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Weighting Factor Design in Model Predictive

Control of Power Electronic Converters: An

Artificial Neural Network Approach
Tomislav Dragičević, Senior Member, IEEE, Mateja Novak, Student Member, IEEE

Abstract—This paper proposes the use of an artificial neural
network (ANN) for solving one of the ongoing research chal-
lenges in finite-set model predictive control (FS-MPC) of power
electronics converters, i.e. the automated selection of weighting
factors in cost function. The first step in this approach is to
simulate a detailed converter circuit model or run experiments
numerous times using different weighting factor combinations.
The key performance metrics (e.g. average switching frequency
(fsw) of the converter, total harmonic distortion (THD), etc.) are
extracted from each simulation. This data is then used to train
the ANN, which serves as a surrogate model of the converter
that can provide fast and accurate estimates of the performance
metrics for any weighting factor combination. Consequently, any
arbitrary user-defined fitness function that combines the output
metrics can be defined and the weighting factor combinations that
optimize the given function can be explicitly found. The proposed
methodology was verified on a practical weighting factor design
problem in FS-MPC regulated voltage source converter (VSC) for
uninterruptible power supply (UPS) system. Designed weighting
factors for two exemplary fitness functions turned out to be robust
to load variations and to yield close to expected performance
when applied both to detailed simulation model (less than 3%
error) and to experimental test bed (less than 10% error).

Index Terms—Voltage source converter (VSC), finite set model
predictive control (FS-MPC), weighing factor design, artificial
neural network (ANN).

I. INTRODUCTION

POWER electronic converters are a key enabling tech-

nology for the integration of renewable energy sources,

HVDC transmission systems, and electric vehicle charging

infrastructure in the electric power system [1]. They are also

basic building blocks of variable speed electrical drives, as

well as architectures such as microgrids and uninterruptible

power supply systems (UPS) [2]. Among different converter

topologies, voltage source converters (VSCs) are the most

widely spread in practice. Large number of advanced control

techniques for VSCs have been proposed over the past years,

aiming to mitigate some of the well-known limitations of

classical linear control approaches [3].

These often cited limitations comprise slow transient per-

formance, low robustness to parameter variations and lack of

flexibility to effectively balance multiple control objectives.

Among different alternative approaches that could potentially

offer better control characteristics in these aspects, model

Manuscript received May 18, 2018; revised Sep. 9; accepted Oct. 1, 2018.
T. Dragicevic and M. Novak are with the Department of Energy

Technology, Aalborg University, Aalborg, Denmark e-mail: (tdr@et.aau.dk,
nov@et.aau.dk).

predictive control (MPC) can be singled out as one of the

most promising ones. Particularly, the finite-set MPC (FS-

MPC) takes advantage of the discrete model of the converter

to predict its future behavior for every possible switching con-

figuration. The predicted numerical values of converter’s state

variables at the next sampling step are then used in the cost

function that defines the desired performance of the system [4].

This approach yields a simple and intuitive implementation,

where constraints of the state variables can be explicitly dealt

with. In addition, a number of performance objectives can be

balanced by properly selecting the weighting factors associated

with each objective. Due to these benefits, FS-MPC has been

applied to numerous power electronic applications in the recent

years [5]–[10].

Despite the significant research progress, there are still

several open research issues with the FS-MPC [11]. First

one is that FS-MPC algorithms typically yield a variable

switching frequency at the output of converter, which is

often undesirable. Namely, the wide harmonic spectrum not

only increases the risk of triggering unexpected resonances,

but it also complicates the converter filter design. Several

approaches have been reported to tackle the variable switching

frequency issue. Some examples are filtering the cost function

[12], introducing upper and lower bounds on the number of

switching instances [13], and implementing modulated [14] or

quasi-modulated MPC algorithms [15].

Another issue is that the selection of suitable weighting

factors in the cost function to achieve optimal balance between

the objectives is not trivial. In fact, the most commonly

used methodology is carrying out time consuming simulations

and relying on trial-and-error approach to test the effect of

different weighting parameter combinations [16]. As one of

the first propositions to reduce the time effort to some extent,

branch and bound search variant has been proposed in [17].

Nevertheless, the weighting factor selection in that work is

still empirical. A fully automated approach was proposed in

[18], where an iterative simulation procedure aided by genetic

algorithm optimization was deployed to draw some conclu-

sions about suitable design of the two weighting factors in

the cost function. However, although automated, this method

is heuristic and very time consuming as it requires to run a

new set of simulations for every design objective. Moreover,

the methodology was not experimentally verified. On the

other hand, an online weighting factor adaptation scheme was

proposed in [19]. Here, the analytical torque ripple expression

was used as a basis to explicitly derive the optimal weight-

ing factor as a function of design parameters and measured
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Fig. 1. Structure of the FS-MPC regulated VSC for UPS applications.
Weighting factors λder and λsw (highlighted with green color) affect the
performance metrics of the system like voltage THD and average switching
frequency of the converter fsw (highlighted with yellow color).

variables. However, the proposed method was only used to

minimize the torque ripple, while switching frequency was

left uncontrolled. In addition, online evaluation of complex

functions can significantly increase the computational burden,

which could make it impractical for implementation on cheap

commercial microprocessors.

In sharp contrast to these techniques, weighting factors were

completely avoided in [20] and [21]. In [20], this is done

by transforming the cost function based MPC formulation

into a multi-objective optimization problem. Nevertheless, the

membership functions that represent individual terms in the

cost function still require priority coefficients that can only be

heuristically chosen. On the other hand, an inverse model of

the plant is used in [21] to explicitly calculate the actuation

that will drive the torque and flux error to zero. However, this

approach is only suitable for systems where it is possible to

have multiple controlled variables simultaneously at zero error.

Therefore, this method is not applicable for cost functions

with multiple conflicting control objectives. To sum up, the

existing approaches without weighting factors are not flexible

enough for straightforward application to any generic power

electronic system. On the other hand, none of the approaches

for designing cost functions with weighting factors allow their

explicit selection that guarantees the optimal performance of

the system according to some user-defined design criteria.

This paper proposes a possible solution to this long-standing

research problem with the use of an artificial neural network

(ANN) for automated selection of the weighting factors in

the MPC cost function. The first step in this approach is to

test the behavior of converter numerous times, each time with

a different weighting factor combination. This can be done

either using a detailed simulation model or experimentally. The

metrics that quantify the performance of the converter (e.g.

total harmonic distortion (THD), average switching frequency

fsw, or/and others as needed) are then extracted from each

test. Obtained data is then organized into input/output matrix

where elements in every row correspond to the combination

of weighting factor values and associated performance metrics

from one simulation. This data is used to train the ANN, which

can serve as a fast surrogate model of the power converter, thus

allowing fast and automatic selection of the optimal weighting

factors.

TABLE I
COMPLEX VOLTAGE VECTORS USED IN TWO-LEVEL THREE-PHASE VSC

Sa Sb Sc Voltage vector v̄i

0 0 0 v̄0 = 0

1 0 0 v̄1 = 2

3
vdc

1 1 0 v̄2 = 1

3
vdc + j

√
3

3
vdc

0 1 0 v̄3 = −
1

3
vdc + j

√
3

3
vdc

0 1 1 v̄4 = −
2

3
vdc

0 0 1 v̄5 = −
1

3
vdc − j

√
3

3
vdc

1 0 1 v̄6 = 1

3
vdc − j

√
3

3
vdc

1 1 1 v̄7 = 0

The paper is organized as follows. Principle of the FS-MPC

and the UPS converter case study, which is investigated in

detail in this paper, are introduced in Section II. Section III

proposes the ANN-based weighting factor design methodol-

ogy. It also provides the fundamentals of ANNs, describing

both their structure and the training procedures. Section IV

then focuses on applying the proposed method on the FS-

MPC regulated UPS converter example, detailing all the steps

starting from the data generation process, training the ANN

and finally finding the optimal weighting factors according

to the two different design criteria. Experimental results are

provided in Section V, while conclusions and some suggestions

for the future work are given in Section VI.

II. FS-MPC PRINCIPLE

Fig. 1 shows the FS-MPC regulated VSC suitable for the

UPS application. FS-MPC uses the model of the converter to

predict its behavior in the future for all possible switching

configurations, starting from the most recent measurements.

These predictions are then evaluated with a cost function that

defines the desired performance of the system. Finally, the

switch configuration that is associated with the least value in

the cost function is the optimal one and it is applied to the

converter. Next section describes the model of the converter.

A. Converter Model

Standard two-level VSC is considered in this paper. It can be

modeled in a stationary α-β reference frame. For this reason,

all three-phase variables xa, xb and xc, are transformed into a

corresponding α-β frame by applying an amplitude-invariant

Clarke transformation T:

x̄ = xα + jxβ = T [xa xb xc]
′

(1)

where

T =
1

3





2 −1 −1

0
√
3 −

√
3

1 1 1



 . (2)

The three gating signals Sa, Sb and Sc determine the

voltages of legs a, b and c. Each leg can be in two states,

and thus the VSC can be in 23 = 8 configuration in total. The

potential of the middle point of any inverter leg with respect

to the point N can be obtained by multiplying vdc with the
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associated gating signal, as vaN = Sa ·vdc, vbN = Sb ·vdc and

vcN = Sc ·vdc. It is noted the dc-link voltage is assumed ideal

since it is tightly regulated by a separate front-end converter.

There also exists a common mode voltage drop vnN that

results in reduced voltage across the filter:

vnN =
vaN + vbN + vcN

3
. (3)

The voltages across the filter can then be expressed as van =
vaN − vnN , vbn = vbN − vnN and vcn = vcN − vnN . Finally,

the Clarke transformation, given in (1)-(2), is applied to the

filter voltages for all possible gating signal combinations, to

obtain their expressions in the stationary α-β frame.

All possible voltage vectors, represented as v̄i, are shown

in Table I. They are applied to the LC filter, which can be

described by differential equations of the inductor current īf
and capacitor voltage v̄f , as follows:

Lf

dīf
dt

= v̄i − v̄f −Rf īf

Cf

dv̄f
dt

= īf − īo

(4)

where īo is the output current.

For convenience, (4) can be expressed in the state-space

form as:
d

dt

[

īf
v̄f

]

= A

[

īf
v̄f

]

+ B

[

v̄i
īo

]

(5)

where

A =

[

−Rf

Lf
− 1

Lf
1

Cf
0

]

(6)

and

B =

[

1

Lf
0

0 − 1

Cf

]

. (7)

The equations above define the continuous state-space

model of a two-level three-phase VSC. To obtain discrete

representation suitable for digital control implementation, the

zero-order hold (ZOH) discretization method is used to ensure

that the discrete-time model coincides with the continuous

model at the sampling instants:
[

īf (k + 1)
v̄f (k + 1)

]

= Ad

[

īf (k)
v̄f (k)

]

+ Bd

[

v̄i(k)
īo(k)

]

(8)

B. Cost Function

After the model is set up, the suitable cost function needs

to be defined to evaluate which actuation should be applied at

the next sampling instant. Cost functions with the prediction

horizons of various lengths have been proposed in power elec-

tronics applications to improve the steady-state performance

of the converter [7], [22]. As discussed in [7], multi-step

prediction horizons are useful at lower switching frequencies

which are common to high-power multilevel converters. On

the other hand, for simple converter topologies operated with

higher switching frequencies, a single step prediction is usually

the more suitable choice. Namely, only limited performance

gain can be obtained by using longer prediction horizons

[23]. Moreover, single-step horizon is simpler to implement

with less computational burden, and allows excellent flexi-

bility to integrate linear and nonlinear control objectives and

constraints. Cost function with single-step prediction horizon

is used for the case study paper, as described next. However,

it is important to highlight that the weighting factor design

method proposed in the following section is generic and thus

suitable to deal with any length of prediction horizon and any

type of converter topology.

For ac voltage regulation on the LC filter of the UPC con-

verter, the single-step horizon cost function can be expressed

as follows [5]:

gcon =
(

v∗fα − vfα
)2

+
(

v∗fβ − vfβ
)2

, (9)

where v̄∗f = Vre
jωr = v∗fα + jv∗fβ is the voltage reference,

with Vr and ωr = 2πfr being its amplitude and the angular

frequency, respectively.

Additional current reference term, which is actually a

derivative of the load reference voltage, was proposed in [10]

to improve the steady state performance:

gc =
(

Cfωrv
∗

fβ − ifα + ioα
)2

+
(

Cfωrv
∗

fα + ifβ − ioβ
)2

.
(10)

The gc term is multiplied with a weighting factor λder and

added to (9). Moreover, the current limiting term hlim, and

switching penalization term sw, are also introduced:

hlim =

{

0, if |̄if |≤ imax

∞, if |̄if |> imax

(11)

sw = |∆Sa(i)|+|∆Sb(i)|+|∆Sc(i)|, (12)

where |∆Sa(i)| is 1 if switch change occurs in leg a at instant

i and 0 otherwise. The same is valid for leg b and leg c.
Finally, all these terms are integrated into a complete cost

function:

gp = gcon + λdergc + hlim + λswsw
2. (13)

As it can be seen, two weighting factors should be selected,

i.e. λder and λsw. The selection of these parameters has a

strong influence on the performance of the system. Important

metrics that quantify this performance are the total harmonic

distortion (THD) of the capacitor voltage and average switch-

ing frequency fsw of the converter. The design parameters

and performance metrics are highlighted in Fig. 1 with green

and yellow color, respectively. In this paper, we propose an

ANN based approach to design these weighting factors in a

fully automated and fast way. It should be mentioned that only

steady-state performance metrics are considered here because

the selection of the weighting factors in this case study have

a negligible influence on the dynamic performance metrics of

the system. This will also be demonstrated in later sections.

On the other hand, there are applications in which it is worth

to consider the influence of weighting factors on dynamic

performance. For instance, it has been shown in [24] that

one of the weighting factors has an influence on the phase

margin of the system. In this case the phase margin should be

considered as additional performance metric, but the principle

in the proposed method would remain the same.
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Fig. 2. Flow diagram of the proposed ANN based design of the weighting factors in the model predictive control of power electronic converters.

III. PROPOSED ANN BASED WEIGHTING FACTOR DESIGN

APPROACH

In this section, the proposed weighting factor design

methodology is introduced first. Since the ANN plays an

instrumental role in it, the details about its structure and

training procedures are summarized as well.

A. Proposed Methodology

Overall work-flow of the proposed approach is shown in Fig.

2. Three main steps, i.e. A, B and C can be identified from

the figure. The goal of step A is to extract the voltage THD

and average fsw for every combination (out of N possible

combinations) of input parameters λder and λsw. The THD

and average fsw could be extracted either from a detailed

simulation model or experimentally. In any case, the weighting

factor sweep should be organized in such a way to cover a

feasible design space with some reasonable fidelity.

If data is extracted from the simulation model, the process

can be accelerated with parallel computing. On the other

hand, if data is extracted experimentally, it could be done

either in automated fashion or manually. Automated procedure

can easily be programmed on a standard microprocessor. For

instance, the weighting factors can be adjusted in real-time on

the platform shown in Fig. 8, while voltage waveforms and

average fsw can be automatically recorded and stored for later

analysis. It should be noted that experimental data extraction

might be the only option if one has to deal with a commercial

power electronic products, as detailed simulation models are

generally not available for such products. However, there

are several risks associated with this approach. For instance,

the product may be damaged if unfeasible combination of

weighting factors is tested. Therefore, the data extraction from

experimental test bed should always be carefully monitored by

a human operator. For this reason, experimental data extraction

may be extremely lengthy procedure considering that hundreds

or even thousands of experiments need to be carried out and

that the workload cannot be parallelized as it is the case

with the simulations. Therefore, the case study in this paper

is carried out using the data extraction from the simulation

model. A detailed discussion about the acceleration of the total

simulation workload with parallel computing is also provided

in Section IV-D.

In step B, we take the advantage of data obtained in step

A to train the ANN, which then becomes a fast surrogate

model of the converter. The trained ANN can provide accurate

voltage THD and average fsw estimations for any given λder

and λsw combination several orders of magnitudes quicker

than the detailed simulation. It is worth noticing that steps A
and B need to be performed only once for a given converter

topology and operating conditions. Once the ANN is trained,

it can be used in step C as a basis for evaluating some user-

defined fitness function fann that can combine the desired

voltage THD and average fsw in any arbitrary way, where

λder and λsw combinations that minimize fann can be found

almost instantaneously.

B. ANN Structure and Training

Numerous types of ANNs have been proposed in the liter-

ature by now [25]. Proper selection of the particular network

depends mostly on the nature of relationships between inputs

and outputs in the data. For sequential data, where future

outputs depend on past values of the inputs and outputs,

recurrent neural networks are a good choice. On the other

hand, since the relationship between weighting factors and
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Fig. 3. Artificial neural network (ANN) that serves as a surrogate model of
the original UPS converter shown in Fig. 1. For simplicity weights and bias
terms are omitted from the figure. As in Fig. 1, the inputs to the ANN are
highlighted with green color, while the outputs with yellow.

performance metrics can be considered static, forward ANN

has been selected for the case-study in this paper. Forward

ANNs are the commonly used machine learning algorithms

for various electrical engineering problems, from predicting

the voltage distortion in electrical distribution networks [26],

to designing the microwave filters [27], [28].

A feed-forward ANN consists of an input layer, one or more

hidden layers, and an output layer. Each layer comprises a

number of neurons that process the information coming from

neurons in the layer below. To calculate the output of a certain

neuron γl
i in layer l, the outputs of all the neurons zl−1

j (j =
[1..Nl−1]) in the layer immediately below l−1 are multiplied

with associated weights ωl
ij and summed up together with the

bias term bli. The result is processed through an activation

function σ that usually takes the form of a sigmoid function,

i.e. σ(γ) = 1/(1 + e−γ), to generate output zli. This output

then becomes one of the inputs for the layer above, l + 1.

The same procedure is done to calculate the output of other

neurons in layer l.
In the input layer, z1i simply takes the form of inputs. On the

other hand, the output layer typically uses the linear activation

function to allow any numerical value, as opposed to being

limited to [0,1] range with sigmoid function. The complete

signal flow of the ANN can be described as follows:

• Layer 1 (input):

z1i = xi i = 1, .., N1 (14)

where xi are the inputs.

• Layers l = 2,..,L− 1 (hidden):

zli = σ





Nl−1
∑

j=1

wl
ijz

l−1

j + bli



 i = 1, .., Nl. (15)

• Layer L (output):

yi = wL
i z

L
i i = 1, .., NL (16)

where yi are the outputs.

An example of one ANN is shown in Fig. 3. It can be

seen that this network has an input layer, two hidden layers,

and an output layer. Therefore, there are 4 layers (L = 4) in

total. The number of neurons in the input layer are 2 (N1 =

2) since there are 2 design parameters λder and λsw (marked

with green color, as in Fig. 1). This means that x1 = λder

and x2 = λsw. The number of layers in the two hidden layers

are 5 and 3, respectively (N2 = 5, N3 = 3). As elaborated

in the following section, it was empirically determined that

such ANN structure yields the best response for the case study

presented in this paper. The output layer comprises 2 neurons

(N4 = 2) because our design interest is in 2 performance

indicators, i.e. the converter average switching frequency fsw
and THD (marked with yellow color, again as in Fig. 1 to

highlight the link between the detailed converter model and

its ANN surrogate). Thus, y1 = THD and y2 = fsw.

It has been shown in [29] that forward ANN is an universal

function approximator, i.e. that the weights and bias terms in

its structure can be adjusted in such a way to approximate any

given input/output data relationship with arbitrary precision,

given that the number of neurons is sufficient. The process

of adjusting these parameters is typically done using the

back-propagation algorithm. This algorithm takes advantage

of the continuous differentiability of the ANN to find out

the direction in which the wl
ij and bli parameters should be

adjusted in each training iteration to reduce the error between

the measured output data and prediction made by the ANN

from previous iterations (see the middle right part in Fig. 2)

[30]. Back-propagation is a very well known algorithm that

is available in standard software like MATLAB. Therefore,

it will not be described further here. Next section applies

the proposed method on the practical case study of the UPS

converter.

IV. WEIGHTING FACTOR DESIGN FOR THE UPS

CONVERTER

In this section, we verify the proposed design methodology

on an FS-MPC regulated UPS converter case-study that was

described in detail in Section II. Steps A and B from Fig. 2

are presented next, while step C is demonstrated for the two

design examples in Section IV-C.

A. Data Generation Procedure

In order to generate the data, a detailed simulation model

of the FS-MPC regulated VSC used for UPS application was

developed in Matlab/Simulink. The structure of simulation

model corresponds to a block diagram presented in Fig. 1,

where the parameters used are given in Table II. Data has

been extracted for two different load values (Rload = 60

Ω and Rload = 120 Ω) in order to check the robustness

of weighting factor designs to changing load conditions. In

order to enforce as close resemblance as possible between the

simulation model and experimental system, a computational

delay of one sampling time Ts and dead-times Td have been

modeled as well.

A range of λder and λsw sweep was chosen from 0 to

10, with a step of 0.5 to cover the practical design range

with high fidelity. Particularly, 21 settings for each parameter

were tested, which means that there were N = 212 = 441
weighting parameter combinations to be simulated for each
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(a) Comparison between the THD obtained
from detailed simulation model and from the
ANN for the light load.

(b) Comparison between the fsw obtained
from detailed simulation model and from the
ANN for the light load.

Fig. 4. Comparison between the data generated through simulation model
corresponding to Fig. 1 and trained ANN shown in Fig. 3.

load value. Each simulation was set to last for 0.06 sec

(3 fundamental cycles), where THD and average switching

frequency were automatically calculated at the end of each

simulation. Fast Fourier Transform (FFT) algorithm available

in the Matlab/SimPowerSystems toolbox was used for the

THD calculations, while the average fsw was calculated with

following equation, as also indicated in Fig. 1:

fsw =
3000
∑

i=1

|∆Sa(i)|+|∆Sb(i)|+|∆Sc(i)|
6

. (17)

The summation was done until 3000 because in the 0.06

sec period, this the number of sampling instants considering

the 20 µsec duration of the sampling step. The automated

simulation setup was programmed using the Matlab/Parallel

Computing toolbox. Simulations were then carried out on a

standard personal computer with 4 cores, and all the results

were obtained within around 22 minutes (11 minutes for each

load value). The input/output data was also normalized. To this

end, the largest value of a each variable was used as its norm

and all other values of the same variable were then divided by

the norm prior to the training. Next, as described in the step

B of Fig. 2, the suitable structure of the ANN was determined

and two normalized data sets were used to train two ANNs

(each for a different load value).

B. ANN Model Development

After the data has been generated and before proceeding

with the ANN training, it is first necessary to determine the

suitable ANN structure. This step can generally be carried

out empirically, by trying ANN structures with one or more

hidden layers and different numbers of neurons in each layer.

These tryouts can be done relatively fast since the training of

one ANNs takes only around 1 second. The number of hidden

layers was chosen to be two in this case study, as it turned

out that less neurons in total are needed to achieve excellent

matching with the training data compared to the case when

only one hidden layer is used. Nevertheless, structure with

one hidden layer could also be used to produce the response

of virtually the same quality.

After selecting the number of layers, next step was to

determine the best number of neurons in each layer. The main

issues that arose from non-suitable selection of the number of

neurons were underfitting and overfitting. For instance, if there

were too few neurons (e.g. 2 and 1 in first and second hidden

layer, respectively), the network was overly simplistic, and it

was not able to capture well the training data (underfitting). On

the other hand, when the number of neurons was too large (e.g.

100 and 20, respectively), the trained network achieved good

match with the training examples but failed to find the natural

structure of the input/output data relationships (overfitting).

Eventually, the ANN structure with 5 and 3 in first and

second hidden layer (see Fig. 3) turned out to be the simplest

network that provides excellent response. It was also noticed

that many other combinations with higher number of neurons

provided a negligible difference in response, thus indicating

the robustness of the ANN design. The comparison between

the predicted outputs by the best-fit ANNs and original data

for light load example using the ANN structure shown in

Fig. 3 can be seen in Fig. 4(a)-(b). The figures indicate good

matching with detailed simulation data. Since very similar

figures were also observed for the nominal load case, the latter

are not shown here.

C. Design Examples

Final step was to use the two trained ANNs to find the

optimal λder and λsw settings for achieving two exemplary

performance goals of the system. To visualize the impact of

these factors, high fidelity plots of the fitness functions have

been drawn using data generated through trained ANNs. In

particular, approximately 4 million fitness function points have

been evaluated through each trained ANN in less than 0.5 sec.

As a comparison, it takes around 6 sec to simulate a detailed

VSC circuit for only one set of design parameters. Such a

speed permitted the use of an exhaustive search algorithm for

finding the minimum of the fitness function that corresponds

to the optimal set of weighting factors. On the other hand,

for more complex problems, the computational burden may

become too high for exhaustive search. This issue and possible

remedies are discussed in detail in Section IV-D. The two

particular design examples are presented below.

1) Minimization of the THD: The first objective was de-

fined to find the settings that provide the minimum possible

THD:

fann,1 = THD2

ann. (18)

The two plots of this fitness function derived through the ANN

model, where each one corresponds to a different load value,

are shown in Figs. 5(a)-(b), respectively. Surprisingly, the best

λsw in both cases turned out not to be 0, but approximately

1.6 and 2. The best λder were found to be 2.005 and 2.185.

However, it is worth noticing that the precise selection of

parameters is not of large importance, especially for λder that
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(a) Plot of the fitness function (18) for the nominal load.
Optimal weighting factors (indicated by the red dot) are found
to be λder = 2.005, and λsw = 1.605, resulting in predicted
THD of 1.22 % and fsw = 7.71 kHz. Simulation of detailed
model using the same weighting factors resulted in measured
THD = 1.22% and fsw = 7.64 kHz.

(b) Plot of the fitness function (18) for the light load. Optimal
weighting factors (indicated by the red dot) are found to be λder

= 2.185, and λsw = 2.03, resulting in predicted THD of 1.21%
and fsw = 7.8 kHz. Simulation of detailed model using the same
weighting factors resulted in measured THD = 1.28% and fsw
= 7.7 kHz.

Fig. 5. Optimal weighting factors for the fitness function (18).

(a) Plot of the fitness function (19) for the nominal load.
Optimal weighting factors (indicated by the red dot) are found
to be λder = 0.8, and λsw = 10, resulting in predicted THD of
2.3% and fsw = 4.7 kHz. Simulation of detailed model using
the same weighting factors resulted in measured THD = 2.32%
and fsw = 4.7 kHz.

(b) Plot of the fitness function (19) for the light load. Optimal
weighting factors (indicated by the red dot) are found to be λder

= 0.88, and λsw = 10, resulting in predicted THD of 2.35% and
fsw = 4.99 kHz. Simulation of detailed model using the same
weighting factors resulted in measured THD = 2.58% and fsw
= 4.55 kHz.

Fig. 6. Optimal weighting factors for the fitness function (19).

allows quite wide range of values to still yield performance

that is very close to optimal. It can thus be concluded that the

same weighting factors could safely be chosen for both load

cases, which indicates robustness of the selection strategy to

load variations. The predicted THDs and fsw were also very

similar for both load cases.

In order to illustrate the validity of these results, the detailed

VSC simulation was carried out. Only the capacitor voltage

waveforms for nominal load have been presented due to

limited space (see Fig. 7(a)). The calculated THDs were

1.22% and 1.28%, while fsw were 7.64 kHz and 7.7 kHz,

respectively. The prediction error of ANN was thus less than

3% in both cases.

2) Minimization of the THD with low fsw: Second ob-

jective was defined to find the settings that provide the best

possible THD, but favoring low average switching frequency.

This was formulated as follows:

fann,2 = 3 · THD2

ann + (freqann)
2. (19)

Factor 3 was chosen to give more importance to THD min-

imization, thus keeping it still relatively low. Nevertheless,

selecting any other coefficient different than 3 in equation (19)

would provide us with the combination of weighting factors

that still guarantees the optimal trade-off between THD and

switching frequency, but they would have different values.

This simply means that for a given switching frequency, it

is not possible to get a lower THD. Similarly, for a given

THD, it is not possible to get a lower switching frequency.

Indeed, by making a sweep of coefficient in equation (19), one

would obtain the two-dimensional Pareto front that reveals the

trade-off between the THD and switching frequency (and also

the associated weighting factors for each point on the Pareto

front).

The plot showing values of fitness function (19) is shown

in Figs. 6(a)-(b). In this case, optimal λsw turned out to be 10

in both cases, while best λder was found to be 0.8 and 0.85.

Of course, even higher settings of λsw could be used, but the

predicted THD and fsw would not be so accurate since the

weighting factor settings would be out of the ANN training

range. In addition, increasing the weighting factor λsw beyond

the value of 10 would further reduce the switching frequency

and increase the THD, even above permissible limits defined

by relevant standards (e.g. IEC 62040-3). Therefore, using a

larger weighting factor range than 0-10 does not have much

practical relevance and would thus unnecessarily increase the

overall computational burden (see Section IV-D for detailed

discussion). The predicted THDs in this case were 2.3% and

2.35%, while fsw were 4.7 kHz and 4.99 kHz, respectively.
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(a) Waveforms for nominal load with λder = 1.605 and λsw

= 2.005.
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(b) Waveforms for nominal load with λder = 0.8 and λsw =
10.

Fig. 7. Capacitor voltage waveforms obtained from detailed simulation model
with nominal load for weighting factors that optimize fitness functions (18)
and (19), respectively.

Again, it can be seen that the settings are robust to changing

load, and the same setting in both load cases would yield very

close to optimal performance.

In order to illustrate the validity of these results, the detailed

VSC simulation was carried out with the same settings. Only

the capacitor voltage waveforms for nominal load have been

presented here due to limited space (see Fig. 7(b)) THDs

calculated from the simulation were 2.32 and 2.58 %, while

fsw were 4.7 and 4.55 kHz. The prediction error of ANN was

again less than 3% in all cases.

D. Computational Burden

It is evident that the computational requirements of the

proposed method increase exponentially with the increasing

number of considered weighting factors. Therefore, there exist

practical limit on the number of factors that can be designed

in this way. In order to assess this limitation quantitatively, the

total duration of stage A was first estimated by extrapolating

a duration of a single simulation. To this end, approximately 6

sec are necessary to complete 0.06 sec of one detailed model

simulation on a standard personal computer. In case of two

weighting factors, to generate data with high fidelity, 21 values

have been chosen for each weighting factor. Therefore, 441

simulations in total were needed to test all the combinations.

For carrying out this workload, around 2650 sec (44 minutes)

of computational time on a single computer core were needed.

However, majority of commercial personal computers have

multiple cores and paralleling the simulation tasks in software

like Matlab is straightforward using the Matlab/Parallel Com-

puting toolbox. To this end, if the executions were parallelized,

Converter

DC source

Scope

dSPACE

Load

LEM 

sensors

Fig. 8. Caption of the experimental test-bed for the UPS converter.

TABLE II
PARAMETERS OF THE TEST SYSTEM USED IN SIMULATIONS AND

EXPERIMENTS

DC link voltage vdc = 700 V

Sampling time for control Ts = 20 µsec

Converter dead time Td = 4 µs

Time step (in simulation) Tsim = 1 µsec

LC-filter Lf = 2.4 mH, Cf = 15 µF

Reference voltage Vr = 326.6 V, fr = 50 Hz

Nominal load Rload = 60 Ω

Light load Rload = 120 Ω

11 minutes in total were needed on a 4-core processor unit, and

only 1.8 minutes on a 24-core processor. For comparison, if

there are three weighting factors in the cost function (assuming

again 21 values for each weighting factor), the number of

simulations would grow exponentially to 9261. This would

make the procedure practically unfeasible to carry out on

single core and even on the 4-core processor. However, on

the 24-core processor, the overall procedure would be done

in less than 40 minutes. Another possibility to reduce the

computational time would be to reduce the fidelity of the

weights. For instance, if only 10 values for each weighting

factor would be used, the data for 4 weighting factors could

be extracted from a 24-core processor in around 40 minutes.

However, it is important to highlight that the number of

weighting factors in FS-MPC applications is seldom larger

than two, as it can be seen from the list of exemplary cost

functions stated in the recent comprehensive review article

(e.g. see Table III in [11]). To sum up, it can be concluded

that optimization of up to four weighting factors, which covers

basically all applications of FS-MPC in power electronics,

can be considered as the upper limit with relatively standard

hardware.

On the other hand, the number of weighting factors also

increases the computational burden of Stage C. However, this

increase in not as dramatic as in the case of Stage A, because

the evaluation of the feed-forward ANN is computationally

very light. For instance, for the case of the ANN with 2

weighting factors used in this paper, it takes less than 0.125

µsec for 1 ANN evaluation. This means that super-high-

fidelity fitness function plots (e.g. 4-megapixel plots shown

in Fig. 5 and Fig. 6 was generated in less than 0.5 sec).
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(a) Waveforms for nominal load with
λder = 2.005 and λsw = 1.605. Mea-
sured THD is 1.31% and fsw is 7.22
kHz.

(b) Waveforms for light load with
λder = 2.185 and λsw = 2.03. Mea-
sured THD is 1.32% and fsw = 7.26
kHz.

Fig. 9. Experimental line-line capacitor voltage waveforms (vf : 250V/div,
time axis: 0.4 ms/div) for weighting factors that optimize fitness function (18).

The optimal solution was then simply obtained by finding the

lowest value in the given plot, which can be done in Matlab

almost instantaneously using the min function. On the other

hand, if the fitness function comprises 3 or more weighting

factors, direct evaluation of ANN with super-high fidelity will

become computationally more intensive. For instance, high

fidelity evaluation of ANN with 3 weighting factors (e.g. 500

points for each factor implies 5003 = 125 million evaluations)

would be done in only 2.5 minutes. On the other hand, if more

weighting factors or more fidelity is required to be evaluated,

computational time might become impractically long. For this

case, there are several alternative ways to do the minimization.

First possibility could be to do the fitness function evaluation

sequentially. Particularly, the first evaluation could be done

with low fidelity to find an area around the optimal point and

then using higher and higher fidelity in the following steps to

fine tune the solution. In this way, the computational time can

be significantly reduced. Another possibility could be to take

advantage of the continuous nature of the ANN and perform

the gradient descent optimization. This option does not impose

almost any limitation on the number of weighting factors but

does entail risk of getting stuck in the local minimum.

V. EXPERIMENTAL RESULTS

Proposed weighting factor selection strategy was verified

experimentally, where the VSC and an LC filter structure

shown in Fig. 1 was built in the lab. The power stage com-

prised two Delta Elektronika SM 600-10 dc power supplies

connected in series, a Semikron two-level three-phase VSC,

an LC filter and a linear load. All the parameters of the setup

are listed in Table II. The FS-MPC controller was implemented

in the dSpace MicroLabBox with DS1202 PowerPC DualCore

2 GHz processor board and DS1302 I/O board. Delay was

remunerated utilizing the strategy given in [31]. Since the

(a) Waveforms for nominal load with
λder = 0.8 and λsw = 10. Measured
THD is 2.31% and fsw is 5.14 kHz.

(b) Waveforms for light load with
λder = 0.85 and λsw = 10. Measured
THD is 2.12% and fsw is 5.3 kHz.

Fig. 10. Experimental line-line capacitor voltage waveforms (vf : 250V/div,
time axis: 0.4 ms/div) for weighting factors that optimize fitness function (19).
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(a) Voltage error for nominal load with λder = 1.605
and λsw = 2.005.
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(b) Voltage error for nominal load with λder = 0.8
and λsw = 10.

Fig. 11. Experimentally captured transient performance of the output capac-
itor voltage amplitude error during 100% step change of linear nominal load
(according to IEC 62040-3 standard).

overall calculation time was around 15 µsec, the Ts was set

to 20 µsec.

A. Validation of Optimal Weighting Factor Design

The experimental results for optimal λder and λsw settings

for the nominal load (given in Fig.5(a) and Fig. 6(a)) are shown

in Fig. 9. The results for optimal λder and λsw settings for

the light load (given in Fig. 5(b) and Fig. 6(b)) are shown

in Fig. 10. The obtained results are still considerably well
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TABLE III
PERFORMANCE METRICS RESULTS FROM SIMULATIONS, EXPERIMENTS AND ANN PREDICTIONS.

Nominal load Light load

Fitness function fann,1 fann,2 fann,1 fann,2

Perf. metrics THD fsw THD fsw THD fsw THD fsw

Simulations 1.22% 7.64 kHz 2.32% 4.7 kHz 1.28% 7.7 kHz 2.58% 4.55 kHz

Experiments 1.31% 7.22 kHz 2.31% 5.14 kHz 1.32% 7.6 kHz 2.12% 5.3 kHz

ANN prediction 1.22% 7.71 kHz 2.3% 4.7 kHz 1.21% 7.8 kHz 2.35% 4.99 kHz

(a) Waveforms for nominal load with λder =
1.605 and λsw = 2.005.

(b) Waveforms for nominal load with λder =
0.8 and λsw = 10.

Fig. 12. Experimental output capacitor voltage (vf : 250V/div, time axis: 0.4
ms/div) and current (io: 2A/div, time axis: 0.4 ms/div) during the reference
step change v∗

f
= 220 → 325 V.

matched with predicted ones by the ANN with less than

10% error in all cases, thus validating the proposed design

methodology. The lower precision compared to simulations is

attributed to the fact that ANNs were trained using simulation

data, where components like semiconductor devices, dc link

and sensors have been modeled ideally. Overall comparison

between the results obtained from the detailed simulation

model, experimental setup and the ANN are shown in Table

III.

B. Impact of Weighting Factors on Transient Performance

Only steady-state performance metrics has been considered

in this paper because the weighting factors turned out to have

a negligible influence on the dynamic performance of the

system. In particular, the dominating term during transients

in the cost function is the voltage tracking term. On the other

hand, the selection of the weighting factors has a significant

influence only on the steady state performance. To verify

this, dynamic performance tests according to the IEC 62040-3

standard for UPS systems have been carried out. Two tests

have been done for the 0-100% step load change (0-6 A) for

(a) Waveforms for Lf = 5 mH, Cf

= 15 µsec, THD = 2.5% and fsw
= 5 kHz.

(b) Waveforms for Lf = 5 mH, Cf

= 30 µsec, THD = 1.92% and fsw
= 4.7 kHz.

(c) Waveforms for Lf = 2.4 mH,
Cf = 30 µsec, THD = 1.29% and
fsw = 6.7 kHz.

(d) Waveforms for Lf = 1.2 mH, Cf

= 15 µsec, THD = 2.1% and fsw =
8.1 kHz.

(e) Waveforms for Lf = 1.2 mH, Cf

= 7.5 µsec, THD = 2.4% and fsw =
9.4 kHz.

(f) Waveforms for Lf = 2.4 mH,
Cf = 7.5 µsec, THD = 1.26% and
fsw = 8 kHz

Fig. 13. Experimental line-line capacitor voltage waveforms (vf : 250V/div,
time axis: 0.4 ms/div) for validation of parameter model uncertainty (nominal
values Lf = 2.4 mH, Cf = 15 µsec) for nominal load with λder = 1.605
and λsw = 2.005.

two weighting factor combinations. As it can be seen from the

obtained experimental results (see Fig. 11 and Fig. 12), the

control method complies with the standard limitations with a

large margin, regardless of the weighting factor selection. On

the other hand, there exist applications in which the selection

of the weighting factors affects the dynamics. One interesting

example is [24], where it was shown that increasing the weight

associated with one of the weighting factors improves the

phase margin of the system. Therefore, phase margin could

be also included as a performance metric in that application.

C. Robustness to LC filter Parameter Variations

Robustness of the optimal weighting factor combinations

to internal model parameter variations has also been demon-
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strated experimentally. Tests have been carried out for the

cases of overestimated (two times higher) and underestimated

(two times lower) filter parameters (Lf and Cf ) for one

exemplary set of the optimal weighting factors (λder = 1.605,

λsw = 2.005). As it can be seen from the obtained waveforms,

the control algorithm is very robust to parameter uncertainties.

Algorithm is especially robust if it uses overestimated capac-

itor values like (see Fig. 13(c)). For overestimated inductance

values (see Fig. 13(a)), one can notice a higher ripple in

voltage waveforms. The algorithm tracking performance was

also not degraded if underestimated capacitor and inductor

values were used (see Figs. 13(d)-(e)).

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented a novel method for auto-

mated selection of the weighting factors in the cost function of

the FS-MPC algorithm. The effectiveness of the approach was

shown on an exemplary UPS VSC application, although the

methodology is generic and could be applied to any weighting

factor based MPC regulated power converter. The method

makes use of an artificial neural network to provide a powerful

and fast optimization. Further investigation showed that the

predicted responses from the network model match very well

with the responses derived from the detailed model (less than

3% error) and fairly well with ones derived from the experi-

mental setup (less than 10% error) and that selected weighting

factors are robust to load variations. A possible direction for

future work could be design of filters for converters operating

at variable switching frequency.
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