considerably. As
we have seen in earlier simulations, ray tracing also confirms
the improvement to the communication provided by RIS.

B. MULTI-USER COMMUNICATIONS

In this section, we validate the algorithms developed in
Section IV for multi-user communications. We consider two
scenarios with different number of vehicles. All the scenar-
ios in this section utilize an RIS with 16 × 16 reflecting
elements to assist a BS with a 2×2 UPA antenna panel. We
use following benchmarks in these simulations to compare
the performance of the RIS aided system.

• Without RIS: We solve the optimization problem with-
out considering the RIS with Algorithm 4 and calculate
the performance.

• Randomized phase shifts: We run Algorithm 3 but use
random phase shifts for the RIS at each step.

• Equal power allocation with MRC (EQP-MRC): We
set equal power for the users with the maximum
power level and use MRC for receive beamforming,
while performing phase optimization with successive
refinement.

• Random phase iteration: We perform phase optimization
by setting the phases randomly. We repeat this process
for a fixed number of iterations and select the phase
shifts which give the maximum rate.

• Upper Bound: We run the Algorithm 3 for an extended
period (100 iterations) and take the maximum WSR
obtained as the upper bound.

Additionally, we evaluate the performance of position-based
beamforming along with these benchmarks.

VOLUME 2, 2021 697



DAMPAHALAGE et al.: WEIGHTED-SUM-RATE MAXIMIZATION FOR RIS AIDED VEHICULAR NETWORK

FIGURE 10. Variation of achievable rate with transmit power for K = 1.

FIGURE 11. Position of vehicles for multi-user scenario with K = 4.

1) STOCHASTIC SIMULATIONS

Revisiting Single-User Scenario: First, we set number of
vehicles as K = 1 and evaluate the performance of the
Algorithm 3. However, for this single user scenario there
is no power control problem and also, MRC is optimal for
receive filtering. Therefore, we fix the power at maximum
power level and in addition, we use MRC in the alternating
optimization algorithm presented in Section IV-C. The device
positions are same as what we considered in Section V-A1.
The plot of achievable rates with transmit power is shown

in Fig. 10. A significant increase in the achievable rate is
observed while utilizing the RIS, validating the operation of
alternating optimization algorithm that we developed. The
performance of the algorithm is very close to the upper
bound. As we can see, using random phase shifts at the
RIS does not provide any improvement. However, random
phase iteration provides somewhat higher performance com-
pared to just setting phases randomly and for without RIS as
well. Optimization problem for the single vehicle scenario
is comparatively easier than multiple vehicle scenario. There
is no interference and it is essentially a SNR maximization
problem. Next, we will consider a multi-user scenario.
Multi-User Scenario: We consider a multi-user scenario

with four vehicles. The positions of the vehicles, BS and RIS
are shown in Fig. 11 with same heights as in Section V-A1.
In order to provide fairness across all the users we set the

FIGURE 12. Variation of WSR with transmit power for K = 4.

FIGURE 13. Convergence of alternating optimization algorithm for K = 4 at

Pmax = 20 dBm.

weights of the users inversely proportional to the distant
dependent path loss between the BS and the vehicle. We set
the weight for the kth vehicle as

ũk = 1

L(dk)
(43a)

uk = ũk
∑K

k=1 ũk
, (43b)

where L(dk) denotes the distant dependent path loss and dk
is the distance between the BS and the kth vehicle.
Fig. 12 shows the plot of WSR with the variation of max-

imum transmit power. The results show that the RIS indeed
provides a huge improvement to the WSR and results are
quite close to the upper bound. EQP-MRC performs close
to the results of Algorithm 3 at low transmit power levels,
though the performance degradation increases as the transmit
power is increased. In our system, interference is miti-
gated through both power allocation, and active and passive
beamforming. For EQP-MRC, interference is mitigated only
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FIGURE 14. Per user achievable rates for K = 4 at Pmax = 20 dBm.

FIGURE 15. Simulating RIS aided multi vehicle system in Remcom Wireless

InSite [28].

through phase optimization, which is sufficient when there
is low interference. However, as the interference increases
due to the increase of transmit power, receive beamforming
and power allocation are also needed to obtain the required
performance, which explains the superior performance of
Algorithm 3. Fig. 13 shows the convergence of the alternat-
ing optimization algorithm for a certain channel realization.
We can see that the algorithm converges quite fast, just under
3 iterations.
In both Fig. 10 and Fig. 12, we have included the results of

position-based beamforming. We can see that, for the single
user case, position-based beamforming performs close to full
CSI results with only a small gap. However, for the multi-
user case this performance gap is high. The reason for this
is that, in multi-user case we need to consider LoS approx-
imation for all the channels involved for each user. Each
approximation introduces a certain error into beamforming
algorithm, which adds up to less accurate beamforming for
multi-user case. Still, it gives a considerable performance
gain than the system without RIS.
Next, we look at per user rates to get a closer look at how

the RIS has improved the communication. This is shown in
Fig. 14 for a certain channel realization. We see that, without
RIS all the users have low rates, and the rate of vehicle 1
has been significantly improved by utilizing the RIS. We
note that, it is the vehicle closest to the RIS. However, the
rates of other vehicles have been slightly reduced. Yet, the

FIGURE 16. Variation of WSR with transmit power for K = 4 from the ray tracing

based simulation.

RIS has enabled vehicle 1 to communicate with the BS at
a high rate, even though it is not the closest vehicle to the
BS. The communication link through RIS experiences high
path loss due to the scattering nature of RIS elements. The
benefits from passive beamforming get compromised by this
high path loss, unless the user is in close vicinity.
These stochastic simulations carried so far have given us

many useful insights into RIS aided vehicular communica-
tions. However, we based our simulations on a Rician fading
model which relies on simplified assumptions. Therefore, we
will next perform a realistic simulation using ray tracing to
get practical insights.

2) RAY TRACING SIMULATIONS

We perform a ray tracing simulation using Wireless
InSite [28] for multi-user scenario, similar to what we did for
single user scenario. We model an urban scenario depicting
buildings and roads, and consider four vehicles communi-
cating with the BS. The BS is on the other side of the road
away from the vehicles, and an RIS near the vehicles is
used to assist the communication. The weights of the users
are set using the weighting scheme (43b). Fig. 16 shows the
plot of WSR with maximum transmit power. We see that
the RIS provides a significant improvement in terms of the
WSR.
Fig. 17 shows the per user rates for the ray tracing

scenario. Vehicle 2 which is closest to the RIS has the
lowest rate without RIS, but it has the highest rate with
the help of RIS. The use of RIS has increased the rate
of vehicle 2 remarkably. However, RIS does not provide
any improvements to other vehicles. The reason for this
is the double path loss experienced by the links through
RIS as we saw earlier. Although passive beamforming
can improve the communication significantly, the users
need to be in close vicinity of the RIS in-order to get
any benefits, similar to what we have seen in stochastic
simulations.
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FIGURE 17. Per user achievable rates for K = 4 at Pmax = 0 dBm from the ray

tracing based simulation.

TABLE 1. Maximum drop of channel magnitude.

C. MOBILITY SIMULATIONS

We have not considered mobility in our previous stochastic
simulations. In our RIS aided system, the movement of the
vehicle introduces a Doppler shift, or frequency shift, into
the incident plane wave. The Doppler shift is given by

fD = fm cos θ Hz, (44)

where fm = v
λc
, v is the velocity of the vehicle, λc is the

wavelength of the arriving plane wave and θ is the angle
between direction of departure, and the moving direction of
the vehicle. We modify the static Rician channel considered
in (42) into a time varying channel. The time varying LoS
component is given by

Hlos(t) =
√

Llos exp(j2π fDt) exp

(−j2πd

λ

)

arxa
H
tx, (45)

where arx and aHtx are the array responses of receiver and
transmitter. The time varying non-LoS component Hnlos(t)

is generated by using a filtered white Gaussian noise
(FWGN) model, independently for each receiver-transmitter
pair. Based on this channel model, we perform several sim-
ulations to evaluate the mobility in the system. In these
simulations, we solve the optimization problem at each point,
using the algorithms developed.
Fig. 18(b) shows the variation of achievable rate as the

vehicle moves along the given trajectory with a velocity of
10 m/s. Results show that, the achievable rate decreases
exponentially as the vehicle moves away from the BS. The
fading is more severe than the static case simulated with
independent fading in each symbol, due to mobility. The RIS
improves the achievable rate significantly when the vehicle

FIGURE 18. Variation of achievable rate as the vehicle moves along a trajectory.

is in close vicinity. However, in order to get a noticeable
improvement, the vehicle needs to be in a certain range from
the RIS, which is about 10 m as we see from the results.

Then, we simulate the average achievable rate (AAR)
when the vehicle is moving near the RIS as shown in
Fig. 19(a), and the results are shown in Fig. 19(b). We
can see that the AAR slightly decreases with the increas-
ing velocity in the system without RIS. However, the RIS
aided system shows a notably higher AAR compared to the
system without RIS, and it stays stable across the consid-
ered velocities. In order to get a closer look at how the RIS
improves the achievable rate of the vehicle, we can look at
the channel magnitude. Fig. 20 shows the variation of chan-
nel magnitude in a certain period of time for the channel
between the vehicle and a single antenna element of the BS,
at different velocities of the vehicle. When looking at the
direct link without RIS, we can see that the channel under-
goes severe fading dips due to mobility. The frequency of
these fading dips increases as the velocity increases, which
explains the decrease in AAR with increasing velocity, as
seen in Fig. 19(a). The maximum drop of channel magnitude
for each case with and without RIS is given in TABLE 1. It
shows that, the effective channel utilizing RIS has notably
less severe dips compared to the direct channel, and it holds
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FIGURE 19. Effect of velocity on the average achievable rate.

FIGURE 20. Variation of the magnitude of the channel with mobility.

this behavior across all the velocities that we have consid-
ered. For example, at 20 m/s the maximum drop in channel
magnitude is about five times less while utilizing the RIS.
These simulation results show the ability of the RIS to mit-
igate the effects of mobility, which enables its usage in a
vehicular network.

VI. CONCLUSION

We have investigated an RIS aided mmWave vehicular com-
munication system in this work. First, we have considered
the achievable rate maximization in the uplink focusing on
a single vehicle. We have developed a successive refinement
based phase optimization algorithm, and we have proposed
two passive-beamforming schemes that can be utilized to
reduce the channel estimation overhead, which help enabling
the practical usage of large reflecting arrays. Then, we have
investigated multi-user communications, where we have con-
sidered the weighted sum rate maximization problem in the
uplink. We have used fractional programming techniques
to reformulate the problem into a more convenient form
and developed an alternating optimization algorithm that
solves the joint power control, receive filtering and phase
optimization problem. The performance of the algorithms
is verified through numerical simulations. The numerical
results have shown that an RIS indeed provides a signif-
icant improvement to the communication system without
RIS. Furthermore, we have used commercial ray tracing tool,
Wireless Insite [28] to perform realistic ray tracing simula-
tions. However, results have suggested that the vehicles need
to be in close vicinity of the RIS to get significant benefits.
Yet, RIS provides a way to enable communication at a high
rate when the vehicle is close to RIS. The passive operation
and low implementation cost make RIS a very appealing
tool for future mmWave vehicular networks.
In our simulations we have studied the time varying chan-

nel of a moving vehicle. The results demonstrate the ability
of the RIS to mitigate the effects of mobility to some
extent, thus enabling its usage in a vehicular network. In
the future, the current work will be extended to investigate
the performance improvement of a high mobility user by
associating more RISs to the network.
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