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Abstract 

We investigate an improvement to GSAT 
which associates a weight with each clause. 
GSAT moves to assignments maximizing the 
weight of satisfied clauses and this weight is 
incremented when GSAT moves to an assign- 
ment in which this clause is unsatisfied. We 
present results showing that this algorithm 
and its variants outperform one of the best 
known modifications of GSAT to date using 
two metrics: number of solved problems on 
a single try, and minimum mean number of 
flips to solve a test suite of problems. 

Content Areas: Constraint Satisfaction, Search 

1 Introduction 

Local search procedures are an alternative to complete 
search algorithms for solving combinatorially expen- 
sive search problems. GSAT is a local search algo- 
rithm which can often find solutions to satisfiable SAT 
problems in Conjunctive Normal Form (CNF) quickly 
[SLM92]. GSAT operates by changing a complete as- 
signment of variables into one in which the maximum 
possible number of clauses are satisfied by flipping a 
single variable. 

A feature of GSAT is that often the best move it 
can make leaves the number of unsatisfied clauses 
the same. These moves are known as “sideways” 
moves, and GSAT typically searches regions of side- 
ways moves for some time before finding a move which 
reduces the number of unsatisfied clauses. This means 
GSAT must randomly search these “plateaus” until it 
finds a way off. Much research into GSAT has focused 
on reducing the impact of plateau search, typically 
by encouraging exploration of parts of the space that 
GSAT has not explored yet. 

A modification of GSAT that has, until recently, re- 
ceived little attention is the “clause weights” scheme 
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proposed in [SK93]. In this version, each clause has 
an associated weight, and these weights are modified 
during search in order to better inform the variable 
selection heuristic. The criterion for variable selection 
becomes “maximize the weight of satisfied clauses”. 
Selman and Kautz report that this algorithm can han- 
dle certain “gerrymandered” graphs that GSAT had 
difficulty solving. Cha and Iwama [CISS] present an 
analysis of this algorithm in comparison to GSAT and 
GSAT with Random Walk on K-SAT formulae with 
desired characteristics. In their experiments they use 
a single try with a fixed value of MaxFlips. They con- 
clude that it outperforms all variants of GSAT they 
tested it against. Davenport et. al. use a similar 
scheme in GENET applied to a connectionist archi- 
tecture [DTWZ94], and this work is currently being 
extended to real-world opitimization problems such 
as Partial Constraint Satisfaction and the Travelling 
Salesman Problem. 

We present a modification of weighted GSAT and 
show that our version has better performance than 
one of the best known variants of GSAT to date. We 
characterize the performance of our version with re- 
spect to increasing MaxFlips for a single try as well as 
analyze its best performance with an optimal number 
of MaxFlips. We present several variants of weighted 
GSAT in an attempt to improve the performance of 
the algorithm and also to improve our understanding 
of the process. 

In $2 we discuss variants of weighted GSAT. In $3 
we discuss the experiments we ran to gather empirical 
data on the performance of our variants, and our anal- 
ysis is presented in $4. In 55 we discuss conclusions 
and future work. 

2 GSAT and Variants 

We give the familiar algorithm outline for GSAT in 
figure 1. GSAT is a local search algorithm which typ- 
ically employs greedy hill-climbing [SLM92] designed 
to solve CNF formulae; it is used to solve I<-CNF 
and CNF formulae [SK93]. GSAT begins with a ran- 
domly generated initial truth assignment, then hill- 
climbs by reversing or “flipping” the assignment of 
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procedure GSAT(C,MaxFlips, MaxTries) 
for i=l to MaxTries 

A = genassignment 
forj = 1 to MaxFlips 

if solved-problem(A) 
return A 

else PossFlips = select(C,A) 
V=pick( PossFlips) 
A=A with V’s value flipped 

end else 
end for 

end for 
end 

procedure select (C,A) 
PossFlips=c 
Best = -00 

for i=l to Number of Vars 
A=A with Vi’s value flipped 
if eval(A, C) =Best 

PossFlips=PossFlips U V 
else if eval(A, C)>Best 

PossFlips=V 
Best = eval(A, C) 

A=A with V’s value flipped 
end for 

end 

Figure 1: GSAT Algorithm Sketch. 

the variable which increases the number of satisfied 
clauses the most. If our CNF C has C clauses, then 
eval = CF=, Sati where S&(A) = 0 if clause 
i is unsatisfied in assignment A and 1 if it is satis- 
fied. If PossFlips contains more than one variable, 
the algorithm must now pick one variable to flip. Dif- 
ferent GSAT variants control how many and which 
variables are examined to determine the best flip and 
tie-breaking schemes to pick among equally good flips. 
[SK931 and [GW95] h ave also studied random walk as 
a method to handle plateaus. These methods force 
GSAT to examine different parts of the solution space 
on the plateau in order to move off of it as quickly as 
possible. 

has a high weight, it may be able to sway the heuris- 
tic to cause several clauses of lower weight to become 
unsatisfied, but it alone can’t sway a clause of higher 
weight than its own. Over time, clause weights may 
become static relative to each other. Also, we see that 
an increment of 1 is significant early in search but 
becomes less so. Finally, clauses accumulate weight 
in the context of assignments which are constantly 
changing. One way to handle this is to use differ- 
ent functions of the weights to drive variable selec- 
tion. We chose to sum the power of the weights, 
thereby giving high-weighted clauses even more abil- 
ity to sway the flip decision process. So evul has the 
form evul = CF=, Wr * Sat;(A). Notice that if o is 
arbitrarily high that we are forced to flip a variable 
causing one of the highest weighted unsatisfied clause 
to become satisfied. 

2.3 Prior Weights 
Selman and Kautz [SK931 describe a modification As WGSAT makes its first flips many clauses are likely 

in which GSAT associates a weight with each clause. to be unsatisfied, while as the try continues we expect 
The weights of all clauses that remains unsatisfied at the number of unsatisfied clauses to decrease. Hence 
the end of a try are incremented. A clause that has the early clause weights are “noisy”, which can re- 
remained unsatisfied through many tries will have a sult in poor initial guidance to WGSAT. While poor 
higher weight than a clause which has been satisfied initial guidance can eventually be overcome, we exam- 
in most of those tries. Each clause’s weight is ini- ined ways in which this noise can be damped. Since 
tialized to 1, so the first try is controlled as it would relative weights are important in variable selection, 
be in GSAT. GSAT then picks the flip that satisfies we decided to experiment with different initial values 
clauses with the highest total weight. So if IVi denotes for the weights. Suppose a clause’s initial weight is 
the weights of the clauses then our function evad can set to 2. Then after the first flip some clauses will 
be written evud = CF=l Wi * Sati( This version have weight 2 and others will have weight x + 1 and 
of GSAT has proven effective at solving “gerryman- the heuristic now requires x clauses of weight x + 1 to 
dered” graphs which GSAT cannot solve [SK93]. We outweight a single clause of weight x. If the weight is 
shall refer to this algorithm as WGSAT, not to be con- set too high, WGSAT will not benefit from its weights 

fused with WSAT, the random walk version of GSAT 
[SK93]. 

We saw several modifications which we felt might 
improve the algorithm’s performance and illuminate 
the effect that weights have on GSAT’s performance, 

future. leading to even better improvements in the 
briefly describe these modifications below. 

We 

2.1 When to Change the Weights? 

Selman and Kautz originally suggested altering the 
weights after each try completed. This has the effect of 
allowing GSAT to drive the number of satisfied clauses 
to a very low number relative to the initial number; as 
a result, few weights change after each try and feed- 
back must wait until the end of a try. We decided to 
update the clause weights after each flip instead of af- 
ter each try. Now unsatisfied clauses provide feedback 
to the variable selection heuristic every variable flip. 
This has the effect of emphasizing variables in unsat- 
isfied clauses almost immediately, without waiting for 
the try to complete. 

2.2 Functions of Weights 

We observed that relative magnitudes of 
weights control variable selection. If a single 

clause 
clause 
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for a long time, effectively nullifying the impact of the 
weights. 

2.4 Unsatisfied Variables 

The observation that arbitrarily high o results in flip- 
ping a variable in the highest weighted unsatisfied 
clause led us to ask: what if we only attempted to flip 
variables in unsatisfied clauses? This method fails in 
GSAT because many plateau moves result from flip- 
ping variables in only satisfied clauses. However, in 
WGSAT the weights may force more vigorous explo- 
ration than was possible in GSAT under these condi- 
tions. This method is also different from WSAT in 
that there is no randomness involved; we simply don’t 
examine a variable unless it is in at least one unsat- 
isfied clause. Since this procedure is in some sense 
different than other variants of WGSAT we refer to 
it as UGSAT. If we examine the select procedure in 
figure 1 we notice UGSAT only needs to try and flip 
those variables in unsatisfied clauses. UGSAT may 
make fewer “exploratory” flips than other versions, 
resulting in time savings not accounted for by ana- 
lyzing the number of state-changing flips required to 
solve problems. This effect may be counterbalanced 
by require more flips to solve some problems due to its 
limited ability to explore before changing the assign- 
ment . Other efforts have focused on unsatisfied vari- 
ables ,in particular employing random walk on unsat- 
isfied variables [SK93], [GW95]. Unlike these efforts, 
we use only the unsatisfied variables as candidates for 
the next flip instead of randomly A ipping one of these 
variables. 

3 Experiments 

We tested our algorithms on problems found near the 
phase transition for 3-CNF [CKTSl]; unless other- 
wise stated, the algorithms were tested on problems 
for which the number of clauses C and the number 
of variables N obeyed the constraint 3 = 4.3. We 
created the problem instances randomly; that is, we 
generated each clause of each problem by selecting 3 
of N literals without replacement and negating each 
literal with probability 4. We generated test suites of 
problems which were proven to have solutions using a 
variant of the Davis-Putnam procedure. 

We decided to run a set of tests using only a sin- 
gle try of our WGSAT variants. We are interested 
in the situation where a practitioner is attempting 
to solve problems with a fixed amount of time, and 
would like to know which algorithm is more likely to 
solve more problems. For this set of experiments we 
computed the number of problems of a test suite that 
each variant solved, and for those problems which were 
solved how much time (i.e. how many variable flips) 
were required. Gent and Walsh found that HSAT per- 
formed better than most other versions of GSAT they 
tested after finding the value of MaxFlips which min- 
imized the average number of flips to solve a suite 

Figure 2: Error Model Data. 

of test problems [GW95]. We ran tests of HSAT on 
problems with 100 variables with a single try with 
MaxFlips=IOOOO; HSAT managed to solve only 30% 
of the problem instances after 3000 flips, and failed 
to improve significantly thereafter. We ran the same 
tests wigh GSAT, which performed even worse than 
HSAT. 

Gent and Walsh [GW95] present results in which 
they determine the optimal value of MaxFlips required 
to solve a suite of known satisfiable 3-CNF formulae. 
The optimum number of flips is taken to be the num- 
ber of flips resulting in the smallest mean number of 
flips to solve the entire suite when the number of tries 
is infinite. We performed this experiment for a few 
of our favourite variants in order to compare results 
as well as HSAT, which has the best performance at 
optimal parameter settings of any GSAT variant we 
know of [GW95]. 

We developed an error model using empirical data 
taken for one of our variants. Our assumption is that 
most of the variants are derivatives of WGSAT and 
therefore an error model based on WGSAT would be 
informative. We determined that our test suite prob- 
lem instances and the random initial point were the 
main sources of noise in our measurements. These re- 
sults were obtained by running WGSAT on a test suite 
of 1000 problem instances of 100 variables each which 
were known to have solutions. For this experiment we 
used WGSAT with cy = 1.0 and a prior weight of 1. 
We ran 1 try of WGSAT per problem and measured 
the number of problems which were solved. This test 
was performed 10 times in order to obtain figure 2. 
We found the standard deviation to be as much as 
1.2% for low MaxFlips, and was closer to 1% when 
MaxFlips increased. This first test shows a marked 
improvement over the data we gathered for HSAT and 
GSAT, indicating that WGSAT performs better for a 
single try. 

3.1 Functions of Weights 

We first decided to evaluate the effect of different ex- 
ponents (Y for the formula eval = CF=, Wi* * Sata( 
We decided to test o. between 0.5 and 3.0 incremented 
by intervals of 0.5. We measured the number of 
problems from our test suite which were solved when 
MaxFlips was 1000,3000,5000 and 10000 flips. Figure 
3 shows the results of this experiment. We see that for 
low numbers of flips that the number of solved prob- 
lems is maximized when cx = 1.5, and decreases there- 
after. As we expected, performance at a = 0.5 was 
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MaxFlips Total Exploratory Flips 
= 1.0 = 2.0 UGSAT 

1000 T45II.6 L621.9 7411.19 
3000 83406 94991.9 11214.9 
5000 110636 114917 13708.3 
10000 137570 140218 17392.1 

Figure 6: Total Number of Flips to Find Assignments. 

Vars Variant Opt MaxFlips Mean SDev 
100 WGSAT 1250 1591.95 2346.2 

UGSAT 1125 1932.03 2767.81 
HSAT 200 2437.27 4269.09 

125 WGSAT 1750 3454.23 5159.49 
UGSAT 2000 4149.86 6261.08 
HSAT 300 5480.54 10220 

150 WGSAT 2000 6982.04 12366.2 
UGSAT 2250 7902.66 11898.1 
HSAT 550 9836.46 17697 

Figure 7: Optimal Performance of GSAT Variants. 

These results imply that UGSAT may be a faster ver- 
sion of WGSAT. 

3.4 Optimal Parameter Settings 

We now turn to the question of performance under 
optimal parameter settings. In this experiment, we 
estimate the best performance of HSAT, WGSAT and 
UGSAT. We allowed each algorithm an infinite num- 
ber of tries at different values of MaxFlips and counted 
the mean number of flips to solve the entire suite of 
1000 instances; in other words we summed the num- 
ber of flips required to solve all the problem instances 
and then divided by 1000. We found the value of 
MaxFlips minimizing this value. We then compared 
the algorithms to see which solved the test suite with 
the smallest mean time. We repeated this experiment 
for problems of 125 and 150 variables as well. The 
data from these experiments is shown in figure 7. We 
see that WGSAT with Q = 1.0 and UGSAT both out- 
perform HSAT consistently. Not only do they require 
fewer flips to solve the suite, they also have a smaller 
standard deviation, implying that they perform more 
consistently than HSAT. HSAT requires many tries 
to solve problems, -while UGSAT and WGSAT solve 
almost all the problems in 1 or 2 tries for 100 vari- 
able problems; as the problem size increases to 150 
variables, WGSAT and UGSAT now require 3-4 tries 
to solve the problems. We should also note that for 
the larger problems WGSAT and UGSAT experienced 
good performance for a wide range of MaxFlips. 

We can now analyze UGSAT’s performance in total 
number of flips to solve the test suite at the optimal 
parameter settings. This data is presented in figure 8. 
The speedup column represents the ratio of WGSAT’s 
total flips to UGSAT’s total flips, thereby assessing 
how much faster UGSAT is than WGSAT. UGSAT 

Figure 8: Scaling of UGSAT Performance. 

Variant Opt MaxFlips Mean SDev 
UGSAT 1000 1679.5 2455.31 
WGSAT 1150 1447.07 2200.18 

Figure 9: Optimal Performance of GSAT Hybrid Vari- 
ants. 

outperforms WGSAT with LY = 1.0 by a factor of 5-6 
consistently as the number of variables increases. 

3.5 Hybrids 

The above results suggest combining improvements 
depending on which performance measure we would 
like to optimize. For instance, we see that we achieve 
the best single try performance with WGSAT for high 
CY and a modest prior, say 10-15. However, knowing 
that the best mean time to solve the test suite for 
WGSAT occurs at around 1000 flips for problems of 
size 100, we want to choose variants maximizing the 
number of problems solved at this value of MaxFlips. 
We analyzed two possible hybrids with good optimal 
performance potential for problems with 100 variables: 
UGSAT with a = 2.0 and a prior of 5, and WGSAT 
with cy = 2.0 and a prior of 5. We then found the 
optimal value of MaxFlips for both of these variants 
and compared the performance of these variants to 
our earlier results. These comparisons are shown in 
figure 9. We notice that we have achieved a slight 
improvement in comparison to the data in figure 7, 
which indicates that these modifications can result in 
an improved GSAT algorithm. 

4 Analysis 

We observe that WGSAT and UGSAT continuously 
change the clause weights which drive the search; in 
effect, creating a new heuristic at every step. This is 
substantively different from earlier attempts to mod- 
ify GSAT search. The clause weights can be inter- 
preted as a measurement of the difficulty in satisfy- 
ing the clauses which has beem “marginalized” over 
all assignments the search examined. This is not a 
true marginalization because local search (hopefully) 
doesn’t examine every state, and thus the weights are 
not an objective measurement of difficulty. Also, since 
there may be many solutions to a particular problem 
instance, we assume the weights are only relevant to 
WGSAT’s trajectory towards a particular solution or 
family of solutions. 

The prior weights had a large impact on the perfor- 
mance of WGSAT only for smaller values of MaxFlips, 
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with a much diminished impact as MaxFlips grew 
larger. We conclude that for a single try a prior is 
not important, but it is important for optimal per- 
formance. We also observe that the exponentiation 
schemes designed to emphasize any relative differences 
in weights result in better performance of WGSAT at 
higher values of MaxFlips. We interpret this to mean 
that, as more and more flips are required to solve a 
problem instance, the increase in weights becomes less 
and less meaningful to WGSAT. However, emphasiz- 
ing the weights too early results in noisy behavior and 
poor performance. This leads us to consider schemes 
where the exponent WGSAT uses in the heuristic in- 
creases as a function of the flip number. 

Finally, we saw that UGSAT performs comparably 
to WGSAT for the problems we examined but may 
take less time due to it’s more limited exploration of 
possible flips. Our conclusion is that if UGSAT fails 
to examine a good flip early in a try it will be forced 
to examine similar flips later due to the feedback of 
the clause weights. 

5 Conclusions and Future Work 

We have modified Selman and Kautz’s WGSAT al- 
gorithm to incorporate more general weight modifi- 
cation schems, prior weights and alternative heuristic 
functions on clause weights. Our experiments show 
that WGSAT is superior to GSAT and HSAT for sin- 
gle try performance and performance with optimal 
MaxFlips, and that the performance scales with in- 
creased problem size, and have suggested some im- 
provements based on our results. We showed that 
clause weights contain some long-term information 
about how difficult GSAT finds clauses to satisfy, and 
that this information is apparently more important 
than short-term information. 

We have considered extending weights to sets of 
clauses, variables and sets of variables in problem in- 
stances. For example, in coloring problems, sets of 
satisfiability clauses represent edge constraints in the 
original graph, and similar structures occur in other 
problems. We envision that weighting variables might 
provide information similar to that of clause weights. 
We have given some thought to the idea of attempting 
to set the prior more intelligently than merely assign- 
ing a uniform value. Since the weights act as the guide 
to the heuristic, setting these correctly early may yield 
dramatic improvement to WGSAT. Finally, recent re- 
search has focused on more structured test problems 
than the random problems. Examples of such prob- 
lems are chain CNFs [DR94] and SAT instances drawn 
from crossword puzzle construction [Kon94] and exis- 
tence of Quasigroups [GW95]. We would like to ex- 
tend our testing to these domains, where we see some 
interesting problems for WGSAT. We have made some 
preliminary experiments using WGSAT to try and 
solve a satisfiability encoding of the Towers of Hanoi 
problem. WGSAT with (Y = 1 performed very poorly 

on the Towers of Hanoi problem, solving it 10% of 
the time given MaxFlips= and 1 try, while back- 
tracking finished the problem in about 30 seconds. 
We would like to continue investigating these types 
of problems. 
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