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Weighted Sum Rate Maximization in Full-Duplex

Multi-User Multi-Cell MIMO Networks
Paula Aquilina, Student Member, IEEE, Ali Cagatay Cirik, Member, IEEE,

and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In this paper we focus on a multi-user multi-cell
scenario with full-duplex (FD) base-stations (BSs) and half-
duplex (HD) downlink (DL) and uplink (UL) users, where all
nodes are equipped with multiple antennas. Our goal is to
design filters for weighted sum rate (WSR) maximization whilst
taking into consideration the effect of transmitter and receiver
distortion. Since WSR problems are non-convex we exploit
the relationship between rate and mean squared error (MSE)
in order to propose low complexity alternating optimization
algorithms which are guaranteed to converge. While the initial
design assumes perfect channel state information (CSI), we also
move beyond this assumption and consider WSR problems under
imperfect CSI. This is done using two types of error models; the
first is a norm-bounded error model, suitable for cases where the
CSI error is dominated by quantization issues, and the second is
a stochastic error model, suitable for errors that occur during the
channel estimation process itself. Results show that rates achieved
in FD mode are higher than those achieved by the baseline HD
schemes and demonstrate the robust performance of the proposed
imperfect CSI designs. Additionally we also extend our original
WSR problem to one which maximizes the total DL rate subject
to each UL user achieving a desired target rate. This latter design
can be used to overcome potential unfairness issues and ensure
that all UL users are equally served in every time slot.

Index Terms—Filter design, full-duplex, mean squared error,
MIMO, multi-cell, weighted sum rate maximization.

I. INTRODUCTION

THE demand for mobile wireless network resources is

constantly on the rise, pushing for new communication

technologies that are able to support unprecedented rates. One

such contender is full-duplex (FD) communication. Whilst

traditional half-duplex (HD) systems require separate time or

frequency resources for downlink (DL) and uplink (UL) com-

munication, FD considers simultaneous DL and UL transmis-

sion. The potential to significantly improve spectral efficiency

makes FD communication an attractive candidate solution to

the ever growing spectrum demand problem.

Even though the possible benefits of FD operation are easy

to foresee, there are implementation issues that may pose

significant challenges when trying to translate the theoretical

gains into practical ones. Self-interference (SI), where power
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from the DL transmission interferes with the UL received

signal at FD nodes has traditionally been considered a major

stumbling block. In fact FD communication was conven-

tionally believed to be infeasible due to the presence of

SI. However, in recent years, there have been a number of

breakthroughs in hardware design showing that SI can be

canceled up to acceptable levels [1]–[5] and demonstrating

the feasibility of FD nodes.

The promise of increased spectral efficiency, alongside with

the newfound ability to mitigate SI, has motivated a wide

range of research into FD communication and its possible

applications. For example, the use of FD operation in relays

[6], [7] and cognitive radio systems [8], [9] has proven to be

effective. Additionally FD operation, either at the base-station

(BS) only [10] or at both the users and the BS [11], has been

found to be particularly suited for small cell scenarios due

to the low transmit powers and small transmission distances

involved. Different to [6]–[11], which consider single-cell

systems, here we focus on a more practical multi-cell system

with FD BSs and HD users; the multi-cell aspect introduces

the additional challenge of co-channel-interference (CCI) from

nodes in other cells. A similar system has been considered

in [12] where the authors focus on user selection and power

allocation methods. A stochastic geometry approach for sys-

tem performance characterization of FD multi-cell systems

has been considered in [13]–[15]. In contrast to [12]–[15],

which assume all nodes are equipped with a single antenna,

we consider a multiple-input multiple-output (MIMO) system

and focus on beamformer design for weighted sum rate (WSR)

maximization.

As was hinted earlier, in this work we focus on a multi-cell

scenario where each BS serves multiple HD users; however

unlike traditional systems, the BSs operate in FD mode serving

all of their corresponding DL and UL users simultaneously.

The FD capability at the BSs and the inherent structure of the

network lead to a large amount of interference at the different

receivers. Fig. 1 provides a simple illustration of the network

under consideration, having G cells and one DL and one UL

user per cell. It can be seen that, apart from the usual standard

HD network interference components, for UL communication

BSs have additional SI and BS-to-BS interference, while DL

users have additional CCI from UL users both from the same

cell and from other cells.

Since our main focus is on small cell networks where

coverage distances are short and BSs and users have similar

transmission powers [16], we consider the case where none

of the interference components may be ignored; therefore
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Fig. 1: G-cell network with an FD BS, and one DL and one UL user per cell.
Solid lines represent desired links, while dashed ones represent interference
links.

the challenge is to manage all the interference while still

delivering good service to all users. This is in contrast to

prior studies which assume that CCI can be avoided via

scheduling [17], allocating different sub-carriers [18] or as-

suming channels between UL and DL users to be sufficiently

weak [19]. Additionally, we also take into consideration the

effect of transmitter and receiver distortion. These hardware

impairments are a natural consequence of non-ideal amplifiers,

oscillators, analog-to-digital converters (ADCs) and digital-to-

analog converters (DACs), and cannot be avoided in practice

[7], [9], [20].

Within this context, our aim is to investigate under what

conditions replacing HD BSs with FD ones may be beneficial

within a small cell scenario with multiple cells and multiple

legacy HD users. Since WSR problems are non-convex, we

map each of them to a weighted minimum mean squared error

(WMMSE) problem. This technique is less computationally

complex than gradient-based alternatives for WSR maximiza-

tion, is guaranteed to converge, and has been proven to work

for various types of HD networks [21]–[23]. The rate to MSE

relationship was also used for transceiver design in MIMO

interference channels with FD nodes throughout under the

perfect CSI assumption in [20]. Unlike [20], we consider HD

users and cater for multiple users per cell; additionally, we

cater for imperfect CSI under two different models. To the

best of our knowledge, the potential gains of FD operation in

a multi-cell multi-user MIMO system have not been reported

yet. Motivated by this, here we make an attempt to understand

the benefits and actual gains that can be achieved by the use

of FD-based transceivers in such systems.

With respect to the imperfect CSI aspect, we first consider

a norm-bounded error model, suitable for situations where

the CSI error is mainly due to quantization. Secondly we

consider a stochastic CSI error model, more suited to errors

occurring during the channel estimation process itself. Results

show that FD communication can indeed achieve higher rates

than the baseline HD scheme for intermediate to low distortion

levels and confirm the robust performance of the imperfect

CSI designs. Finally, we extend our original design to one

which maximizes the total DL rate subject to each UL user

achieving a pre-established target rate. This can be used in

situations where it is important that each UL user is equally

served in every time slot, which is not guaranteed with the

joint design.

The rest of the paper is organized as follows. Section II pro-

vides some preliminaries. In Section III we present the WSR

problem under perfect CSI. Sections IV and V tackle the norm-

bounded error and the stochastic error problems respectively.

Next in Section VI we consider the extension to a weighted

DL rate maximization problem subject to a minimum per UL

user target rate. Simulation results are presented in Section

VII. Section VIII provides an insight on the implementation

and complexity of the proposed algorithms, and finally Section

IX presents some concluding remarks.

Notation: |A|, cov(A), Tr(A) and (A)H indicate the

determinant, covariance, trace and Hermitian of A. diag(A)
represents a diagonal matrix containing the elements along

the diagonal of A. [A]m refers to the mth element along

the diagonal of A. vec(A) is a vector obtained by stacking

the columns of A. ⌊Ak⌋k=1...K denotes a matrix obtained by

stacking A1, . . . ,AK . ⊗, ‖·‖ and ‖·‖F indicate the Kronecker

product, the Euclidean norm and the Frobenius norm.

II. PRELIMINARIES

A. System model

We consider a scenario having G cells, where each cell g
has one FD BS, Kd

g DL users requiring bd streams each and

Ku
g UL users requiring bu streams each. BSs are equipped

with MB FD antennas, DL users are equipped with Md HD

antennas and UL users are equipped with Mu HD antennas.

The maximum transmit power is given by PB at each BS and

PU at each of the UL users.

The signal received at user kdg , the kth DL user in cell

g, and at BS g are given by (1) and (2) respectively. Here,

Hkd
g ,j

∈ C
Md×MB represents the channel from BS j to DL

user kdg , Hkd
g ,i

u
j
∈ C

Md×Mu is the channel from UL user iuj to

DL user kdg , Hg,j ∈ C
MB×MB is the channel from BS j to BS

g and Hg,iu
j
∈ C

MB×Mu is the channel from UL user iuj to BS

g. Vid
j
∈ C

MB×bd is the precoder for sid
j
, with sid

j
∈ C

bd×1

being the data intended for the ith DL user in cell j, where

E[sid
j
sH
id
j

] = I. Viu
j
∈ C

Mu×bu is the precoder for siu
j

, with

siu
j
∈ C

bu×1 being the data transmitted by the ith UL user in

cell j, where E[siu
j
sHiu

j
] = I. Moreover, nkd

g
and ng represent

additive white Gaussian noise with zero mean and variance σ2
U

and σ2
B respectively. Finally, ciu

j
and cid

j
represent transmitter

distortion at UL users and at the BSs respectively, while ekd
g

and eg represent receiver distortion at DL users and at the BSs

respectively.

Transmitter distortion models the effect of limited transmit-

ter dynamic range by approximating the combined effects of

additive power-amplifier noise, oscillator phase noise, and non-

linearities in the DAC and the power amplifier. This distortion

is statistically independent from the transmitted signal and can

be modeled as [7]

cid
j
∼ CN

(
0, κB diag(Vid

j
VH

id
j
)
)

ciu
j
∼ CN

(
0, κUdiag(Viu

j
VH

iu
j
)
)
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ykd
g
=

∑G

j=1
Hkd

g ,j

∑Kd
j

i=1
(Vid

j
sid

j
+ cid

j
) +

∑G

j=1

∑Ku
j

i=1
Hkd

g ,i
u
j
(Viu

j
siu

j
+ ciu

j
) + nkd

g
+ ekd

g
(1)

yg =
∑G

j=1
Hg,j

∑Kd
j

i=1
(Vid

j
sid

j
+ cid

j
) +

∑G

j=1

∑Ku
j

i=1
Hg,iu

j
(Viu

j
siu

j
+ ciu

j
) + ng + eg (2)

ỹg=
∑G

j=1
j 6=g

Hg,j

∑Kd
j

i=1
(Vid

j
sid

j
+ cid

j
) +

∑G

j=1

∑Ku
j

i=1
Hg,iu

j
(Viu

j
siu

j
+ ciu

j
) + ng + eg +Hg,g

∑Kd
g

i=1
cid

j
+Θ

∑Kd
g

i=1
∆g,gVid

j
sid

j
︸ ︷︷ ︸

extra residual SI for

imperfect CSI scenarios (3)

where κU , κB ≪ 1.

Receiver distortion models the effect of limited receiver

dynamic range by capturing the combined effects of oscillator

phase noise, additive gain control noise, and non-linearities in

the ADC and gain-control. It is statistically independent from

the received signal itself and can be modeled as [7]

ekd
g
∼ CN

(

0, βUdiag
(
cov(ykd

g
− ekd

g
)
))

eg ∼ CN
(

0, βBdiag
(
cov(yg − eg)

))

where βU , βB ≪ 1.

Finally, since with perfect CSI Hg,g

∑Kd
g

i=1 Vidg
sidg is known

at BS g, this can be subtracted from yg resulting in (3) with

Θ = 0 [7]1,2. The parameter Θ is a binary term used to

differentiate between the perfect and imperfect CSI scenarios.

For the perfect CSI case Θ = 0, whilst for the imperfect CSI

case Θ = 1 leading to an extra residual SI term; further details

for the imperfect CSI case are provided in Section II-B.

Similar to prior work dealing with beamforming and in-

terference management, our proposed algorithms require CSI

knowledge in order to be implemented. While going into

the exact details is beyond the scope of this work, it is

important to highlight the fact that all relevant channels can

indeed be learned. Channels from users to BSs, from BSs to

users and between BSs can be estimated using standard 3GPP

LTE channel estimation protocols for HD systems. Channels

between the users can be learned via neighbour discovery

methods applicable to device-to-device (D2D) communication,

such as sounding reference signals (SRS) in 3GPP LTE. (See

for example [12], [24], [28] and references therein for further

details on channel estimation.)

B. Imperfect CSI considerations

Whilst perfect CSI formulations provide a useful baseline

to highlight the advantages of FD over HD, it is important

to recognise that the perfect CSI assumption is idealistic; in

1The SI channel can be estimated using pilot signals. For SI channel
estimation, the FD node transmitting the pilot signal is also the one receiving
it, this implies that the signal is received with high power. Having a strong
signal allows for accurate estimation of the SI channel Hg,g [24], which

implies that Hg,g

∑Kd
g

i=1 Vidg
sidg

can be considered as available at BS g

under the perfect CSI assumption. The effect of residual SI is then captured

in the term Hg,g

∑Kd
g

i=1 cid
j
+ eg .

2Note that other literature like [7], [8], [20], [25] adopts a partial SI
cancellation method similar to the one used in this paper, while others
implement partial SI cancellation via the use of an attenuation factor [26].
However a completely different model may also be adopted where Hg,g is
used to represent the residual SI channel directly, see for example [27].

practice only an imperfect estimate will be available. Therefore

moving on from the original perfect CSI assumption we will

also consider the design of robust beamformers. The channels

are modeled as

Hkd
g ,i

u
j
= Ĥkd

g ,i
u
j
+∆kd

g ,i
u
j

Hkd
g ,j

= Ĥkd
g ,j

+∆kd
g ,j

Hg,iu
j
= Ĥg,iu

j
+∆g,iu

j

Hg,j = Ĥg,j +∆g,j (4)

where H indicates the perfect channel, Ĥ is the imperfect

channel and ∆ is the CSI error. Note that the significance of

the indices used to represent the channels and errors between

various nodes in (4) follow those outlined for (1) and (2).

For the imperfect CSI case only Ĥg,g

∑Kd
g

i=1 Vidg
sidg is

known at BS g. This can be subtracted from yg resulting in

(3) with Θ = 1, where there is an extra residual SI component

compared to the perfect CSI case.

The CSI error will be modeled in two different ways as

follows.

1) Norm-bounded error model: For the deterministic

norm-bounded error model, the Frobenius norm of the CSI

errors cannot exceed a pre-established upper bound, and the

CSI error is expressed as

{∆kd
g ,i

u
j
: ||∆kd

g ,i
u
j
||F ≤ εkd

g ,i
u
j
} ∀ k, g, i, j

{∆kd
g ,j

: ||∆kd
g ,j

||F ≤ εkd
g ,j

} ∀ k, g, j

{∆g,iu
j
: ||∆g,iu

j
||F ≤ εg,iu

j
} ∀ g, i, j

{∆g,j : ||∆g,j ||F ≤ εg,j} ∀ g, j (5)

where ε represents the upper limit on the Frobenius norm of

the error. This model considers the case where the imperfect

CSI is allowed to fall anywhere within an uncertainty region

around the perfect CSI value and is particularly suited to

situations where quantization errors dominate the imperfection

in the available CSI. It is well established in literature and has

been considered for beamformer design in a variety of systems,

for example MIMO relay networks [29], MIMO interference

broadcast channels [30], DL multi-user MIMO systems [31]

and point-to-point MIMO communication [32], [33].

2) Stochastic error model: For the stochastic error model

the CSI errors are assumed to be independent of the perfect

channel, H, and distributed as follows

∆kd
g ,i

u
j
∼ CN (0, ηUUI)

∆kd
g ,j

∼ CN (0, ηUBI)

∆g,iu
j
∼ CN (0, ηBUI)
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Fkd
g
≈
∑G

j=1

∑Kd
j

i=1
κBHkd

g ,j
diag(Vid

j
VH

id
j
)HH

kd
g ,j

+
∑G

j=1

∑Ku
j

i=1
κUHkd

g ,i
u
j
diag(Viu

j
VH

iu
j
)HH

kd
g ,i

u
j
+ βUσ

2
UI

+
∑G

j=1

∑Kd
j

i=1
βUdiag(Hkd

g ,j
Vid

j
VH

id
j
HH

kd
g ,j

) +
∑G

j=1

∑Ku
j

i=1
βUdiag(Hkd

g ,i
u
j
Viu

j
VH

iu
j
HH

kd
g ,i

u
j
) (7)

Ūkd
g
=VH

kd
g
HH

kd
g ,g

[
∑G

j=1

∑Kd
j

i=1
Hkd

g ,j
Vid

j
VH

id
j
HH

kd
g ,j

+
∑G

j=1

∑Ku
j

i=1
Hkd

g ,i
u
j
Viu

j
VH

iu
j
HH

kd
g ,i

u
j
+ Fkd

g
+ σ2

UI

]−1

(8)

Fg ≈
∑G

j=1

∑Kd
j

i=1
κBHg,jdiag(Vid

j
VH

id
j
)HH

g,j +
∑G

j=1

∑Ku
j

i=1
κUHg,iu

j
diag(Viu

j
VH

iu
j
)HH

g,iu
j
+ βBσ

2
BI

+
∑G

j=1

∑Kd
j

i=1
βBdiag(Hg,jVid

j
VH

id
j
HH

g,j) +
∑G

j=1

∑Ku
j

i=1
βBdiag(Hg,iu

j
Viu

j
VH

iu
j
HH

g,iu
j
) (10)

Ūku
g
=VH

ku
g
HH

g,ku
g

[
∑G

j=1
j 6=g

∑Kd
j

i=1
Hg,jVid

j
VH

id
j
HH

g,j +
∑G

j=1

∑Ku
j

i=1
Hg,iu

j
Viu

j
VH

iu
j
HH

g,iu
j
+ Fg + σ2

BI

]−1

(11)

∆g,j ∼ CN (0, ηBBI) (6)

where η represents the variance of the CSI error and the

subscripts B and U indicate the BS and user respectively. This

type of error model is suitable for cases where the channel

error is mainly due to estimation inaccuracies. The parameter

η can be assumed to be known a priori depending on the

channel dynamics and the channel estimation scheme applied.

It may be viewed either as a whole [34] or modeled as [35]

ηrt = τρ−ν
rt

where r, t ∈ {B,U}, ρ represents the signal-to-noise (SNR)

ratio of the corresponding link and the parameters τ and ν
are used to capture a variety of CSI acquisition scenarios for

τ > 0 and ν ≥ 0.

C. Relationship between achievable rate and MSE

Since our approach for WSR maximization is based on

minimizing the mean square error (MSE), we first need to

relate these two metrics. Such a relationship has already been

established for several HD systems in [21]–[23], where it is

shown that R = log2|Ē
−1|, with R representing the rate

and Ē representing the MSE matrix3. This equality holds

for independent input signals and noise, and for cases where

optimal MMSE receivers are used.

Starting with the rate expression for the kth DL user

in cell g, under Gaussian signaling, we have Rkd
g

=

log2|I+Φ−1
kd
g
Hkd

g ,g
Vkd

g
VH

kd
g
HH

kd
g ,g

| where Φkd
g

represents the

DL interference-plus-noise covariance matrix, expressed as

Φkd
g
=
∑G

j=1

∑Kd
j

i=1
(i,j 6=k,g)

Hkd
g ,j

Vid
j
VH

id
j
HH

kd
g ,j

+ Fkd
g

+
∑G

j=1

∑Ku
j

i=1
Hkd

g ,i
u
j
Viu

j
VH

iu
j
HH

kd
g ,i

u
j
+ σ2

UI

3Note that [21] and [22] establish the rate to MSE relationship using base e
logarithms, while this paper and [23] establish it using base 2 logarithms. The
overall rate to MSE relationship is essentially the same, with the choice of
logarithm only affecting the corresponding unit for R. For base e logarithms
R is in nats/s/Hz, while for base 2 logarithms R is in bits/s/Hz. The resultant
WSR to WMMSE problem transformations are also similar, except for the
ln2 terms which do not appear when base e logarithms are applied.

with Fkd
g
, defined in (7), representing the combined contribu-

tion of the transmitter and receiver distortion. The approxima-

tion is obtained by omitting terms involving the multiplication

of κB , κU and βU with each other since their product is

negligibly small.

The DL MSE matrix is given by Ekd
g

= E[(Ukd
g
ykd

g
−

skd
g
)(Ukd

g
ykd

g
− skd

g
)H ] where the expectation is taken with

respect to s and n under an independence assumption, and

Ukd
g
∈ C

bd×Md is the receiver applied by the kth DL user in

cell g. Applying an MMSE receiver, Ūkd
g
= argmin

U

Tr(Ekd
g
)

given by (8), then the DL MSE matrix can be expressed

as Ēkd
g

= (I + VH
kd
g
HH

kd
g ,g

Φ−1
kd
g
Hkd

g ,g
Vkd

g
)−1. Finally using

an argument parallel to the one from [21]–[23], it can be

established that

Rkd
g
= log2

∣
∣
∣Ē

−1
kd
g

∣
∣
∣ . (9)

The rate achieved by the kth UL user in cell g, under Gaus-

sian signaling, can be expressed as Rku
g
= log2|I+Φ−1

ku
g
Hg,ku

g

Vku
g
VH

ku
g
HH

g,ku
g
| where Φku

g
represents the UL interference-

plus-noise covariance matrix, given by

Φku
g
=
∑G

j=1
(j 6=g)

∑Kd
j

i=1
Hg,jVid

j
VH

id
j
HH

g,j + Fg

+
∑G

j=1

∑Ku
j

i=1
(i,j 6=k,g)

Hg,iu
j
Viu

j
VH

iu
j
HH

g,iu
j
+ σ2

BI

with Fg , defined in (10), representing the effect of transmitter

and receiver distortion.

The UL MSE matrix is given by Eku
g

= E[(Uku
g
ỹku

g
−

sku
g
)(Uku

g
ỹku

g
− sku

g
)H ] where the expectation is taken with

respect to s and n under an independence assumption, and

Uku
g
∈ C

bu×MB is the receiver applied by BS g to obtain the

information transmitted by the kth UL in its cell. Applying

an MMSE receiver, Ūku
g
= argmin

U

Tr(Eku
g
) given by (11),

then the UL MSE matrix can then be expressed as Ēku
g
=

I+Hg,ku
g
Vku

g
Φ−1

ku
g
VH

ku
g
HH

g,ku
g

. Next using an argument similar

to the one from [21]–[23], we can establish that

Rku
g
= log2

∣
∣
∣Ē

−1
ku
g

∣
∣
∣ . (12)
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Tr
(

Wkd
g
Ekd

g

)

= Tr
(

Bkd
g
(Ukd

g
Hkd

g ,g
Vkd

g
− I)(Ukd

g
Hkd

g ,g
Vkd

g
− I)HB

H
kd
g

)

+ (σ2
U + βUσ

2
U )Tr

(

Bkd
g
Ukd

g
U

H
kd
g
B

H
kd
g

)

+

G
∑

j=1

Ku
j

∑

i=1

Tr
(

Bkd
g
Ukd

g
Hkd

g ,i
u
j
Viu

j
V

H
iu
j
H

H
kd
g ,i

u
j
U

H
kd
g
B

H
kd
g

)

+

G
∑

j=1

Kd
j

∑

i=1

(i,j 6=k,g)

Tr
(

Bkd
g
Ukd

g
Hkd

g ,j
Vid

j
V

H

id
j
H

H
kd
g ,j

U
H
kd
g
B

H
kd
g

)

+

G
∑

j=1

Kd
j

∑

i=1

Tr
(

κBBkd
g
Ukd

g
Hkd

g ,j
diag(Vid

j
V

H

id
j
)HH

kd
g ,j

U
H
kd
g
B

H
kd
g

)

+

G
∑

j=1

Ku
j

∑

i=1

Tr
(

κUBkd
g
Ukd

g
Hkd

g ,i
u
j
diag(Viu

j
V

H
iu
j
)HH

kd
g ,i

u
j
U

H
kd
g
B

H
kd
g

)

+

G
∑

j=1

Kd
j

∑

i=1

Tr
(

βUBkd
g
Ukd

g
diag(Hkd

g ,j
Vid

j
V

H

id
j
H

H
kd
g ,j

)UH
kd
g
B

H
kd
g

)

+

G
∑

j=1

Ku
j

∑

i=1

Tr
(

βUBkd
g
Ukd

g
diag(Hkd

g ,i
u
j
Viu

j
V

H
iu
j
H

H
kd
g ,i

u
j
)UH

kd
g
B

H
kd
g

)

(15)

Tr
(

Wku
g
Eku

g

)

= Tr
(

Bku
g
(Uku

g
Hg,ku

g
Vku

g
− I)(Uku

g
Hg,ku

g
Vku

g
− I)BH

ku
g

)

+ (σ2
B + βBσ

2
B)Tr

(

Bku
g
Uku

g
U

H
ku
g
B

H
ku
g

)

+

G
∑

j=1

Ku
j

∑

i=1

(i,j 6=k,g)

Tr
(

Bku
g
Uku

g
Hg,iu

j
Viu

j
V

H
iu
j
H

H
g,iu

j
U

H
ku
g
B

H
ku
g

)

+

G
∑

j=1
(j 6=g)

Kd
j

∑

i=1

Tr
(

Bku
g
Uku

g
Hg,jVid

j
V

H

id
j
H

H
g,jU

H
ku
g
B

H
ku
g

)

+

G
∑

j=1

Kd
j

∑

i=1

Tr
(

κBBku
g
Uku

g
Hg,jdiag(Vid

j
V

H

id
j
)HH

g,jU
H
ku
g
B

H
ku
g

)

+

G
∑

j=1

Ku
j

∑

i=1

Tr
(

κUBku
g
Uku

g
Hg,iu

j
diag(Viu

j
V

H
iu
j
)HH

g,iu
j
U

H
ku
g
B

H
ku
g

)

+

G
∑

j=1

Kd
j

∑

i=1

Tr
(

βBBku
g
Uku

g
diag(Hg,jVid

j
V

H

id
j
H

H
g,j)U

H
ku
g
B

H
ku
g

)

+

G
∑

j=1

Ku
j

∑

i=1

Tr
(

βBBku
g
Uku

g
diag(Hg,iu

j
Viu

j
V

H
iu
j
H

H
g,iu

j
)UH

ku
g
B

H
ku
g

)

+Θ

Kd
j

∑

i=1

Tr
(

Bku
g
Uku

g
∆g,gVidg

V
H
idg
∆H

g,gU
H
ku
g
B

H
ku
g

)

(16)

III. WEIGHTED SUM RATE MAXIMIZATION

Starting with the perfect CSI case, we want to find the

optimal precoders that maximize the WSR subject to transmit

power constraints, i.e.

max
V

∑G

g=1

∑Kd
g

k=1
αkd

g
Rkd

g
+

∑G

g=1

∑Ku
g

k=1
αku

g
Rku

g

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g (13)

where αkd
g

and αku
g
∀ k, g denote pre-defined weights. Using a

method parallel to that of [21]–[23] we can establish an equiv-

alence between the WSR problem (13) and a corresponding

WMMSE one as in Theorem 1.

Theorem 1. The WSR problem in (13) is equivalent to the

WMMSE problem in (14), such that the global optimal solution

for the precoders of the two problems are identical.

min
U,W,V

G∑

g=1

Kd
g∑

k=1

[

Tr(Wkd
g
Ekd

g
)− αkd

g
log2

∣
∣
∣
∣
∣

ln2

αkd
g

Wkd
g

∣
∣
∣
∣
∣
−

αkd
g

ln2
bd

]

+

G∑

g=1

Ku
g∑

k=1

[

Tr(Wku
g
Eku

g
)− αku

g
log2

∣
∣
∣
∣
∣

ln2

αku
g

Wku
g

∣
∣
∣
∣
∣
−

αku
g

ln2
bu

]

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g (14)

Proof. First we define the metrics Tr(Wkd
g
Ekd

g
) and

Tr(Wku
g
Eku

g
) used in (14) as in (15) and (16). Here Bkd

g

comes from the decomposition of Wkd
g

as Wkd
g
= BH

kd
g
Bkd

g

and Bku
g

comes from the decomposition of Wku
g

as Wku
g
=

BH
ku
g
Bku

g
.

Considering (14), it can be seen that the optimal U are

the standard MMSE receivers Ūkd
g

and Ūku
g

in (8) and (11)

respectively. Next, fixing U and V and checking the first order

optimality conditions for W, we obtain the optimal weights

as

W̄kd
g
=

αkd
g

ln2
Ē

−1
kd
g

and W̄ku
g
=

αku
g

ln2
Ē

−1
ku
g
. (17)

Substituting for optimal U and W in (14), we have the

following problem

min
V

∑G

g=1

∑Kd
g

k=1
−αkd

g
log2

∣
∣
∣Ē

−1
kd
g

∣
∣
∣+

∑G

g=1

∑Ku
g

k=1
−αku

g
log2

∣
∣
∣Ē

−1
ku
g

∣
∣
∣

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g

which considering (9) and (12) is the same as the original one

in (13).

Since (14) is not jointly convex in U, V and W but

separately convex for each of the variables, we apply an

alternating minimization approach to solve the problem as

outlined in Algorithm 1. Having closed form expressions for

U and W, we need to focus on obtaining V. Fixing U and

W, (14) can be expressed as

min
V

∑G

g=1

∑Kd
g

k=1
Tr(Wkd

g
Ekd

g
) +

∑G

g=1

∑Ku
g

k=1
Tr(Wku

g
Eku

g
)

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g
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L =

G
∑

g=1

Kd
g

∑

k=1

Tr(Wkd
g
Ekd

g
) +

G
∑

g=1

Ku
g

∑

k=1

Tr(Wku
g
Eku

g
) +

G
∑

g=1

Ku
g

∑

k=1

λku
g

[

Tr(Vku
g
V

H
ku
g
)− PU

]

+
∑G

g=1
µg

[

∑Kd
g

k=1
Tr(Vkd

g
V

H
kd
g
)− PB

]

(19)

Xg =

G
∑

j=1

Kd
j

∑

i=1

H
H

id
j
,g
U

H

id
j
Wid

j
Uid

j
Hid

j
,g +

G
∑

j=1

Kd
j

∑

i=1

κBSdiag(H
H

id
j
,g
U

H

id
j
Wid

j
Uid

j
Hid

j
,g) +

G
∑

j=1

Kd
j

∑

i=1

βusH
H

id
j
,g
diag(UH

id
j
Wid

j
Uid

j
)Hid

j
,g

+

G
∑

j=1
j 6=g

Ku
j

∑

i=1

H
H
j,gU

H
iu
j
Wiu

j
Uiu

j
Hj,g +

G
∑

j=1

Ku
j

∑

i=1

κBSdiag(H
H
j,gU

H
iu
j
Wiu

j
Uiu

j
Hj,g) +

G
∑

j=1

Ku
j

∑

i=1

βBSH
H
j,gdiag(U

H
iu
j
Wiu

j
Uiu

j
)Hj,g (21)

Xku
g
=

G
∑

j=1

Kd
j

∑

i=1

H
H

id
j
,ku

g
U

H

id
j
Wid

j
Uid

j
Hid

j
,ku

g
+

G
∑

j=1

Kd
j

∑

i=1

κusdiag(H
H

id
j
,ku

g
U

H

id
j
Wid

j
Uid

j
Hid

j
,ku

g
)+

G
∑

j=1

Kd
j

∑

i=1

βusH
H

id
j
,ku

g
diag(UH

id
j
Wid

j
Uid

j
)Hid

j
,ku

g

+

G
∑

j=1

Ku
j

∑

i=1

H
H
j,ku

g
U

H
iu
j
Wiu

j
Uiu

j
Hj,ku

g
+

G
∑

j=1

Ku
j

∑

i=1

κusdiag(H
H
j,ku

g
U

H
iu
j
Wiu

j
Uiu

j
Hj,ku

g
) +

G
∑

j=1

Ku
j

∑

i=1

βBSH
H
j,ku

g
diag(UH

iu
j
Wiu

j
Uiu

j
)Hj,ku

g
(22)

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g . (18)

The Lagrange dual objective function of (18) is given by (19)

where λku
g

and µg are the Lagrange multipliers associated with

the transmit power constraints. Setting ∂L/∂V∗
kd
g

= 0 and

∂L/∂V∗
ku
g
= 0 we obtain the closed form solutions for the

optimal precoders as

V̄kd
g
= [Xg + µgI]

−1HH
kd
g ,g

UH
kd
g
Wkd

g

V̄ku
g
= [Xku

g
+ λku

g
I]−1HH

g,ku
g
UH

ku
g
Wku

g
(20)

where Xg and Xku
g

are defined in (21) and (22). The Lagrange

multipliers µg and λku
g

should be either zero, or positive

numbers that satisfy

Tr
(

Vku
g
(λku

g
)VH

ku
g
(λku

g
)
)

= PU

∑Kd
g

k=1
Tr

(

Vkd
g
(µg)V

H
kd
g
(µg)

)

= PB . (23)

The equalities in (23) can alternatively be expressed as

∑Mu

m=1

[Gku
g
]m

([Λku
g
]m + λku

g
)2

= PU

∑MB

m=1

[Gg]m
([Dg]m + µg)2

= PB

where Λku
g

comes from the decompo-

sition Xku
g

= Cku
g
Λku

g
CH

ku
g

, Gku
g

=

CH
ku
g
HH

g,ku
g
UH

ku
g
Wku

g
WH

ku
g
Uku

g
Hg,ku

g
Cku

g
, Dg comes

from the decomposition Xg = QgDgQ
H
g and

Gg =
∑Kd

g

k=1 Q
H
g HH

kd
g ,g

UH
kd
g
Wkd

g
WH

kd
g
Ukd

g
Hkd

g ,g
Qg . These

can respectively be solved for λku
g

and µg using linear search

techniques, such as the bisection method [22].

Therefore to solve (14), we can follow the process in

Algorithm 1, where in Step 2 we use (8) and (11) to calculate

the receivers as Ukd
g
= Ūkd

g
and Uku

g
= Ūku

g
. The weights

in Step 3 are calculated as Wkd
g
= W̄kd

g
and Wku

g
= W̄ku

g

using (17). Finally (20) is used to calculate Vkd
g
= V̄kd

g
and

Vku
g
= V̄ku

g
in Step 4.

Remark 1. The alternating minimization process used to solve

the WMMSE problem decreases the cost function monotoni-

cally at each step of the iterations. Since the cost function is

lower bounded, then the algorithm is guaranteed to converge.

Additionally, using an argument parallel to the one in [22]-

Appendix C, convergence to a stationary point of the original

WSR problem can also be proven.

Algorithm 1: Alternating optimization process to solve

WMMSE problems

1 Initialize Vkd
g

and Vku
g
∀ k, g.

2 Calculate Ukd
g

and Uku
g
∀ k, g.

3 Calculate Wkd
g

and Wku
g
∀ k, g.

4 Compute Vkd
g

and Vku
g
∀ k, g.

5 Repeat from Step 2 until convergence or for a fixed number

of iterates.

IV. ROBUST DESIGN WITH NORM-BOUNDED ERROR

MODEL

We now want to solve the WSR problem from the prior

section with additional considerations for norm-bounded CSI

errors, i.e.

max
V

min
∆

∑G

g=1

∑Kd
g

k=1
αkd

g
Rkd

g
+
∑G

g=1

∑Ku
g

k=1
αku

g
Rku

g

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g

{∆kd
g ,i

u
j
: ||∆kd

g ,i
u
j
||F ≤ εkd

g ,i
u
j
} ∀ k, g, i, j

{∆kd
g ,j

: ||∆kd
g ,j

||F ≤ εkd
g ,j

} ∀ k, g, j

{∆g,iu
j
: ||∆g,iu

j
||F ≤ εg,iu

j
} ∀ g, i, j

{∆g,j : ||∆g,j ||F ≤ εg,j} ∀ g, j . (24)

Similar to [30], [31] and references therein, we apply
an iterative approach to solve our non-convex optimization
problem. Such an approach involves solving a convex sub-
problem at each iteration step and has been proven to converge.
Having already established an equivalence between (13) and
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(14) for the perfect CSI case, it can easily bee seen how the
cost function of (24) can be mapped to

max
V

min
∆

max
U,W

G
∑

g=1

Kd
g

∑

k=1

[

−Tr(Wkd
g
Ekd

g
) + αkd

g
log2

∣

∣

∣

∣

∣

ln2

αkd
g

Wkd
g

∣

∣

∣

∣

∣

+
αkd

g

ln2
bd

]

+

G
∑

g=1

Ku
g

∑

k=1

[

−Tr(Wku
g
Eku

g
) + αku

g
log2

∣

∣

∣

∣

∣

ln2

αku
g

Wku
g

∣

∣

∣

∣

∣

+
αku

g

ln2
bu

]

.

(25)

Applying the max-min inequality, which states that for any

function f(w, z) then min
w

max
z

f(w, z) ≥ max
z

min
w

f(w, z),

rather than using the cost function in (25) we can instead focus

on solving the following problem

max
V,U,W

min
∆

G∑

g=1

Kd
g∑

k=1

[

−Tr(Wkd
g
Ekd

g
) + αkd

g
log2

∣
∣
∣
∣
∣

ln2

αkd
g

Wkd
g

∣
∣
∣
∣
∣
+

αkd
g

ln2
bd

]

+

G∑

g=1

Ku
g∑

k=1

[

−Tr(Wku
g
Eku

g
) + αku

g
log2

∣
∣
∣
∣
∣

ln2

αku
g

Wku
g

∣
∣
∣
∣
∣
+

αku
g

ln2
bu

]

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g

{∆kd
g ,i

u
j
: ||∆kd

g ,i
u
j
||F ≤ εkd

g ,i
u
j
} ∀ k, g, i, j

{∆kd
g ,j

: ||∆kd
g ,j

||F ≤ εkd
g ,j

} ∀ k, g, j

{∆g,iu
j
: ||∆g,iu

j
||F ≤ εg,iu

j
} ∀ g, i, j

{∆g,j : ||∆g,j ||F ≤ εg,j} ∀ g, j . (26)

Note that the cost function in (26) is not equivalent to the

original one in (25). However the ensuing formulation is still

a valid one; firstly the new cost function is a lower bound

on (25) i.e. the resultant rate is surely achievable. Secondly

the formulation in (26) ensures that none of the optimization

variables depend on perfect CSI, which is the ultimate aim of

a robust beamforming approach.

Theorem 2. The optimization problem in (26) is equivalent
to the reformulation in (27) such that the optimal U, V and
W = BHB for the two problems are identical.

max
V,U,B,m,λ

G
∑

g=1

Kd
g

∑

k=1

[

−

G
∑

j=1

Ku
j

∑

i=1

m1,kgij −

G
∑

j=1

m2,kgj

−(σ2
U+βUσ

2
U )||Bkd

g
Ukd

g
||2F + αkd

g
log2

∣

∣

∣

∣

∣

ln2

αkd
g

B
H
kd
g
Bkd

g

∣

∣

∣

∣

∣

+
αkd

g

ln2
bd

]

+

G
∑

g=1

[

−

G
∑

j=1

Ku
j

∑

i=1

m3,gij −

G
∑

j=1

m4,gj+

Ku
g

∑

k=1

(

−(σ2
B+βBσ

2
B)||Bku

g
Uku

g
||2F +αku

g
log2

∣

∣

∣

∣

∣

ln2

αku
g

B
H
ku
g
Bku

g

∣

∣

∣

∣

∣

+
αku

g

ln2
bu

)

]

s.t. Tr(Vku
g
V

H
ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
V

H
kd
g
) ≤ PB ∀ g







m1,kgij − λ1,kgij ω
H
1,kgij

0

ω1,kgij I −εkd
g ,i

u
j
Ω1,kgij

0 −εkd
g ,i

u
j
Ω

H
1,kgij

λ1,kgij I






� 0 ∀ k, g, i, j







m2,kgj − λ2,kgj ω
H
2,kgj

0

ω2,kgj I −εkd
g ,j

Ω2,kgj

0 −εkd
g ,j

Ω
H
2,kgj

λ2,kgjI






� 0 ∀ k, g, j





m3,gij − λ3,gij ω
H
3,gij 0

ω3,gij I −εg,iu
j
Ω3,gij

0 −εg,iu
j
Ω

H
3,gij λ3,gij I



 � 0 ∀ g, i, j





m4,gj − λ4,gj ω
H
4,gj 0

ω4,gj I −εg,jΩ4,gj

0 −εg,jΩ
H
4,gj λ4,gjI



 � 0 ∀ g, j

λ1,kgij ≥ 0, λ2,kgj ≥ 0, λ3,gij ≥ 0, λ4,gj ≥ 0 ∀ k, g, i, j
(27)

In (27), m and λ represent additional scalar variables intro-
duced during the reformulation, and the ω and Ω terms are
defined as follows.

ω1kg,ij=









vec(Bkd
g
Ukd

g
Ĥkd

g ,i
u
j
Viu

j
)

(κU )
1
2

⌊

(

(SnViu
j
)T ⊗ (Bkd

g
Ukd

g
)
)

vec(Ĥkd
g ,i

u
j
)
⌋

n=1...Mu

(βU )
1
2 ⌊

(

V
T
iu
j
⊗

(

(UH
kd
g
B

H
kd
g
)TSn

)

)

vec(Ĥkd
g ,i

u
j
)⌋n=1...Md









ω2,kgj =



















⌊

vec(Bkd
g
Ukd

g
Ĥkd

g ,j
Vid

j
− δ

k,g
i,j Bkd

g
)
⌋

i=1...Kd
j

⌊

(κB)
1
2

⌊

(

(SnVid
j
)T ⊗ vec(Bkd

g
Ukd

g
)
)

vec(Ĥkd
g ,j

)
⌋

n=1...MB

⌋

i=1...Kd
j

⌊

(βU )
1
2

⌊(

V
T

id
j
⊗

(

(UH
kd
g
B

H
kd
g
)TSn

)

)

vec(Ĥkd
g ,j

)
⌋

n=1...Md

⌋

i=1...Kd
j



















ω3,gij =



















⌊

vec(Bku
g
Uku

g
Ĥg,iu

j
Viu

j
− δ

k,g
i,j Bkd

g
)
⌋

k=1...Ku
g

⌊

(κU )
1
2

⌊

(

(SnViu
j
)T ⊗ (Bku

g
Uku

g
)
)

vec(Ĥg,iu
j
)
⌋

n=1...Mu

⌋

k=1...Ku
g

⌊

(βB)
1
2

⌊(

V
T
iu
j
⊗

(

(UH
ku
g
B

H
ku
g
)TSn

)

)

vec(Ĥg,iu
j
)
⌋

n=1...MB

⌋

k=1...Ku
g



















ω4,gj =























⌊

ϑ
g
jvec(Bku

g
Uku

g
Ĥg,jVid

j
)
⌋

k=1...Ku
g

i=1...Kd
j

⌊

(κB)
1
2

⌊

(

(SnVid
j
)T ⊗ (Bku

g
Uku

g
)
)

vec(Ĥg,j)
⌋

n=1...MB

⌋

k=1...Ku
g

i=1...Kd
j

⌊

(βB)
1
2

⌊(

V
T

id
j
⊗

(

(UH
ku
g
B

H
ku
g
)TSn

)

)

vec(Ĥg,j)
⌋

n=1...MB

⌋

k=1...Ku
g

i=1...Kd
j























Ω1kg ,ij =











(

V
T
iu
j
⊗Bkd

g
Ukd

g

)

(κU )
1
2

⌊

(SnViu
j
)T ⊗ (Bkd

g
Ukd

g
)
⌋

n=1...Mu

(βU )
1
2

⌊

V
T
iu
j
⊗

(

(UH
kd
g
B

H
kd
g
)TSn

)

⌋

n=1...Md











Ω2,kgj =



















⌊(

V
T

id
j
⊗Bkd

g
Ukd

g

)⌋

i=1...Kd
j

⌊

(κB)
1
2

⌊

(SnVid
j
)T ⊗ vec(Bkd

g
Ukd

g
)
⌋

n=1...MB

⌋

i=1...Kd
j

⌊

(βU )
1
2

⌊

V
T

id
j
⊗

(

(UH
kd
g
B

H
kd
g
)TSn

)

⌋

n=1...Md

⌋

i=1...Kd
j



















Ω3,gij =













⌊
(

V
T
iu
j
⊗Bku

g
Uku

g

)

⌋k=1...Ku
g

⌊

(κU )
1
2 ⌊(SnViu

j
)T ⊗ (Bku

g
Uku

g
)⌋n=1...Mu

⌋

k=1...Ku
g

⌊

(βB)
1
2

⌊

V
T
iu
j
⊗

(

(UH
ku
g
B

H
ku
g
)TSn

)

⌋

n=1...MB

⌋

k=1...Ku
g













Ω4,gj =























⌊(

V
T

id
j
⊗Bku

g
Uku

g

)⌋

k=1...Ku
g

i=1...Kd
j

⌊

(κB)
1
2

⌊

(SnVid
j
)T ⊗ (Bku

g
Uku

g
)
⌋

n=1...MB

⌋

k=1...Ku
g

i=1...Kd
j

⌊

(βB)
1
2

⌊

V
T

id
j
⊗

(

(UH
ku
g
B

H
ku
g
)TSn

)

⌋

n=1...MB

⌋

k=1...Ku
g

i=1...Kd
j
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where Sn is a selection matrix consisting of all zeros except

for the nth element along the diagonal which is equal to 1,

δk,gi,j =

{
1 if (k, g) = (i, j)
0 otherwise

and ϑg
j =

{
0 if g = j
1 otherwise

.

Proof. The problem formulation in (27) is based on finding an

equivalent form for the inner minimization of (26). Note that

Tr(Wkd
g
Ekd

g
) and Tr(Wku

g
Eku

g
) are given by (15) and (16)

where Θ = 1 since we are dealing with imperfect CSI. Also

the CSI error, ∆, appears in these terms when we replace H

with Ĥ+∆ from (4). Next it can be noticed that the problem

is separable over each occurrence of the different types of

CSI error [30], i.e. we can separate the problem over ∆kd
g ,i

u
j

,

∆kd
g ,j

, ∆g,iu
j

and ∆g,j , and focus on one of them at a time to

obtain a more useful formulation.

Starting with ∆kd
g ,i

u
j

, this will only appear in terms contain-

ing Hkd
g ,i

u
j

, since Hkd
g ,i

u
j
= Ĥkd

g ,i
u
j
+∆kd

g ,i
u
j

. Therefore from

the overall cost function of (26), from the perspective of each

∆kd
g ,i

u
j

, we are only concerned with

T1,kgij = Tr
(

Bkd
g
Ukd

g
Hkd

g ,i
u
j
Viu

j
VH

iu
j
HH

kd
g ,i

u
j
UH

kd
g
BH

kd
g

)

+Tr
(

κUBkd
g
Ukd

g
Hkd

g ,i
u
j
diag(Viu

j
VH

iu
j
)HH

kd
g ,i

u
j
UH

kd
g
BH

kd
g

)

+Tr
(

βUBkd
g
Ukd

g
diag(Hkd

g ,i
u
j
Viu

j
VH

iu
j
HH

kd
g ,i

u
j
)UH

kd
g
BH

kd
g

)

= Tr
(

Bkd
g
Ukd

g
Hkd

g ,i
u
j
Viu

j
VH

iu
j
HH

kd
g ,i

u
j
UH

kd
g
BH

kd
g

)

+

Mu∑

n=1

Tr
(

κUBkd
g
Ukd

g
Hkd

g ,i
u
j
SnViu

j
VH

iu
j
Sn

HHH
kd
g ,i

u
j
UH

kd
g
BH

kd
g

)

+

Md∑

n=1

Tr
(

βUBkd
g
Ukd

g
SnHkd

g ,i
u
j
Viu

j
VH

iu
j
HH

kd
g ,i

u
j
Sn

HUH
kd
g
BH

kd
g

)

.

Using Tr(XXH) = ‖vec(X)‖2, vec(XYZ) = (ZT ⊗
X)vec(Y) and introducing slack variable m1,kgij , this can

be expressed as

T1,kgij = ‖ω1,kgij +Ω1,kgijvec(∆kd
g ,i

u
j
)‖2 ≤ m1,kgij . (28)

Thus, the inner minimization in (26) from the perspective of

each occurrence of ∆kd
g ,i

u
j

is given by

max
m

−m1,kgij

s.t. ‖ω1,kgij +Ω1,kgijvec(∆kd
g ,i

u
j
)‖2 ≤ m1,kgij

∀{∆kd
g ,i

u
j
: ||vec(∆kd

g ,i
u
j
)|| ≤ εkd

g ,i
u
j
} . (29)

Next, representing the inequality in (28) as

−
(
ω1,kgij+Ω1,kgijvec(∆kd

g ,i
u
j
)
)H

I
(
ω1,kgij+Ω1,kgijvec(∆kd

g ,i
u
j
)
)

+m1,kgij ≥ 0

we can apply the Schur Complement Lemma, to formulate the

constraints of (29) as
[

m1,kgij ωH
1,kgij

ω1,kgij I

]

+

[

0 vec(∆kd
g ,i

u
j
)HΩH

1,kgij

Ω1,kgijvec(∆kd
g ,i

u
j
) 0

]

� 0.

Additionally, applying Lemma 1 from Appendix A with ξ =
εkd

g ,i
u
j

, B = [0 ΩH
1,kgij

], C = [−1 0], D = vec(∆kd
g ,i

u
j
) and

A =

[
m1,kgij ωH

1,kgij

ω1,kgij I

]

this can be further represented as

λ1,kgij ≥0,






m1,kgij − λ1,kgij ωH
1,kgij

0

ω1,kgij I −εkd
g ,i

u
j
Ω1,kgij

0 −εkd
g ,i

u
j
ΩH

1,kgij
λ1,kgijI




�0.

(30)

Using the same separation of variables principle for ∆kd
g ,j

,

∆g,iu
j

and ∆g,j , for each of these CSI error terms we only

need to focus on specific parts of the cost function given by

(31), (32) and (33) respectively.

T2,kgj =

Kd
j∑

i=1

[

Tr
(

κBBkd
g
Ukd

g
Hkd

g ,j
diag(Vid

j
VH

id
j
)HH

kd
g ,j

UH
kd
g
BH

kd
g

)

+Tr
(

Bkd
g
(Ukd

g
Hkd

g ,j
Vid

j
−δk,gi,j I)(Ukd

g
Hkd

g ,j
Vid

j
−δk,gi,j I)

HBH
kd
g

)

+Tr
(

βUBkd
g
Ukd

g
diag(Hkd

g ,j
Vid

j
VH

id
j
HH

kd
g ,j

)UH
kd
g
BH

kd
g

)]

(31)

T3,gij =

Ku
g∑

k=1

[

Tr
(

κUBku
g
Uku

g
Hg,iu

j
diag(Viu

j
VH

iu
j
)HH

g,iu
j
UH

ku
g
BH

ku
g

)

+Tr
(

Bku
g
(Uku

g
Hg,iu

j
Viu

j
−δk,gi,j I)(Uku

g
Hg,iu

j
Viu

j
−δk,gi,j I)B

H
ku
g

)

+Tr
(

βBBku
g
Uku

g
diag(Hg,iu

j
Viu

j
VH

iu
j
HH

g,iu
j
)UH

ku
g
BH

ku
g

)]

(32)

T4,gj =

Ku
g∑

k=1

Kd
j∑

i=1

[

ϑg
jTr

(

Bku
g
Uku

g
Hg,jVid

j
VH

id
j
HH

g,jU
H
ku
g
BH

ku
g

)

+(1− ϑg
j )

(

Bku
g
Uku

g
∆g,jVid

j
VH

id
j
∆H

g,jU
H
ku
g
BH

ku
g

)

+Tr
(

κBBku
g
Uku

g
Hg,jdiag(Vid

j
VH

id
j
)HH

g,jU
H
ku
g
BH

ku
g

)

+Tr
(

βBBku
g
Uku

g
diag(Hg,jVid

j
VH

id
j
HH

g,j)U
H
ku
g
BH

ku
g

)]

(33)

Following a process similar to the one outlined for ∆kd
g ,i

u
j

we can introduce additional slack variables such that

T2,kgj = ‖ω2,kgj +Ω2,kgjvec(∆kd
g ,j

)‖2 ≤ m2,kgj

T3,gij = ‖ω3,gij +Ω3,gijvec(∆g,iu
j
)‖2 ≤ m3,gij

T4,gj = ‖ω4,gj +Ω4,gjvec(∆g,j)‖2 ≤ m4,gj .

The introduction of these slack variables allows us to formulate

the corresponding constraints in the form of (30). Additional

details are not provided here since the process required for

each of ∆kd
g ,j

, ∆g,iu
j

and ∆g,j follows the one already outlined

for ∆kd
g ,i

u
j

. After going through this procedure, we can express

the original cost function from (26) as a summation of the

slack variables and some additional terms in order to obtain

the final problem formulation in (27).

Since problem (27) is not jointly convex in U, V and B

we apply the alternating optimization approach in Algorithm

1 to solve it [30]4 . In Step 2, to compute U we fix V and

B and solve the resulting semi-definite programming (SDP)

problem. In Step 3 instead of finding W, we now want to find

4Note that some additional minor reformulations are required when solving
for U and B. In particular, we introduce slack variables to handle terms of
the form ‖BU‖2F in a manner similar to the process applied in (28).



9

ES
kd
g
= Ukd

g

G∑

j=1

Kd
j∑

i=1

Ĥkd
g ,j

Vid
j
VH

id
j
Ĥ

H

kd
g ,j

UH
kd
g
+Ukd

g

G∑

j=1

Ku
j∑

i=1

Ĥkd
g ,i

u
j
Viu

j
VH

iu
j
Ĥ

H

kd
g ,i

u
j
UH

kd
g
−Ukd

g
Ĥkd

g ,g
Vkd

g
−VH

kd
g
Ĥ

H

kd
g ,g

UH
kd
g

+ (σ2
U + fkd

g
)Ukd

g
UH

kd
g
+Ukd

g
F̂kd

g
UH

kd
g
+ I (35)

ES
ku
g
= Uku

g

G∑

j=1
j 6=g

Kd
j∑

i=1

Ĥg,jVid
j
VH

id
j
Ĥ

H

g,jU
H
ku
g
+Uku

g

G∑

j=1

Ku
j∑

i=1

Ĥg,iu
j
Viu

j
VH

iu
j
Ĥ

H

g,iu
j
UH

ku
g
−Uku

g
Ĥg,ku

g
Vku

g
−VH

ku
g
Ĥ

H

g,ku
g
UH

ku
g

+ (σ2
B + fg)Uku

g
UH

ku
g
+Uku

g
F̂gU

H
ku
g
+ I (36)

Ū
S
kd
g
= VH

kd
g
Ĥ

H

kd
g ,g

[
∑G

j=1

∑Kd
j

i=1
Ĥkd

g ,j
Vid

j
VH

id
j
Ĥ

H

kd
g ,j

+
∑G

j=1

∑Ku
j

i=1
Ĥkd

g ,i
u
j
Viu

j
VH

iu
j
Ĥ

H

kd
g ,i

u
j
+ F̂kd

g
+ (σ2

U + fkd
g
)I

]−1

(37)

Ū
S
ku
g
= VH

ku
g
Ĥ

H

g,ku
g

[
∑G

j=1
j 6=g

∑Kd
j

i=1
Ĥg,jVid

j
VH

id
j
Ĥ

H

g,j +
∑G

j=1

∑Ku
j

i=1
Ĥg,iu

j
Viu

j
VH

iu
j
Ĥ

H

g,iu
j
+ F̂g + (σ2

B + fg)I

]−1

(38)

B where W = BHB. Therefore, after replacing terms of the

form α log2| (ln2/α)BHB| with 2α log2| (ln2/α)
1
2 B|, we

fix V and U and solve the resulting determinant maximization

(MAX-DET) problem [36]. Finally, in Step 4 to compute V,

we fix U and B and solve the resulting SDP problem. All

problems may be solved using standard convex optimization

solvers. Note that analogous to the algorithm from [30], the

alternating maximization approach applied here to solve (26)

converges. This follows because each step of the iterations

leads to a monotonic increase of the objective function;

since the objective function is upper bounded, convergence

is guaranteed.

V. ROBUST DESIGN WITH STOCHASTIC ERROR MODEL

For the stochastic CSI error model, all nodes have access to

Ĥ instead of H. Therefore instead of focusing on the actual

achievable DL and UL rates, we consider their lower bounds

RS
kd
g

and RS
ku
g

, where channel estimation errors are treated as

noise [37].

Starting with the DL, under Gaussian signaling, RS
kd
g

=

log2|I+ Φ̂
−1

kd
g
Ĥkd

g ,g
Vkd

g
VH

kd
g
Ĥ

H

kd
g ,g

| where Φ̂kd
g

is defined as

Φ̂kd
g
=
∑G

j=1

∑Kd
j

i=1
(i,j 6=k,g)

Ĥkd
g ,j

Vid
j
VH

id
j
Ĥ

H

kd
g ,j

+ F̂kd
g

+
∑G

j=1

∑Ku
j

i=1
Ĥkd

g ,i
u
j
Viu

j
VH

iu
j
Ĥ

H

kd
g ,i

u
j
+ (σ2

U + fkd
g
)I .

Here F̂kd
g

is defined similarly to (7) but has all instances of

Ĥ replaced by H. Additionally, fkd
g

reflects the effect of the

stochastic imperfect CSI and is given by

fkd
g
≈ ηUB(1 + κB + βU )

∑G

j=1

∑Kd
j

i=1
Tr

(

Vid
j
VH

id
j

)

+ ηUU (1 + κU + βU )
∑G

j=1

∑Ku
j

i=1
Tr

(

Viu
j
VH

iu
j

)

.

For the UL, assuming Gaussian signaling, we have RS
ku
g

=

log2|I+ Φ̂
−1

ku
g
Ĥg,ku

g
Vku

g
VH

ku
g
Ĥ

H

g,ku
g
|, where Φ̂ku

g
is given by

Φ̂ku
g
=

∑G

j=1
(j 6=g)

∑Kd
j

i=1
Ĥg,jVid

j
VH

id
j
Ĥ

H

g,j + F̂g

+
∑G

j=1

∑Ku
j

i=1
(i,j 6=k,g)

Ĥg,iu
j
Viu

j
VH

iu
j
Ĥ

H

g,iu
j
+ (σ2

B + fg)I .

Here F̂g is defined parallel to (10) with Ĥ replaced by H and

fg is equivalent to

fg ≈ ηBB(1 + κB + βB)
∑G

j=1

∑Kd
j

i=1
Tr

(

Vid
j
VH

id
j

)

+ ηBU (1 + κU + βB)
∑G

j=1

∑Ku
j

i=1
Tr

(

Viu
j
VH

iu
j

)

.

Therefore for the stochastic CSI error model, the WSR

problem we want to solve is

max
V

∑G

g=1

∑Kd
g

k=1
αkd

g
RS

kd
g
+

∑G

g=1

∑Ku
g

k=1
αku

g
RS

ku
g

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g . (34)

Similar to the perfect CSI case, we will solve this problem

by transforming it into a WMMSE one. To obtain the MSE

matrices, we start with Ekd
g
= E[(Ukd

g
ykd

g
− skd

g
)(Ukd

g
ykd

g
−

skd
g
)H ] and Eku

g
= E[(Uku

g
yg − sku

g
)(Uku

g
yg − sku

g
)H ] and

replace H with Ĥ+∆ from (4). Taking the expectation over

s, n and ∆ under an independence assumption, we obtain ES
kd
g

in (35) for the DL and ES
ku
g

in (36) for the UL.

The optimal MMSE receivers can be obtained by solving

Ū
S
kd
g

= argmin
U

Tr(ES
kd
g
) and Ū

S
ku
g

= argmin
U

Tr(ES
ku
g
),

resulting in (37) and (38) respectively. Applying these MMSE

receivers, the MSE matrices in (35) and (36) can respectively

be expressed as Ē
S
kd
g

= (I + VH
kd
g
Ĥ

H

kd
g ,g

Φ̂
−1

kd
g
Ĥkd

g ,g
Vkd

g
)−1

and Ē
S
ku
g
= (I+ Ĥg,ku

g
Vku

g
Φ̂

−1

ku
g
VH

ku
g
Ĥ

H

g,ku
g
)−1. Similar to the
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XS
g =X̂g+ηUB(1+κB+βU )

∑G

j=1

∑Kd
j

i=1
Tr

(

Uid
j
UH

id
j
Wid

j

)

+ηBB(1+κB+βB)
∑G

j=1

∑Ku
j

i=1
Tr

(

Uid
j
UH

iu
j
Wiu

j

)

(43)

XS
ku
g
=X̂ku

g
+ηUU (1+κU+βU )

∑G

j=1

∑Kd
j

i=1
Tr

(

Uid
j
UH

id
j
Wid

j

)

+ηBU (1+κU+βB)
∑G

j=1

∑Ku
j

i=1
Tr

(

Uid
j
UH

iu
j
Wiu

j

)

(44)

perfect CSI case, using an argument parallel to the one from

[21]–[23], we obtain

RS
kd
g
= log2

∣
∣
∣(Ē

S
kd
g
)−1

∣
∣
∣ and RS

ku
g
= log2

∣
∣
∣(Ē

S
ku
g
)−1

∣
∣
∣ . (39)

This rate to MSE relationship allows us to establish the

following theorem.

Theorem 3. The stochastic CSI error WSR problem in (34)

is equivalent to the WMMSE problem in (40), such that the

global optimal solution for the precoders of the two problems

are identical.

min
U,W,V

G∑

g=1

Kd
g∑

k=1

[

Tr(Wkd
g
ES

kd
g
)− αkd

g
log2

∣
∣
∣
∣
∣

ln2

αkd
g

Wkd
g

∣
∣
∣
∣
∣
−

αkd
g

ln2
bd

]

+
G∑

g=1

Ku
g∑

k=1

[

Tr(Wku
g
ES

ku
g
)− αku

g
log2

∣
∣
∣
∣
∣

ln2

αku
g

Wku
g

∣
∣
∣
∣
∣
−

αku
g

ln2
bu

]

s.t. Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g (40)

Proof. The proof for this theorem is analogous to the perfect

CSI argument used in the proof of Theorem 1 and the method

in [21]–[23]; therefore to avoid repetition we have omitted it.

Note that for the stochastic CSI error problem, the optimal W

are

W̄
S
kd
g
=

αkd
g

ln2
(Ē

S
kd
g
)−1 and W̄

S
ku
g
=

αku
g

ln2
(Ē

S
ku
g
)−1 . (41)

Since (40) is not jointly convex in V, U and W the

alternating optimization approach from Algorithm 1 is used

to solve it. For Step 2 we use (37) and (38) to calculate the

optimal receivers as Ukd
g
= Ū

S
kd
g

and Uku
g
= Ū

S
ku
g

. In Step 3

the weights are calculated as Wkd
g
= W̄

S
kd
g

and Wku
g
= W̄

S
ku
g

using (41). The optimal precoders can be obtained similar

to the perfect CSI case by using the Lagrangian method.

Therefore in Step 4 we calculate Vkd
g
= V̄

S
kd
g

and Vku
g
= V̄

S
ku
g

as

V̄
S
kd
g
= [XS

g + µS
g I]

−1Ĥ
H

kd
g ,g

UH
kd
g
Wkd

g

V̄
S
ku
g
= [XS

ku
g
+ λS

ku
g
I]−1Ĥ

H

g,ku
g
UH

ku
g
Wku

g
(42)

where XS
gd and XS

ku
g

are defined in (43) and (44), and µS
g

and λS
ku
g

are the Lagrange multipliers. Here X̂g and X̂ku
g

are

defined similar to Xg and Xku
g

from (21) and (22) respectively

but with H replaced by Ĥ.

Note that the convergence considerations in Remark 1

are also applicable to the alternating minimization approach

applied to solve the stochastic CSI error problem (40).

VI. EXTENSION TO WEIGHTED DL RATE MAXIMIZATION

SUBJECT TO A PER UL USER TARGET RATE

In addition to the total rate maximization design we also

consider sum DL rate maximization subject to each UL user

achieving a target rate of RUL. The motivation behind this

design is due to the fact that even if FD outperforms HD, this

does not guarantee that all UL users are served evenly in every

time slot. In some instances a UL user may achieve a lower

rate in order to reduce the amount of interference present in

the system. Therefore, we consider the following problem

max
V

∑G

g=1

∑Kd
g

k=1
αkd

g
Rkd

g

s.t. Rku
g
≥ RUL ∀ k, g

Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g . (45)

Theorem 4. The WSR problem in (45) is equivalent to

the WMMSE problem in (46), such that the global optimal

solutions for the precoders of the two problems are identical.

min
U,W,V

G∑

g=1

Kd
g∑

k=1

[

Tr(Wkd
g
Ekd

g
)− αkd

g
log2

∣
∣
∣
∣
∣

ln2

αkd
g

Wkd
g

∣
∣
∣
∣
∣
−

αkd
g

ln2
bd

]

s.t.

[

Tr(Wku
g
Eku

g
)− log2

∣
∣
∣ln2Wku

g

∣
∣
∣− bu

ln2

]

≤ −RUL ∀ k, g

Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g (46)

Proof. Firstly it can be seen that the optimal U for (46) are

the standard MMSE receivers Ūkd
g

and Ūku
g

in (8) and (11)

respectively. Secondly, fixing U and V and checking the first

order optimality conditions for the weights we obtain their

optimal values as

W̄
c
kd
g
=

αkd
g

ln2
Ē

−1
kd
g

and W̄
c
ku
g
=

1

ln2
Ē

−1
ku
g
. (47)

Substituting for optimal U and W in (46) results in

min
V

∑G

g=1

∑Kd
g

k=1
−αkd

g
log2

∣
∣
∣Ē

−1
kd
g

∣
∣
∣

s.t. − log2

∣
∣
∣Ē

−1
ku
g

∣
∣
∣ ≤ −RUL ∀ k, g

Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g (48)

which considering (9) and (12) is the same as (45).

Since (46) is not jointly convex in U, V and W but

is separately convex in each variable, it can be solved via

alternating minimization. Having already obtained closed form
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Tr(W
kd
g
E

kd
g
) = ‖φ

kd
g
‖
2

= Tr(Wku
g
Eku

g
) = ‖φku

g
‖
2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(I ⊗ B
kd
g
U

kd
g
H

kd
g,g

)vec(V
kd
g
) − vec(B

kd
g
)

⌊(I ⊗ B
kd
g
U

kd
g
H

kd
g,j

)vec(V
id
j
)⌋

∀ j=1...G,i=1...Kd
j
,(i,j 6=k,g)

⌊(I ⊗ B
kd
g
U

kd
g
H

kd
g,iu

j
)vec(Viu

j
)⌋∀ j=1...G,i=1...Ku

j

κ
1
2
B

⌊
(

I ⊗
(

diag(HH

kd
g,j

U
H

kd
g

B
H

kd
g

B
kd
g
U

kd
g
H

kd
g,j

)
) 1
2

)

vec(V
id
j
)⌋∀ j=1...G

i=1...Kd
j

κ
1
2
U

⌊
(

I ⊗
(

diag(HH

kd
g,iu

j

U
H

kd
g

B
H

kd
g

B
kd
g
U

kd
g
H

kd
g,iu

j
)
) 1
2

)

vec(Viu
j
)⌋∀ j=1...G

i=1...Ku
j

β
1
2
U

⌊
(

I ⊗
[(

diag(UH

kd
g

B
H

kd
g

B
kd
g
U

kd
g
)
) 1
2 H

kd
g,j

]

)

vec(V
id
j
)⌋∀ j=1...G

i=1...Kd
j

β
1
2
U

⌊
(

I ⊗
[(

diag(UH

kd
g

B
H

kd
g

B
kd
g
U

kd
g
)
) 1
2 H

kd
g,iu

j

]

)

vec(Viu
j
)⌋∀ j=1...G

i=1...Ku
j

(σ2
U + βUσ2

U )
1
2 Tr(B

kd
g
U

kd
g
U

H

kd
g

B
H

kd
g

)
1
2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2 ∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(I ⊗ Bku
g
Uku

g
Hg,ku

g
)vec(Vku

g
) − vec(Bku

g
)

⌊(I ⊗ Bku
g
Uku

g
Hg,j)vec(Vid

j
)⌋

∀ j=1...G,i=1...Kd
g ,(j 6=g)

⌊(I ⊗ Bku
g
Uku

g
Hg,iu

j
)vec(Viu

j
)⌋∀ j=1...G,i=1...Ku

g ,(i,j 6=k,g)

κ
1
2
B

⌊
(

I ⊗
(

diag(HH
g,jU

H
ku
g
B

H
ku
g
Bku

g
Uku

g
Hg,j)

) 1
2

)

vec(V
id
j
)⌋∀ j=1...G

i=1...Kd
j

κ
1
2
U

⌊
(

I ⊗
(

diag(HH
g,iu

j
U

H
ku
g
B

H
ku
g
Bku

g
Uku

g
Hg,iu

j
)
) 1
2

)

vec(Viu
j
)⌋∀ j=1...G

i=1...Ku
j

β
1
2
B

⌊
(

I ⊗
[(

diag(UH
ku
g
B

H
ku
g
Bku

g
Uku

g
)
) 1
2 Hg,j

]

)

vec(V
id
j
)⌋∀ j=1...G

i=1...Kd
j

β
1
2
B

⌊
(

I ⊗
[(

diag(UH
ku
g
B

H
ku
g
Bku

g
Uku

g
)
) 1
2 Hg,iu

j

]

)

vec(Viu
j
)⌋∀ j=1...G

i=1...Ku
j

(σ2
B + βBσ2

B)
1
2 Tr(Bku

g
Uku

g
U

H
ku
g
B

H
ku
g
)
1
2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

(50) (51)

expressions for optimal U and W, we focus on obtaining V.

For fixed U and W, we can express (46) as

min
V

∑G

g=1

∑Kd
g

k=1
Tr(Wkd

g
Ekd

g
)

s.t. Tr(Wku
g
Eku

g
) ≤ Ψku

g
∀ k, g

Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g (49)

where Ψku
g
= −RUL + log2|ln2Wku

g
|+ bu/ln2.

Next using Tr(AAH) = ‖vec(A)‖2 and vec(ABC) =
(CT ⊗ A)vec(B) we can rewrite Tr(Wkd

g
Ekd

g
) and

Tr(Wku
g
Eku

g
) as ‖φkd

g
‖2 in (50) and ‖φku

g
‖2 in (51) respec-

tively. This reformulation allows us to introduce slack variable

t, such that ‖φkd
g
‖2 ≤ tkd

g
, and cast (49) as the following

problem

min
V,t

∑G

g=1

∑Kd
g

k=1
tkd

g

s.t. ‖φkd
g
‖2 ≤ tkd

g
∀ k, g

‖φku
g
‖2 ≤ Ψku

g
∀ k, g

Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g (52)

which after additional minor reformulations can be trans-

formed into a second-order cone programming (SOCP) prob-

lem and then solved using standard convex optimization

solvers.

Therefore to solve (46) we apply the alternating optimiza-

tion process from Algorithm1. The optimal weights in Step

2 are calculated as Ukd
g
= Ūkd

g
and Uku

g
= Ūku

g
using (8)

and (11). In Step 3, the optimal weights Wkd
g
= W̄

c
kd
g

and

Wku
g

= W̄
c
ku
g

are found using (47). In Step 4 the optimal

precoders Vkd
g

and Vku
g

are found by solving (52).

Proposition 1. The alternating optimization process applied

to solve (46) produces a convergent monotonically decreasing

objective value sequence.

Proof. See Appendix B.

As a final remark, we would like to point out that it

also possible to consider this problem under imperfect CSI,

using the two models described in Section II-B. This will be

considered as part of our future work.

VII. SIMULATION RESULTS

Our simulations follow the 3GPP LTE [16] specifications

for multi-cell pico scenarios outlined in Table I. Channel

gains between BSs and users, and between the users and

the BSs themselves, are modeled as Hr,t =
√
̺H̃r,t, where

r represents the receiver, t represents the transmitter, H̃r,t

has elements distributed as CN (0, 1) and ̺ = 10−PL/10

with PL being the pathloss calculated according to Table

I, depending on r and t. The SI channel, Hg,g , is modeled

as CN
(√

KH/(1 +KH)H̄g,g, (1/(1+KH))IMB
⊗ IMB

)
[1]

where KH is the Rician factor and H̄g,g is a deterministic

matrix5.

Throughout the simulations we fix αkd
g
= αku

g
= 1 ∀ k, g

and Kd
g = Ku

g = K ∀ g. We also set κB = κU = κ,

βB = βU = β and κ = β. Parameters κ and β jointly

reflect the amount of transmitter and receiver distortion and,

more importantly, κ on its own reflects the amount of residual

SI at the FD BS as can be seen from (3). The larger the

value, the larger both distortion and residual SI. Additionally

for all algorithms we consider random precoder initialization

and average the rate results in a Monte Carlo fashion over a

number of randomly generated scenario realizations.

A. Perfect CSI results

Fig. 2 provides a comparison of the sum rates achieved

by the FD beamformer design from Section III versus HD

operation. For HD we consider the case where the BSs serve

5Without loss of generality, we set KH = 1 and H̄g,g to be a matrix of
all ones similar to [9], [20].

TABLE I: Parameter settings for simulations [16]

Parameter Setting
Cell radius 40m
Bandwidth 10MHz
Thermal noise density 174dBm/Hz
Noise figure BS: 13dB, user: 9dB
Max. transmit power PB = 24dBm, PU = 23dBm
Min. distance DBS,BS−min = 40m

DBS,user−min = 10m
BS to BS pathloss LOS if D < 2/3: 98.4 + 20log10(D)
(in dB, D in km) LOS if D ≥ 2/3: 101.9 + 40log10(D)

NLOS: 101.9 + 40log10(D)
BS to user pathloss LOS: 103.8 + 20.9log10(D)
(in dB, D in km) NLOS: 145.4 + 37.5log10(D)
User to user pathloss if D ≤ 50m: 98.45 + 20log10(D)
(in dB, D in km) if D > 50m: 175.78 + 40log10(D)
Shadowing standard deviation between BS & users, LOS: 3, NLOS: 4
(in dB) between cells: 6
LOS probability 0.5 − min(0.5, 5 exp(−0.156/D))
(D in km) +min(0.5, 5 exp(−D/0.003))
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Fig. 2: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4 and Md = Mu = 2.
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Fig. 3: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4, Md = Mu = 4 and DBS,BS = 100m.

their corresponding DL and UL users separately in alternate

channel uses, with the aim in each case being to maximize

either the DL rate or the UL rate accordingly. As can be seen

from Fig. 2 for κ = β = −50dB both HD and FD systems

obtain similar rates, however FD outperforms HD for values

of κ = β < −50dB. The amount of gain achieved varies with

the κ = β value and this is mainly due to the fact that the

higher the transmitter distortion, κ, the more residual SI there

is. This residual SI is a limiting factor for the UL rate which

contributes a smaller portion of the total rate for larger κ. Such

an effect can be seen more clearly in Fig. 3 which plots DL

and UL rates separately.

From both Fig. 2 and Fig. 3, it can be noticed that as the

value of κ = β decreases the gain of FD over HD starts to

increase significantly. In particular for Fig. 2 at κ = β =
−120dB there is a gain of 1.92 for DBS,BS = 200m and a

gain of 1.85 for DBS,BS = 40m. For FD the rate drop between

achievable rates at DBS,BS = 200m and at DBS,BS = 40m

is larger than the rate drop experienced by HD. This is due

to the fact that when the BSs operate in FD there are more

interference links than for HD, thus the negative impact of

closer proximity between the cells affects FD more than HD.

The impact of inter-cell CCI on FD can be understood more

clearly from Fig. 4, where we plot sum rate against the distance

between BSs. As DBS,BS increases, inter-cell CCI decreases,

thus the total achievable rate increases. An interesting effect

can be noticed by looking at the separate FD DL and UL
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Fig. 4: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4, Md = Mu = 2 and κ = β = −90dB.
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Fig. 5: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4, Md = Mu = 2 and DBS,BS = 100m.

rate results in the range of 40m to 80m. The UL rate within

this range remains approximately the same, however the DL

rate has a significant increase. DL users experience inter-

cell CCI from both BSs and UL users in other cells, thus

a small increase in the distance between BSs contributes to

a significant decrease in inter-cell CCI, allowing DL users to

achieve higher rates. For this DBS,BS range, the BS to BS

channel is very strong; implying that it is not advantageous

in terms of the overall achievable rate to promote UL rate

gain, hence the very small change in UL rate between 40m

and 80m. A DBS,BS of around 100m or more is sufficient to

overcome this issue, leading to a considerable increase in UL

rate at 100m.

Having seen the effect of inter-cell CCI, next we investigate

the effect of intra-cell CCI. In order to do so, we have devised

two scenarios that fix the location of the BSs and the users, as

shown in Fig. 6. For both scenarios A and B, the BSs are 100m

apart and the distance between different cell DL and UL users

is approximately 100m (100.50m for Scenario A and 100.32m

for Scenario B), implying that the effect of inter-cell CCI is the

same. However, the distance between same cell DL and UL

users is only 10m for Scenario A and a much larger 56.49m

for Scenario B. Fig. 5 provides some simulation results. As

can be seen, scenario B achieves higher rates throughout; this

is expected since Scenario B represents the lower interference

case. Considering Scenario A and looking at the separate DL

and UL rates it can be noticed that for example at κ = β =



13

−50dB the DL rate is around 27.5bits/s/Hz and the UL rate

is nearly zero. For κ = β = −50dB the SI component is very

high; this makes UL communication very difficult, thus DL

communication is given priority. However as SI decreases, the

UL rate starts to increase. This increase in UL rate in the high

SI region comes at the expense of a slight decrease in the DL

rate, due to the higher intra-cell CCI component. For scenario

B, same cell UL and DL users are much further apart, thus

the effect of intra-cell CCI is considerably reduced and this

UL/DL rate trade-off does not occur.

B. Imperfect CSI results

After establishing the gains of FD systems over HD ones,

our next goal is to show how the FD imperfect CSI designs

fare. Starting with the norm-bounded error design from Section

IV we set εkd
g ,i

u
j

= εkd
g ,j

= εg,iu
j

= εg,j = ε ∀ k, g, i, j
and obtain the results in Fig. 7. Note that channel strengths

generated using the 3GPP LTE model from [16] are in the

order of −30dB or lower, which is why for ε = −30dB

achievable rates are close to zero. This also highlights why

in the range of ε = −30dB to ε = −35dB, there is only

a small difference in the rates achieved for different κ = β
values. Within this region the CSI error is considerably large,

varying from being of the same order of magnitude as the

strongest channels at −30dB to a third at −35dB; with CSI

errors being so large, the error is more of a limiting factor

on rate performance than transmitter and receiver distortion.

The converse is true for lower ε regions. As the norm of the

CSI error starts to decrease, the curves achieved for different

κ = β values become more distinct, indicating that distortion

effects are more of a rate limiting factor than the CSI error.

Naturally the curve for the lowest κ = β settles at the highest

rate value which is expected since this corresponds to the least

amount of distortion and residual SI.

For the stochastic CSI error model, in Fig. 8 we plot the

achievable rate for varying values of τ and ν, where τ =
0 corresponds to perfect CSI for any ν. The robust design

from Section V is compared with a naive version obtained by

35m 35m

25m 25m
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25m25m
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100.32m
51 

o

51 
o

Scenario B

Fig. 6: Scenarios with same inter-cell CCI. Black circles represent the BSs,
blue squares are UL users and red triangles are DL users.

−70 −65 −60 −55 −50 −45 −40 −35 −30
0

5

10

15

20

25

30

35

40

45

50

55

ε in dB

S
u

m
 r

a
te

 i
n

 b
it
s
/s

/H
z

 

 

FD − κ = β = −100dB

FD − κ = β = −90dB

FD − κ = β = −80dB

FD − κ = β = −70dB

HD

Fig. 7: Total sum rates achieved for different norm-bounded errors for scenario
with G = 2, K = 1, bd = bu = 1, MB = 4, Md = Mu = 2 and
DBS,BS = 100m.
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Fig. 8: Total sum rates achieved for different stochastic errors for scenario with
G = 2, K = 1, bd = bu = 1, MB = 4, Md = Mu = 4, DBS,BS = 100m
and κ = β = −90dB.

setting ηBB = ηBU = ηUB = ηUU = 0 in order to eliminate

any robustness considerations. For fixed ν, rate decreases as

τ increases; this is expected since larger τ values correspond

to larger CSI errors. Additionally it can be noticed that the

lower the ν the sharper is the rate decrease for varying τ , and

the larger is the gain between the rate achieved by the robust

beamformer versus the naive one. For ν = 1, there is only a

small difference between the performance of the robust and

the naive designs, and the rate decrease for varying τ is also

small. This behaviour is a reflection of the fact that previous

studies with a similar error model show that ν = 1 corresponds

to perfect CSI from a degrees of freedom (DoF) perspective

[35], [38].

Looking at both Fig. 7 and Fig. 8, it can be noticed that for

both types of error the FD results deteriorate more than the

HD ones for the same decrease in CSI quality. When using

FD BSs there are more channel links between the various

nodes than for the corresponding HD systems. Having an

increased amount of links with imperfect knowledge results in

a sharper rate decrease, thereby stressing the added importance

of channel estimation and robust beamformer design for FD

systems.

C. Results for target UL rate problem

For the problem from Section VI, which considers weighted

DL rate maximization subject to a per UL user target rate, we
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have the results in Table II. This table provides a comparison

between the DL rates achieved by the constraint design and the

corresponding HD system which maximizes the total DL rate.

Values written in the form (a)∗b% indicate that the problem

is not always feasible for the considered target rate RUL.

Here b% represents the percentage of scenarios for which the

problem was found to be feasible and a represents the average

rate achieved over these feasible scenarios. UL rate results are

not included, since provided that the chosen target is feasible

a total UL rate of GKRUL is achievable.

The gains of FD DL rate over HD DL rate range from 1.89
to 1.98 in Table II. On the other hand for the joint problem

in Fig. 3, which considers the same system with DBS,BS =
100m, there is a gain of 1.83 at κ = β = −100dB and 1.40 at

κ = β = −70dB. Such a difference is mainly due to the fact

that for FD κ and β are not only related to distortion but also

to residual SI which makes UL communication more difficult.

Constricting both FD and HD to achieve the same target UL

rate removes the latter factor, thereby leading to higher gains

over HD for the constraint problem as opposed to the joint

one.

With respect to the feasibility of the chosen target rate, RUL,

it can be noticed that for a fixed RUL the lower the distortion

the more likely is the problem always feasible. For example at

DBS,BS = 100m and a target rate of RUL = 2.5, feasibility

goes from 12% at κ = β = −70dB to 100% at κ = β =
−90dB. Such behaviour is expected because the higher the

distortion, the stronger the SI and the more difficult it is to

communicate in the UL. For the lowest distortion value of

κ = β = −100dB, RUL of up to around 8 is generally always

feasible for DBS,BS = 100m, this decreases to RUL of up

to around 5.5 for DBS,BS = 40m. Naturally for DBS,BS =
100m higher RUL can be achieved than for DBS,BS = 40, due

to the stronger interference present in the latter scenario. This

trend can also be seen by comparing the DBS,BS = 100m and

DBS,BS = 40m results across Table II.

TABLE II: Sum DL rates achieved in bits/s/Hz for scenario with G = 2,
K = 1, bu = bd = 1, MB = 4 and Md = Mu = 4.

DBS,BS = 40m

κ = β FD HD

(in dB) RUL = 0.5 RUL = 1.5 RUL = 2.5
−100 32.01 31.96 31.87 16.67
−90 31.81 31.66 31.60 16.66

−80 31.60 31.50 (31.44)∗92% 16.66

−70 (31.38)∗99% (31.02)∗48% (30.48)∗7% 16.64

DBS,BS = 100m

κ = β FD HD

(in dB) RUL = 0.5 RUL = 1.5 RUL = 2.5
−100 33.68 33.62 33.57 17.00
−90 33.50 33.42 33.40 16.98

−80 33.38 33.34 (33.29)∗98% 16.98

−70 33.23 (32.94)∗64% (33.28)∗12% 16.96

D. Convergence results

Finally, Fig. 9 illustrates the convergence behaviour of the

proposed algorithms. For each algorithm we plot a randomly

selected instance. In each case we set κ = β = −90dB and

run for 30 iterations. For the perfect CSI problem we consider

the system setup from Fig. 3. For the norm-bounded error

problem we simulate the system from Fig. 7 with ε = −45dB.

For the stochastic CSI error problem we consider the system

from Fig. 8 with ν = 0.85 and τ = 0.5. For the constraint

problem from Section VI we simulate the system in Table II

at DBS,BS = 100m with RUL = 1.5. As can be seen all

algorithms converge monotonically within a few steps.
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Fig. 9: Convergence behaviour of the proposed algorithms.

VIII. IMPLEMENTATION AND COMPLEXITY ANALYSIS

In order to simplify analysis, throughout this section we fix

MB = Md = Mu = M , Kd = Ku = K and bd = bu = b.

A. Implementation

All proposed algorithms can be implemented in a central-

ized manner, where a central processing site (CPS) collects

all the required CSI, computes the required variables and then

distributes them to the respective nodes. For this implementa-

tion a total of M2G2(K2+2K+1) CSI elements need to be

made available at the CPS to implement the algorithm. The

CPS must then distribute the calculated precoders, resulting in

2GKMb matrix elements for all of Vkd
g

and Vku
g

.

Additionally the closed-form solution algorithms from Sec-

tions III and V may also be applied in a distributed manner.

Similar to the implementations in [20], [22] and references

therein, this requires all nodes to have knowledge of the chan-

nels directly linked to them, i.e. local CSI, and also assumes all

receiving nodes can provide additional feedback information

to transmitting nodes. Each receiving node locally estimates

its interference-plus-noise covariance matrix, Φ. This metric

is related to the MSE matrix which, when using an MMSE

receiver, is given by Ēkd
g
= (I+VH

kd
g
HH

kd
g ,g

Φ−1
kd
g
Hkd

g ,g
Vkd

g
)−1

for the DL and Ēku
g
= (I+VH

ku
g
HH

g,ku
g
Φ−1

ku
g
Hg,ku

g
Vku

g
)−1 for

the UL. Therefore Φ can be used to calculate U and W,

which can then be made available to the transmitting nodes to

calculate V. Thus for a distributed implementation each node

requires local CSI knowledge, resulting in a total of 2GKM2

elements across all users. Additionally 2GK(Mb + b2) el-

ements per iteration need to be fedback to the transmitting

nodes to account for all of U and W.
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B. Complexity analysis

Starting with the closed-form solutions, we evaluate the

order of the number of flops required to calculate the opti-

mization variables using [39] which provides the number of

flops required to perform standard mathematical operations.

Taking (8) as an example, computing all receivers, U, requires

O
(
4G2K2(6M3 + 2Mb2)

)
flops for multiplications inside

the inverse if Φ is unavailable or O
(
2GK(4M3 + 2Mb2)

)

flops if Φ is available, O(2GKM3) flops for the inverse

and O(8GKM2b) flops for multiplying the inverse with the

rest of the outside terms. To compute the weights, W, we

need to calculate the MSE matrix. The interference-plus-

noise covariance matrix, Φ, is already available since it

was previously used in the calculation of U, therefore we

only need O(2GKM3) flops to calculate its inverse and

O
(
2GK(4M3 + 2M2b + 2Mb2)

)
flops for multiplication.

Taking (20) as an example, the calculation of each precoder,

V, requires O
(
4G2K2(6M3 + 2M2b + 2Mb2)

)
flops for

multiplications inside the inverse to compute X, O(2GKM3)
flops for the inverse and O

(
2GK(4M2b + 2Mb2)

)
flops for

multiplying the inverse with the rest of the outside terms.

For the norm-bounded error model we solve a number

of SDP problems, the complexity of which is given by

O(n2
∑I

i m
2
i ) [40]. Here, n represents the total size of the

variables being solved for and I is the total number of

constraints, with each constraint i being of dimension mi. In

our case the complexity can be expressed as O
(
(x1+x2)

2(z1+
z2)

)
, where x2 = 2G2(K2 + 2K + 1) and z2 = G2K2(1 +

M2+b2+2Mb2)2+2G2K(1+M2+Kb2+2KMb2)2+G2(1+
M2+K2b2+2MK2b2)2+G2(K2+2K+1)2. When solving

for V, x1 = 2GKMb and z1 = (GK + K)(Mb)2. When

solving for U, x1 = 2GKMb and z1 = 0. When solving for

B we have a MAX-DET problem. This is of higher complexity

than SDP, however using the SDP complexity as a lower bound

we have x1 = 2GKb2 and z1 = 0.

In Section VI we solve an SOCP problem to obtain V. The

complexity of solving a general SOCP problem is given by

O(n2
∑I

i mi) [40], where the significance of the terms is the

same as for the SDP complexity expression. Applying this to

our problem we have O
(
(2GKMb+GK)2(GKMb+KMb+

8G2K2Mb3 + 4G2K2M2b2 + 2)
)
.

IX. CONCLUSION

In this work we have addressed filter design for WSR

maximization in multi-user multi-cell MIMO networks with

FD BSs and HD users, taking into consideration CCI and

transmitter and receiver distortion. Since WSR problems are

non-convex, we have transformed them into WMMSE prob-

lems and proposed alternating optimization algorithms that

are guaranteed to converge. Using the perfect CSI design as

a starting point, we also consider robust beamformer design

under two types of CSI error, namely norm-bounded error and

stochastic CSI error. Simulation results for small cell scenarios

show that replacing standard HD BSs with FD ones within this

context can indeed increase achievable sum rate for low to

intermediate distortion levels, and also confirm the robustness

of the imperfect CSI designs. Additionally we also propose

a DL rate maximization problem subject to each UL user

achieving a desired target rate, which can be used in cases

where it is important for each UL user to be equally served

in every time slot.

APPENDIX A

USEFUL LEMMA

Lemma 1. [41] Let A, B and C be given matrices, with

A = AH . Then, the relation

A � BHDC+CHDHB ∀ D : ‖D‖ ≤ ξ

is valid if, and only if, there exists λ ≥ 0 such that
[

A− λCHC −ξBH

−ξB λI

]

� 0 .

APPENDIX B

PROOF OF PROPOSTION 1

Defining the following parameters

Cku
g
(U,W,V) = Tr(Wku

g
Eku

g
)− log2|ln2Wku

g
| − bu

ln2
Ckd

g
(U,W,V) = Tr(Wkd

g
Ekd

g
)

− αkd
g
log2

∣
∣
∣
∣
∣

ln2

αkd
g

Wkd
g

∣
∣
∣
∣
∣
−

αkd
g

ln2
bd

we can express (46) as

min
U,W,V

∑G

g=1

∑Kd
g

k=1
Ckd

g
(U,W,V)

s.t. Cku
g
(U,W,V) ≤ −RUL ∀ k, g

Tr(Vku
g
VH

ku
g
) ≤ PU ∀ k, g

∑Kd
g

k=1
Tr(Vkd

g
VH

kd
g
) ≤ PB ∀ g . (53)

Assume that for (53) we have feasible solution

{U(i),W(i),V(i)} at the end of the (i)th iterate and

feasible solution {U(i+1),W(i+1),V(i+1)} at the end of

the (i+ 1)th iterate. At the beginning of the (i+ 1)th iterate,

to perform Step 2 of Algorithm 1, we fix the weights and

precoders to W(i) and V(i) in order to obtain the updated

receivers U(i + 1). Since the updated receivers are MMSE

ones, they are unique optimizers, therefore

Ckd
g

(
U(i+ 1),W(i),V(i)

)
≤ Ckd

g

(
U(i),W(i),V(i)

)
∀ k, g

(54)

Cku
g

(
U(i+ 1),W(i),V(i)

)
≤ Cku

g

(
U(i),W(i),V(i)

)

(a)

≤ −RUL ∀ k, g (55)

where (a) follows since {U(i),W(i),V(i)} is feasible.

Next in Step 3, we fix the receivers and precoders to U(i+1)
and V(i) in order to obtain the new weights W(i + 1). The

weights are updated using (47), which are unique optimizers,

therefore

Ckd
g

(
U(i+ 1),W(i+ 1),V(i)

)
≤ Ckd

g

(
U(i+ 1),W(i),V(i)

)

(b)

≤ Ckd
g

(
U(i),W(i),V(i)

)
∀ k, g

(56)
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Cku
g

(
U(i+ 1),W(i+ 1),V(i)

)
≤ Cku

g

(
U(i+ 1),W(i),V(i)

)

(c)

≤ Cku
g

(
U(i),W(i),V(i)

)

≤ −RUL ∀ k, g

where (b) follows from (54) and (c) follows from (55).

At this stage we have intermediate solution {U(i +
1),W(i + 1),V(i)} which is a feasible point, and the value

of the cost function is given by

∑G

g=1

∑Kd
g

k=1
Ckd

g

(
U(i+ 1),W(i+ 1),V(i)

)

(d)

≤
∑G

g=1

∑Kd
g

k=1
Ckd

g

(
U(i),W(i),V(i)

)

where (d) follows from (56). Next, in Step 4, we fix the

receivers and weights to U(i + 1) and W(i + 1) and solve

(53) to obtain the new precoders V(i + 1). Since with

{U(i + 1),W(i + 1),V(i)} the problem is known to be

feasible, it follows that

∑G

g=1

∑Kd
g

k=1
Ckd

g

(
U(i+ 1),W(i+ 1),V(i+ 1)

)

≤
∑G

g=1

∑Kd
g

k=1
Ckd

g

(
U(i+ 1),W(i+ 1),V(i)

)
.

As can be seen from the above process, the alternating opti-

mization method applied to solve (46) produces a convergent

monotonically decreasing objective value sequence, proving

Proposition 1.
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