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ABSTRACT

Weighted voting systems play a crucial role in the investigation and modeling of many 

engineering structures and political and socio-economic phenomena. There is an urgent 

need to describe these systems in a simpli ed powerful mathematical way that can be 

generalized to systems of any size. An elegant description of voting systems is presented 

in terms of threshold Boolean functions. This description bene ts considerably from 

the wealth of information about these functions, and of the potpourri of algebraic and 

map techniques for handling them. The paper demonstrates that the prime implicants 

of the system threshold function are its Minimal Winning Coalitions (MWC). The 

paper discusses the Boolean derivative (Boolean difference) of the system threshold 

function with respect to each of its member components. The prime implicants of this 

Boolean difference can be used to deduce the winning coalitions (WC) in which the 

pertinent member cannot be dispensed with. Each of the minterms of this Boolean 

difference is a winning coalition in which this member plays a pivotal role. However, 

the coalition ceases to be winning if the member defects from it. Hence, the number 

of these minterms is identi ed as the Banzhaf index of voting power. The concepts 

introduced are illustrated with detailed demonstrative examples that also exhibit some 

of the known paradoxes of voting- system theory. Finally, the paper stresses the utility 

of threshold Boolean functions in the understanding, study, analysis, and design of 

weighted voting systems irrespective of size.

Keywords: Banzhaf index; Prime implicants; Threshold Boolean functions; Voting 

systems; Winning coalitions.

INTRODUCTION

A weighted voting system is a group of entities which have to come to a decision through 

voting. Each member of the system has a speci c weight for its vote, and the decision 

is passed if it secures a minimum threshold of supporting votes. For simplicity, we 

shall not consider “abstention” here, i.e., we assume that every member of the system 

casts a vote of ‘yes’ or ‘no’. There is a wealth of examples of weighted voting systems 

in a variety of political and socio-economic entities such as (a) a presidential council 
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or parliament of a federal government composed of states of different sizes, (b) a state 

council with weighted representatives for the participating districts or counties, (c) the 

European Union (EU), and (d) the board of directors representing stockholders of a 

company or a corporation (March, 1962; Cross, 1967; Holler, 1982; Hershey, 1973; 

Steen, 1994; Taylor and Pacelli, 2008).

Our interest in the topic of weighted systems stems from an engineering 

application, namely, the evaluation of system reliability for a threshold system, i.e., a 

system whose success is a weighted voting function of the successes of its components 

(Rushdi, 1990; 1993; 2010; Rushdi and Alturki, 2015, Eryilmaz, 2015). Despite the 

urgent need for an adequate description of weighted voting systems that is scalable 

or generalizable to large systems, the only current descriptions rely on trial and error 

or computer simulations for large systems and use of lattice diagrams for very small 

systems (Steiner, 1967; Steen, 1994; Stewart, 1995; Taylor and Pacelli, 2008). Our 

study of the reliability of threshold systems revealed the availability of a very powerful 

tool for the study of weighted voting systems, namely the theory of threshold Boolean 

functions. There is already a great wealth of information in that theory that we are 

going to utilize in (and adapt to) the study of weighted voting systems. Moreover, we 

will bene t much from an associated pictorial tool, viz. the Karnaugh map (Rushdi, 

1997; Rushdi & Al-Yahya, 2000; 2001a; 2001b).

The organization of the rest of this paper is as follows. Section 2 reviews the basic 

concepts of threshold Boolean functions and uses them in interpreting important 

concepts in the theory of weighted voting systems, including those of a decision, 

minimal winning coalitions, and voting power. Section 3 demonstrates the ndings 

of section 2 via three illustrative examples. The rst example compares the existing 

method of lattice diagram to the proposed method of a threshold function. The second 

example discusses three schemes for the same problem, and nicely exposes some 

of the paradoxes of voting-system theory. Example 3 relates concepts of coherent 

Boolean threshold functions to common terminology of political coalitions.  Section 4 

concludes the paper and proposes some future work.

THRESHOLD BOOLEAN FUNCTIONS

By de nition, a Boolean function S( ) = S(X1, X2, ……, Xn) is a threshold function 

(Muroga, 1971; Lee, 1978; Muroga, 1979; Rushdi, 1990; Crama and Hammer, 2011) 

if and only if there exists a set of real numbers W1, W2, …..,Wn, called weights, and T, 

called a threshold, such that

S( ) = 1  iff        T.                                     (1)

A threshold function S( ) satisfying Equation (1) will be denoted by H(n; ; ; T). 

Here, the magnitudes of the weights |W
i
| were thought to give the relative importance 
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of the respective values of the elements or components X i  
in determining the values 

of the function (Hurst et al., 1985; Rushdi, 1990). However, Rushdi and Alturki 

(2015) demonstrated that this was not necessarily the case. In fact, they made a clear 

distinction between the weight of an element and its voting power. Such a distinction 

appears to be in agreement with the earlier ndings of Banzhaf (1964).

A threshold Boolean function with positive weights and threshold is a natural 

description for the success of a threshold reliability system, or equivalently, for the 

decision made by a weighted voting system (Rushdi and Alturki, 2015). This function 

is a non-decreasing function, and hence it has a minimal sum that is identical to its 

complete sum, and both are expressible without complemented literals (Lee, 1978; 

Rushdi, 1986a; 1986b; Rushdi and Alturki, 2015). A prime implicant of this function is 

a Minimal Winning Coalition (Rushdi and Alturki, 2015), i.e., it is a winning coalition 

such that any defection from it negates its winning status (Steiner, 1967; Fishburn and 

Brams, 1996).

Now, we note that the famous Banzhaf index of voting power (Banzhaf, 1964; 

Dubey and Shapley, 1979; Hammer and Holzman, 1992; Alonso-Meijide and Freixas, 

2010;  Yamamoto, 2012), is simply the weight of the Boolean derivative (Boolean 

difference) (Reed, 1973; Lee, 1978; Muroga, 1979; Rushdi, 1986b) of the system 

function with respect to the pertinent element variable  

Bi = weight ( f/ Xi)                                             (2a)

= weight (f ( |1i) ⊕ f ( |0i)),                                      (2b)

where f( |1i) and f( |0i) are the subfunctions obtained by restricting the input  of f 

such that f is a 1 or a 0, respectively. In Equation (2), the weight of a Boolean function 

is the number of its true vectors (Rushdi, 1987a; Rushdi, 1987b), i.e., the number of 

vectors  for which S( ) = 1. The prime implicants of this Boolean difference can be 

used to deduce the winning coalitions (WC) in which the pertinent member cannot be 

dispensed with. Each of the minterms of this Boolean difference is a winning coalition 

in which this member plays a pivotal role, in the sense that the coalition ceases to be 

winning if the member defects from it. That is why the number of these minterms is 

identi ed as the Banzhaf index of voting power.

 ILLUSTRATIVE EXAMPLES

Example 1

Consider the weighted voting system

H (n; ; ; T) = H (3; A, B, C; 2, 1, 1; 3)                                 (3)
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taken from Stewart (1995). Here, member A has two votes, each of members, B 

and C has a single vote, and a majority of three votes upholds a decision. This system 

can be solved by the lattice diagram in Figure 1(a). The diagram shows all possible 

coalitions. These are given by the power set of the set S = {A, B, C}, namely

2s = { , {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}.              (4)

In Figure 1(a), two possible coalitions are linked by one edge if they differ by 

just one member, and such an edge is labeled by the member that the two coalitions 

do not have in common. Figure 1(a) also shows the total weight for every coalition. 

A winning coalition (one with total weight  3) is depicted as a black node, while a 

losing coalition (one with total weight < 3) is characterized as a white node. An edge 

going from a white node (losing coalition) to a black one (winning coalition) is a 

pivotal edge and is marked in bold red. These are ve such edges. The voting power 

B
i
 of member i is the number of pivotal edges bearing its name, and hence BA = 3, 

BB = 1, and BC =1. In Figure 1(b), we redraw the lattice diagram of Figure 1(a) using 

a Karnaugh map layout (Rushdi and Ba-Rukab, 2004; Rushdi and Ba-Rukab, 2007; 

Rushdi and Albarakati, 2012).

Our alternative approach is to represent the system decision by the threshold 

Boolean function

{f (A, B, C) = 1}  <=> {2A + B + C  3}                               (5)

Figure 1(c) is a Karnaugh-map expression of the pseudo-Boolean function 

F (A, B, C) = 2A + B + C                                      (6)

and Figure 1(d) is a Karnaugh-map representation of the corresponding threshold 

function (F  3), namely

F (A, B, C) = AB  AC.                                             (7)

Equation (7) states that f has two prime implicants AB and AC, which correspond 

to the minimal winning coalitions {A, B} and {A, C}, respectively. The Karnaugh map 

in Figure 1(d) is folded with respect to each of its arguments to obtain the Boolean 

differences ( f/ A), ( f/ B), ( f/ C), according to Equation (2) (Rushdi, 1986b) in 

Figures 1(e2), 1(e3), 1(e3), respectively. These are given as

f/ A = B  C                                                   (8a)

f/ B = A                                                      (8b)

f/ C = A                                                      (8c)
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and indicate that A cannot be dispensed with in MWCs {A, B} and {A, C}, while 

B is necessary in MWC {A, B}, and the C must be included in MWC {A, C}. The 

Banzhaf indices of the three members are:

BA = Weight ( f/ A) = 3                                          (9a)

BB = Weight ( f/ B) = 1                                          (9b)

BC 
= Weight ( f/ C) = 1                                          (9c)      

(b) A Karnaugh map embedding the lattice
(a) A lattice diagram for the

    H (3; A, B, C; 2, 1, 1; 3) 

                  (c) F = 2A + B + C                                    (d) f = AB  AC

 

          (e1)  f/ A                      (e2) f/ B                                (e3) f/ C       

Fig. 1. Representation of a 3-member weighting system via (a) a lattice diagram, (b) a Karnaugh map, 

(c) a pseudo-Boolean function, (d) a threshold function, and (e) Boolean derivatives.
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Example 2

Table 1 shows three schemes for the voting weights of the six districts of a ctitious 

country called Blockvotia (Stewart, 1995). The six districts are Sheepshire (H), 

Richfolk (R), Candlewick (C), Fiddlesex (F), Slurrey (L) and Porkney Isles (P). For 

the sake of brevity, assume that the abbreviation of the name of a district, is also the 

two-valued Boolean indicator variable for its voting position. The voting positions and 

weights are expressed by the 6-element vectors

 = [H  R  C  F  L  P]T                                           (10)

  = [WH  WR  WC  WF  WL  WP]
T                                                    (11)

Table 1. Voting weights for the districts of Blockvotia.

First scheme Second  scheme Third  scheme

WH 10 10 12

WR 9 9 9

WC 7 7 7

WF 3 3 3

WL 1 2 1

WP 1 2 1

Sum =   Wi 31 33 33

T = ceiling (  Wi 
/ 2) 16 17 17

Now, introduce the pseudo-Boolean function ( ): {0, 1}6 
  R such that

F ( ) = WH H + WR R + WC C + WF F + WL L + WP P,                  (12)

and hence the system is described by a threshold function f ( ): {0, 1}6 
  {0, 1} 

such that 

{f ( ) = 1} iff { F ( )  T}                                         (13)

where T is the threshold of the voting system, expressed as the ceiling of half the 

total sum of weights. In the following section, we discuss the three voting schemes 

presented in Table 1.

Scheme 1

Figures 2(a) and 2(b) are Karnaugh-map representations for F( ) and f( ) for the 

rst scheme, herein designated F1( ) and f1( ), respectively. Since the function 

f1( ) is monotonically non-decreasing or coherent, its prime implicants entail solely 
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un-complemented literals, and its minimal sum is identical to its complete sum (Lee, 

1978; Rushdi, 1986a; Rushdi and Alturki, 2015), namely:

f1( ) = HR  HC  RC.                                          (14)

The threshold Boolean function f1( ) in Equation (14) has three prime implicants, 

HR, HC, and RC, each of which represents a Minimal Wining Coalition (MWC). The 

total weights of these MWCs are 

WHR = WH + WR = 10 + 9 = 19,                                   (15a)

WHC = WH + WC = 10 + 7 = 17,                                   (15b)

WRC = WR + WC = 9+ 7 = 16.                                       (15c)

Here, the coalition RC is the least MWC and just meets the bare minimum 

requirement of T = 16.  Fishburn and Brans (1996) suggest that this least MWC is the 

most stable among the class of MWCs. Figure 2(b) indicates that out of the 64 = 26 

system states or coalitions, there are 32 primitive winning coalitions (depicted with 

map cells of entry 1) and also 32 primitive losing coalitions (depicted with map cells 

of entry 0 (that are actually left blank)). Figure 2(c) is a Karnaugh-map representation 

of the Boolean derivative (Boolean difference) f1/ H. This map is obtained by folding 

the map shown in Figure 2(b) with respect to the variable H, so that a cell ( |1H) {of 

the right half of the map} and a cell ( |0H) {of the left half of the map} coincide as a 

single cell whose entry is obtained by XORing the entries of the two original cells, 

in accordance with Equation (2). The function ( f/ H) has two prime implicants R  

and C, which can be used to deduce the wining coalitions HR  and H C in which 

member H cannot be dispensed with.

Figures 2(d) –2(h) express the Boolean difference of f1 with respect to variables R, 

C, F, L, and P respectively. The Banzhaf indices are:

BH = Weight ( f1/ H) = 16,                                      (16a)

                            BR = Weight ( f1/ R) = 16,                                      (16b)

                            BC 
= Weight ( f1/ C) = 16,                                       (16c)

BF = Weight ( f1/ F) = 0,                                         (16d)

BL = Weight ( f1/ L) = 0,                                         (16e)

BP = Weight ( f1/ P) = 0.                                         (16f)
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This means that the three largest districts have equal voting power, while the three 

smallest ones have no power at all. In fact, in any vote, at least two of the three largest 

districts will vote the same way, securing a MWC and leaving the three smallest 

districts powerless. In fact, none of the smallest districts can ever play a pivotal role in 

decision making. Furthermore, none of them can turn a winning coalition to a losing 

one by defecting from it, and none of them can turn a losing coalition to a winning 

one by joining it.

(a) F1( ) = 10 H + 9 R + 7 C + 3 F +  L +  P           (b) f1(X) = HR  HC  RC

                                                                                   

 

             (c) f1/ H                                                               (d)  f1/ R

             (e) f1/ C                                                               (f) f1/ F

             (g) f1/ L                                                               (h) f
1
/ P

Fig. 2. The pseudo Boolean function F1( ), the threshold function f1( ), and the Boolean derivatives for 

the rst scheme in Table 1.
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Scheme 2

Scheme 2 was proposed as a remedy to the unfortunate situation in scheme 1 by adding 

an extra vote to each of the two smallest districts (see Table 1). Figure 3(a) and 3(b) 

are Karnaugh-map representations for F( ) and f( ) for the second scheme, herein 

designated as F2( ) and f
2
( ), respectively. The functions F2( ) and f2( ) are given 

by:

F1( ) = 10 H + 9 R + 7 C + 3 F + 2 L + 2 P                           (17)

f2( ) = HR  HC  RCL  RCP  RCF  HFLP                        (18)

The function f2( ) has six prime implicants HR, RCF, RCL, RCP, HC and HFLP,  

each of which represents an MWC. The total weights of these MWCs are 

WHR = WH + WR = 10 + 9 = 19,                                   (19a)

WRCF 
= WR + WC + WF = 9 + 7 + 3= 19,                            (19b)

WRCL = WR+ WC + WL = 9 + 7 + 2= 18,                            (19c)

WRCP = WR + WC + WP = 9 + 7 + 2= 18,                            (19d)

WHC = WH + WC = 10 + 7 = 17,                                   (19e)

WHFLP = WH + WF + WH + WF = 10 + 3 + 2+ 2= 17.                    (19f)

Here, the two coalitions, HC and HFLP are the least MWCs and each of them 

just meets the bare minimum requirement of T = 17. Figure 3(b) indicates that 

out of the 64 = 26 system states or coalitions, there are still 32 primitive winning 

coalitions and also 32 primitive losing coalitions. Figures 3(c) – 3(h) are Karnaugh-

map representations of the Boolean derivatives, from which the Banzhaf indices are 

obtained as:

BH = Weight ( f
2
/ H) = 17,                                      (20a)

BR = Weight ( f
2
/ R) = 15,                                      (20b)

BC 
= Weight ( f

2
/ C) = 15,                                      (20c)

BF = Weight ( f
2
/ F) = 1,                                       (20d)

BL = Weight ( f
2
/ L) = 1,                                        (20e) 

BP = Weight ( f
2
/ P) = 1.                                        (20f)
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Scheme 2 is better than scheme 1, since each of the three smallest districts has 

now some power. It might seem paradoxical that district F gained some power, and 

also district H became slightly more powerful than districts R and C by simply adding 

votes to districts L and P. Though scheme 2 is better than scheme 1, it is still not 

entirely fair. For example, district F has more weight than any of districts L and P, but 

it has just the same power as each of them.

  (a)  F2( ) = 10 H + 9 R + 7 C + 3 F + 2 L + 2 P         (b) f2(X) = HR  RCF  RCL  RCP  HC  HFLP

                                                                                                

             (c) f2/ H                                                                   (d) f2/ R

             (e) f2/ C                                                                   (f) f2/ F

             (g) f2/ L                                                                   (h) f2/ P

Fig. 3. The pseudo Boolean function F2( ), the threshold function f2( ), and the Boolean differences 

for the rst scheme in Table 1.
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Scheme 3

Scheme 3 is an alternative remedy for the unfortunate situation in scheme 1. In scheme 

3, the largest district H, is assigned two more votes. Figure 4 is a Karnaugh-map 

representation of F( ) for this scheme designated F3( )   namely:

 F3 
( ) = 12 H + 9 R + 7 C + 3 F + L + P                              (21)

Now, with a threshold of T = 17, we discover that the governing threshold function 

f3( )  for this scheme is nothing but f2 
( ) of Figure 3(b) and Equation (18). Hence, this 

scheme has exactly the same set of MWCs and Banzhaf indices as scheme 2. Again, 

it is paradoxical that by granting more votes to the largest district, the three smallest 

districts cease to be powerless. 

Example 3

We determine the number Nn 
and the list of all coherent switching functions for 

n = 0, 1, 2, and 3, and then identify among them those that are threshold with majority 

voting. A switching function f ( ) is coherent if it satis es the conditions of (Rushdi, 

2010, Rushdi and Hassan, 2015; 2016):

(a) relevancy (causality): f ( ) = 0, f ( )  = 1;

(b) monotonicity: {       } => {f ( )  f ( )}

The case n = 0

Here f(  )  {0, 1}, and hence N0 = 0.

 The case n = 1

Here f (X)  {0, 1, X, }, and hence N1 = 1, i.e., there is a single coherent switching 

function f (X) of one variable, namely f(X) = X.

 The case n = 2

Consider f (X
1
, X

2
) represented by the Karnaugh map of Figure 4(a) which satis es the 

relevancy condition, with the partial order shown in Figure 4(b) to enforce monotonicity 

{ 0    1}. Since  and  are independent of each other, there are four possibilities 

for a coherent f(X
1
, X

2
) as shown in Table 2. All of these are threshold (Rushdi and 

Alturki, 2015). 
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              (a). Relevancy for n = 2.                            (b). Monotonicity for n = 2.

Fig. 4. Visual explanation of (a) relevancy, and (b) monotonicity for n = 2.       

Table 2. Coherent Functions of n =2.

          f(X1, X2) Majority Threshold?

0          0 X1 X2 Consensus

0          1 X2 Dictator

1          0 X1 Dictator

1          1 X1    X2 ------------

However, the function (X1  X2) is not a majority-threshold one, it does not allow 

a threshold that is strictly greater than half the sum of the weights. The other three 

functions correspond to the two possibilities of minimal winning coalitions with two 

voters:

Consensus is required (X(a) 1X2).

The system has a dictator (X(b) 1) or (X2).

The case n = 3

Consider f (X1, X2, 
X3) represented by the Karnaugh map of Figure 5(a) which satis es 

the relevancy condition, with the partial order shown in Figure 5(b) to enforce 

monotonicity:

0  

    s
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   r

     t

   1

Each of , ,  can be assigned one of the values 0 and 1, independently of one 

another. Corresponding possible values for r, s, and t are shown in Table 3, which lists 

18 coherent functions f (X1, X2,  
X3). Out of these, 11 functions are majority threshold, 

namely:

Consensus ( X(a) 1X2X3)

Clique (X(b) 1X2, X1X3, or X2X3).

Chair veto (X(c) 3 (X1  X2), X2 (X1  X3), or X1 (X2  X3))

Dictator (X(d) 1, X2, or X3)

Majority ( X(e) 1X2  X1X3  X2X3)

 

 

                                             (a)                                                                  (b)

Fig. 5. Visual explanation of (a) relevancy, and (b) monotonicity for n = 3.



139 Alaa Mohammad Alturki and Ali Muhammad Ali Rushdi

Table 3. Coherent functions for n = 3.

               r     s     t f (X1, X2, X3) Majority Threshold?

0       0      0

0       0      0 X1X2X3 Consensus

0       0      1 X1X3 Clique

0       1      0 X2X3 Clique

0       1      1 X1X3  X2X3 Chair 3 veto

1       0      0 X1X2 Clique

1       0      1 X1X2  X1X3 Chair 1 veto

1       1      0 X1X2  X2X3 Chair 2 veto

1       1      1 X1X2  X1X3  X2X3 Majority

0       0      1

1       0      1 X1 Dictator

1       1      1 X1  X2X3 -----------

0       1      0

0       1      1 X3 Dictator

1       1      1 X3  X1X2 -----------

0       1      1 1       1      1 X1  X2 -----------

1       0      0
1       1      0 X2 Dictator

1       1      1 X2  X1X3 -----------

1       0      1 1       1      1 X1  X3 -----------

1       1      0 1       1      1 X2  X3 -----------

1       1      1 1       1      1 X1  X2  X3 -----------

CONCLUSION AND FUTURE WORK

This paper demonstrated the utility of threshold Boolean functions in the understanding, 

study and analysis of weighted voting systems. Many important concepts of these 

systems are given threshold Boolean interpretations, including the concepts of voting 

decision, winning coalition, losing coalition, minimal winning coalition, least minimal 

winning coalition, and the Banzhaf index of voting power. 

As a sequel to this work, we plan to automate our ndings so as to be able to 

study larger systems whatever their sizes might be. We also plan to study the effect of 

abstention of some votes on the behavior of the weighted voting system. Further study 

pertaining to the structure and size of winning coalitions (Butterworth, 1971, 1974; 

Russell, 1976; Shepsle, 1974a, 1974b; Nurmi, 1997; Axenovich and Roy, 2010; Kirsch 

and Langner, 2010), is warranted. Detailed comparison is required for the Banzhaf 

index and measures of importance in reliability (Freixas and Puente, 2002; Freixas 

and Pons, 2008; Kuo and Zhu, 2012; Zhu and Kuo,  2014). A hot area of potentially 

fruitful further work is that of mathematics of voting power (Alonso- Meijide et al. 
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2012; Das & Rezek 2012; Morgan & Várdy 2012; Holler & Nurmi 2013; Jelnov & 

Taumam 2014; Houy & Zwicker 2014; Freixas & Kaniovski 2014; Michael & Benoit 

2015).

The present paper is a theoretical investigation of the topic of weighted voting 

systems. To further enhance the engineering utility of this work, we need to nd 

mechatronic or electrical devices that can be modeled exactly or partially by the 

voting scenario in our theoretical examples. In fact, the actuation mechanism of 

many electro-mechanical systems are triggered by complex voting schemes similar 

to those outlined in these examples. We hope to report such devices or other practical 

engineering artifacts in a sequel of this work. 
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