
Weighting for Godot: Learning euristics for GSAT

Jeremy Frank *
frank@cs.ucdavis.edu

(916) 752-2149

Department of Computer Science
University of California at Davis

Davis, CA. 95616

Abstract

We investigate an improvement to GSAT
which associates a weight with each clause.
GSAT moves to assignments maximizing the
weight of satisfied clauses and this weight is
incremented when GSAT moves to an assign-
ment in which this clause is unsatisfied. We
present results showing that this algorithm
and its variants outperform one of the best
known modifications of GSAT to date using
two metrics: number of solved problems on
a single try, and minimum mean number of
flips to solve a test suite of problems.

Content Areas: Constraint Satisfaction, Search

1 Introduction

Local search procedures are an alternative to complete
search algorithms for solving combinatorially expen-
sive search problems. GSAT is a local search algo-
rithm which can often find solutions to satisfiable SAT
problems in Conjunctive Normal Form (CNF) quickly
[SLM92]. GSAT operates by changing a complete as-
signment of variables into one in which the maximum
possible number of clauses are satisfied by flipping a
single variable.

A feature of GSAT is that often the best move it
can make leaves the number of unsatisfied clauses
the same. These moves are known as “sideways”
moves, and GSAT typically searches regions of side-
ways moves for some time before finding a move which
reduces the number of unsatisfied clauses. This means
GSAT must randomly search these “plateaus” until it
finds a way off. Much research into GSAT has focused
on reducing the impact of plateau search, typically
by encouraging exploration of parts of the space that
GSAT has not explored yet.

A modification of GSAT that has, until recently, re-
ceived little attention is the “clause weights” scheme

*This research was supported by Caelum Research
Corp. at NASA Ames Research Center and by NSF CCR-
94-0365.

proposed in [SK93]. In this version, each clause has
an associated weight, and these weights are modified
during search in order to better inform the variable
selection heuristic. The criterion for variable selection
becomes “maximize the weight of satisfied clauses”.
Selman and Kautz report that this algorithm can han-
dle certain “gerrymandered” graphs that GSAT had
difficulty solving. Cha and Iwama [CISS] present an
analysis of this algorithm in comparison to GSAT and
GSAT with Random Walk on K-SAT formulae with
desired characteristics. In their experiments they use
a single try with a fixed value of MaxFlips. They con-
clude that it outperforms all variants of GSAT they
tested it against. Davenport et. al. use a similar
scheme in GENET applied to a connectionist archi-
tecture [DTWZ94], and this work is currently being
extended to real-world opitimization problems such
as Partial Constraint Satisfaction and the Travelling
Salesman Problem.

We present a modification of weighted GSAT and
show that our version has better performance than
one of the best known variants of GSAT to date. We
characterize the performance of our version with re-
spect to increasing MaxFlips for a single try as well as
analyze its best performance with an optimal number
of MaxFlips. We present several variants of weighted
GSAT in an attempt to improve the performance of
the algorithm and also to improve our understanding
of the process.

In $2 we discuss variants of weighted GSAT. In $3
we discuss the experiments we ran to gather empirical
data on the performance of our variants, and our anal-
ysis is presented in $4. In 55 we discuss conclusions
and future work.

2 GSAT and Variants

We give the familiar algorithm outline for GSAT in
figure 1. GSAT is a local search algorithm which typ-
ically employs greedy hill-climbing [SLM92] designed
to solve CNF formulae; it is used to solve I<-CNF
and CNF formulae [SK93]. GSAT begins with a ran-
domly generated initial truth assignment, then hill-
climbs by reversing or “flipping” the assignment of

338 Constraint Satisfaction

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

procedure GSAT(C,MaxFlips, MaxTries)
for i=l to MaxTries

A = genassignment
forj = 1 to MaxFlips

if solved-problem(A)
return A

else PossFlips = select(C,A)
V=pick(PossFlips)
A=A with V’s value flipped

end else
end for

end for
end

procedure select (C,A)
PossFlips=c
Best = -00

for i=l to Number of Vars
A=A with Vi’s value flipped
if eval(A, C) =Best

PossFlips=PossFlips U V
else if eval(A, C)>Best

PossFlips=V
Best = eval(A, C)

A=A with V’s value flipped
end for

end

Figure 1: GSAT Algorithm Sketch.

the variable which increases the number of satisfied
clauses the most. If our CNF C has C clauses, then
eval = CF=, Sati where S&(A) = 0 if clause
i is unsatisfied in assignment A and 1 if it is satis-
fied. If PossFlips contains more than one variable,
the algorithm must now pick one variable to flip. Dif-
ferent GSAT variants control how many and which
variables are examined to determine the best flip and
tie-breaking schemes to pick among equally good flips.
[SK931 and [GW95] h ave also studied random walk as
a method to handle plateaus. These methods force
GSAT to examine different parts of the solution space
on the plateau in order to move off of it as quickly as
possible.

has a high weight, it may be able to sway the heuris-
tic to cause several clauses of lower weight to become
unsatisfied, but it alone can’t sway a clause of higher
weight than its own. Over time, clause weights may
become static relative to each other. Also, we see that
an increment of 1 is significant early in search but
becomes less so. Finally, clauses accumulate weight
in the context of assignments which are constantly
changing. One way to handle this is to use differ-
ent functions of the weights to drive variable selec-
tion. We chose to sum the power of the weights,
thereby giving high-weighted clauses even more abil-
ity to sway the flip decision process. So evul has the
form evul = CF=, Wr * Sat;(A). Notice that if o is
arbitrarily high that we are forced to flip a variable
causing one of the highest weighted unsatisfied clause
to become satisfied.

2.3 Prior Weights
Selman and Kautz [SK931 describe a modification As WGSAT makes its first flips many clauses are likely

in which GSAT associates a weight with each clause. to be unsatisfied, while as the try continues we expect
The weights of all clauses that remains unsatisfied at the number of unsatisfied clauses to decrease. Hence
the end of a try are incremented. A clause that has the early clause weights are “noisy”, which can re-
remained unsatisfied through many tries will have a sult in poor initial guidance to WGSAT. While poor
higher weight than a clause which has been satisfied initial guidance can eventually be overcome, we exam-
in most of those tries. Each clause’s weight is ini- ined ways in which this noise can be damped. Since
tialized to 1, so the first try is controlled as it would relative weights are important in variable selection,
be in GSAT. GSAT then picks the flip that satisfies we decided to experiment with different initial values
clauses with the highest total weight. So if IVi denotes for the weights. Suppose a clause’s initial weight is
the weights of the clauses then our function evad can set to 2. Then after the first flip some clauses will
be written evud = CF=l Wi * Sati(This version have weight 2 and others will have weight x + 1 and
of GSAT has proven effective at solving “gerryman- the heuristic now requires x clauses of weight x + 1 to
dered” graphs which GSAT cannot solve [SK93]. We outweight a single clause of weight x. If the weight is
shall refer to this algorithm as WGSAT, not to be con- set too high, WGSAT will not benefit from its weights

fused with WSAT, the random walk version of GSAT
[SK93].

We saw several modifications which we felt might
improve the algorithm’s performance and illuminate
the effect that weights have on GSAT’s performance,

future. leading to even better improvements in the
briefly describe these modifications below.

We

2.1 When to Change the Weights?

Selman and Kautz originally suggested altering the
weights after each try completed. This has the effect of
allowing GSAT to drive the number of satisfied clauses
to a very low number relative to the initial number; as
a result, few weights change after each try and feed-
back must wait until the end of a try. We decided to
update the clause weights after each flip instead of af-
ter each try. Now unsatisfied clauses provide feedback
to the variable selection heuristic every variable flip.
This has the effect of emphasizing variables in unsat-
isfied clauses almost immediately, without waiting for
the try to complete.

2.2 Functions of Weights

We observed that relative magnitudes of
weights control variable selection. If a single

clause
clause

Stochastic Search 339

for a long time, effectively nullifying the impact of the
weights.

2.4 Unsatisfied Variables

The observation that arbitrarily high o results in flip-
ping a variable in the highest weighted unsatisfied
clause led us to ask: what if we only attempted to flip
variables in unsatisfied clauses? This method fails in
GSAT because many plateau moves result from flip-
ping variables in only satisfied clauses. However, in
WGSAT the weights may force more vigorous explo-
ration than was possible in GSAT under these condi-
tions. This method is also different from WSAT in
that there is no randomness involved; we simply don’t
examine a variable unless it is in at least one unsat-
isfied clause. Since this procedure is in some sense
different than other variants of WGSAT we refer to
it as UGSAT. If we examine the select procedure in
figure 1 we notice UGSAT only needs to try and flip
those variables in unsatisfied clauses. UGSAT may
make fewer “exploratory” flips than other versions,
resulting in time savings not accounted for by ana-
lyzing the number of state-changing flips required to
solve problems. This effect may be counterbalanced
by require more flips to solve some problems due to its
limited ability to explore before changing the assign-
ment . Other efforts have focused on unsatisfied vari-
ables ,in particular employing random walk on unsat-
isfied variables [SK93], [GW95]. Unlike these efforts,
we use only the unsatisfied variables as candidates for
the next flip instead of randomly A ipping one of these
variables.

3 Experiments

We tested our algorithms on problems found near the
phase transition for 3-CNF [CKTSl]; unless other-
wise stated, the algorithms were tested on problems
for which the number of clauses C and the number
of variables N obeyed the constraint 3 = 4.3. We
created the problem instances randomly; that is, we
generated each clause of each problem by selecting 3
of N literals without replacement and negating each
literal with probability 4. We generated test suites of
problems which were proven to have solutions using a
variant of the Davis-Putnam procedure.

We decided to run a set of tests using only a sin-
gle try of our WGSAT variants. We are interested
in the situation where a practitioner is attempting
to solve problems with a fixed amount of time, and
would like to know which algorithm is more likely to
solve more problems. For this set of experiments we
computed the number of problems of a test suite that
each variant solved, and for those problems which were
solved how much time (i.e. how many variable flips)
were required. Gent and Walsh found that HSAT per-
formed better than most other versions of GSAT they
tested after finding the value of MaxFlips which min-
imized the average number of flips to solve a suite

Figure 2: Error Model Data.

of test problems [GW95]. We ran tests of HSAT on
problems with 100 variables with a single try with
MaxFlips=IOOOO; HSAT managed to solve only 30%
of the problem instances after 3000 flips, and failed
to improve significantly thereafter. We ran the same
tests wigh GSAT, which performed even worse than
HSAT.

Gent and Walsh [GW95] present results in which
they determine the optimal value of MaxFlips required
to solve a suite of known satisfiable 3-CNF formulae.
The optimum number of flips is taken to be the num-
ber of flips resulting in the smallest mean number of
flips to solve the entire suite when the number of tries
is infinite. We performed this experiment for a few
of our favourite variants in order to compare results
as well as HSAT, which has the best performance at
optimal parameter settings of any GSAT variant we
know of [GW95].

We developed an error model using empirical data
taken for one of our variants. Our assumption is that
most of the variants are derivatives of WGSAT and
therefore an error model based on WGSAT would be
informative. We determined that our test suite prob-
lem instances and the random initial point were the
main sources of noise in our measurements. These re-
sults were obtained by running WGSAT on a test suite
of 1000 problem instances of 100 variables each which
were known to have solutions. For this experiment we
used WGSAT with cy = 1.0 and a prior weight of 1.
We ran 1 try of WGSAT per problem and measured
the number of problems which were solved. This test
was performed 10 times in order to obtain figure 2.
We found the standard deviation to be as much as
1.2% for low MaxFlips, and was closer to 1% when
MaxFlips increased. This first test shows a marked
improvement over the data we gathered for HSAT and
GSAT, indicating that WGSAT performs better for a
single try.

3.1 Functions of Weights

We first decided to evaluate the effect of different ex-
ponents (Y for the formula eval = CF=, Wi* * Sata(
We decided to test o. between 0.5 and 3.0 incremented
by intervals of 0.5. We measured the number of
problems from our test suite which were solved when
MaxFlips was 1000,3000,5000 and 10000 flips. Figure
3 shows the results of this experiment. We see that for
low numbers of flips that the number of solved prob-
lems is maximized when cx = 1.5, and decreases there-
after. As we expected, performance at a = 0.5 was

340 Constraint Satisfaction

MaxFlips Total Exploratory Flips
= 1.0 = 2.0 UGSAT

1000 T45II.6 L621.9 7411.19
3000 83406 94991.9 11214.9
5000 110636 114917 13708.3
10000 137570 140218 17392.1

Figure 6: Total Number of Flips to Find Assignments.

Vars Variant Opt MaxFlips Mean SDev
100 WGSAT 1250 1591.95 2346.2

UGSAT 1125 1932.03 2767.81
HSAT 200 2437.27 4269.09

125 WGSAT 1750 3454.23 5159.49
UGSAT 2000 4149.86 6261.08
HSAT 300 5480.54 10220

150 WGSAT 2000 6982.04 12366.2
UGSAT 2250 7902.66 11898.1
HSAT 550 9836.46 17697

Figure 7: Optimal Performance of GSAT Variants.

These results imply that UGSAT may be a faster ver-
sion of WGSAT.

3.4 Optimal Parameter Settings

We now turn to the question of performance under
optimal parameter settings. In this experiment, we
estimate the best performance of HSAT, WGSAT and
UGSAT. We allowed each algorithm an infinite num-
ber of tries at different values of MaxFlips and counted
the mean number of flips to solve the entire suite of
1000 instances; in other words we summed the num-
ber of flips required to solve all the problem instances
and then divided by 1000. We found the value of
MaxFlips minimizing this value. We then compared
the algorithms to see which solved the test suite with
the smallest mean time. We repeated this experiment
for problems of 125 and 150 variables as well. The
data from these experiments is shown in figure 7. We
see that WGSAT with Q = 1.0 and UGSAT both out-
perform HSAT consistently. Not only do they require
fewer flips to solve the suite, they also have a smaller
standard deviation, implying that they perform more
consistently than HSAT. HSAT requires many tries
to solve problems, -while UGSAT and WGSAT solve
almost all the problems in 1 or 2 tries for 100 vari-
able problems; as the problem size increases to 150
variables, WGSAT and UGSAT now require 3-4 tries
to solve the problems. We should also note that for
the larger problems WGSAT and UGSAT experienced
good performance for a wide range of MaxFlips.

We can now analyze UGSAT’s performance in total
number of flips to solve the test suite at the optimal
parameter settings. This data is presented in figure 8.
The speedup column represents the ratio of WGSAT’s
total flips to UGSAT’s total flips, thereby assessing
how much faster UGSAT is than WGSAT. UGSAT

Figure 8: Scaling of UGSAT Performance.

Variant Opt MaxFlips Mean SDev
UGSAT 1000 1679.5 2455.31
WGSAT 1150 1447.07 2200.18

Figure 9: Optimal Performance of GSAT Hybrid Vari-
ants.

outperforms WGSAT with LY = 1.0 by a factor of 5-6
consistently as the number of variables increases.

3.5 Hybrids

The above results suggest combining improvements
depending on which performance measure we would
like to optimize. For instance, we see that we achieve
the best single try performance with WGSAT for high
CY and a modest prior, say 10-15. However, knowing
that the best mean time to solve the test suite for
WGSAT occurs at around 1000 flips for problems of
size 100, we want to choose variants maximizing the
number of problems solved at this value of MaxFlips.
We analyzed two possible hybrids with good optimal
performance potential for problems with 100 variables:
UGSAT with a = 2.0 and a prior of 5, and WGSAT
with cy = 2.0 and a prior of 5. We then found the
optimal value of MaxFlips for both of these variants
and compared the performance of these variants to
our earlier results. These comparisons are shown in
figure 9. We notice that we have achieved a slight
improvement in comparison to the data in figure 7,
which indicates that these modifications can result in
an improved GSAT algorithm.

4 Analysis

We observe that WGSAT and UGSAT continuously
change the clause weights which drive the search; in
effect, creating a new heuristic at every step. This is
substantively different from earlier attempts to mod-
ify GSAT search. The clause weights can be inter-
preted as a measurement of the difficulty in satisfy-
ing the clauses which has beem “marginalized” over
all assignments the search examined. This is not a
true marginalization because local search (hopefully)
doesn’t examine every state, and thus the weights are
not an objective measurement of difficulty. Also, since
there may be many solutions to a particular problem
instance, we assume the weights are only relevant to
WGSAT’s trajectory towards a particular solution or
family of solutions.

The prior weights had a large impact on the perfor-
mance of WGSAT only for smaller values of MaxFlips,

342 Constraint Satisfaction

with a much diminished impact as MaxFlips grew
larger. We conclude that for a single try a prior is
not important, but it is important for optimal per-
formance. We also observe that the exponentiation
schemes designed to emphasize any relative differences
in weights result in better performance of WGSAT at
higher values of MaxFlips. We interpret this to mean
that, as more and more flips are required to solve a
problem instance, the increase in weights becomes less
and less meaningful to WGSAT. However, emphasiz-
ing the weights too early results in noisy behavior and
poor performance. This leads us to consider schemes
where the exponent WGSAT uses in the heuristic in-
creases as a function of the flip number.

Finally, we saw that UGSAT performs comparably
to WGSAT for the problems we examined but may
take less time due to it’s more limited exploration of
possible flips. Our conclusion is that if UGSAT fails
to examine a good flip early in a try it will be forced
to examine similar flips later due to the feedback of
the clause weights.

5 Conclusions and Future Work

We have modified Selman and Kautz’s WGSAT al-
gorithm to incorporate more general weight modifi-
cation schems, prior weights and alternative heuristic
functions on clause weights. Our experiments show
that WGSAT is superior to GSAT and HSAT for sin-
gle try performance and performance with optimal
MaxFlips, and that the performance scales with in-
creased problem size, and have suggested some im-
provements based on our results. We showed that
clause weights contain some long-term information
about how difficult GSAT finds clauses to satisfy, and
that this information is apparently more important
than short-term information.

We have considered extending weights to sets of
clauses, variables and sets of variables in problem in-
stances. For example, in coloring problems, sets of
satisfiability clauses represent edge constraints in the
original graph, and similar structures occur in other
problems. We envision that weighting variables might
provide information similar to that of clause weights.
We have given some thought to the idea of attempting
to set the prior more intelligently than merely assign-
ing a uniform value. Since the weights act as the guide
to the heuristic, setting these correctly early may yield
dramatic improvement to WGSAT. Finally, recent re-
search has focused on more structured test problems
than the random problems. Examples of such prob-
lems are chain CNFs [DR94] and SAT instances drawn
from crossword puzzle construction [Kon94] and exis-
tence of Quasigroups [GW95]. We would like to ex-
tend our testing to these domains, where we see some
interesting problems for WGSAT. We have made some
preliminary experiments using WGSAT to try and
solve a satisfiability encoding of the Towers of Hanoi
problem. WGSAT with (Y = 1 performed very poorly

on the Towers of Hanoi problem, solving it 10% of
the time given MaxFlips= and 1 try, while back-
tracking finished the problem in about 30 seconds.
We would like to continue investigating these types
of problems.

6 Acknowledgements

I would like to thank Peter Cheeseman, John Stutz
and John Allen of NASA Ames Research Center for
their input during this research, and also Ian Gent of
the University of Strathclyde and Toby Walsh of IRST
for their comments.

References

[c195] B. Cha and K. Iwama. Performance tests
of local search algorithms using new types
of random cnf formulas. 14th Interna-
tional Joint Conference on Artificial In-
telligence, pages 304-310, 1995.

[CKTS l]

[DR94]

[DTWZ94]

[GW95]

[Kon94]

[SK931

[SLM92]

P. Cheeseman, B. Kanefsky, and W. Tay-
lor. Where the really hard problems are.
IJCAI, pages 163-169, 1991.

R. Dechter and I. Rish. Directional res-
olution: The davis-Putnam procedure re-
visited. 4th International Conference on
Knowledge Representation and Reason-
ing, 145:134, 1994.

A. Davenport, E. Tsang, C. J. Wang, and
K. Zhu. Genet: A connectionist archi-
tecture for solving constraint satisfaction
problems by iterative improvement. Pro-
ceedings of the 12th National Conference
on Artificial Intelligence, pages 325-330,
1994.

I. Gent and T. Walsh. Unsatisfied vari-
ables in local search. In J. Hallam, editor,
Hybrid Problems, Hybrid Solutions. 10s
Press, 1995.

K. Konolige. Easy to be hard: Difficult
problems for greedy algorithms. 4th Inter-
national Conference on Knowledge Repre-
sentation, pages 374-378, 1994.

B. Selman and H. Kautz. Domain inde-
pendent versions of GSAT solving large
structured satisfiability problems. IJCAI,
1993.

B. Selman, H. Levesque, and D. Mitchell.
A new method for solving hard satisfiabil-
ity problems. AAAI, pages 440-446,1992.

Stochastic Search 343

