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Summary. When multilevel models are estimated from survey data derived using multistage 
sampling, unequal selection probabilities at any stage of sampling may induce bias in standzrd 
estimators, unless the sources of the unequal probabilities are fully controlled for in the covariates. 
This paper proposes alternative ways of weighting the estimation of a two-level model by using 
the reciprocals of the selection probabilities at each stage of sampling. Consistent estimators are 
obtained when both the sample number of level 2 units and the sample number of level 1 units 
within sampled level 2 units increase. Scaling of the weights is proposed to improve the properties 
of the estimators and to simplify computation. Variance estimators are also proposed. In a limited 
simulation study the scaled weighted estimators are found to perform well, although non-negligible 
bias starts to arise for informative designs when the sample number of level 1 units becomes 
small. The variance estimators perform extremely well. The procedures are illustrated using data 
from the survey of psychiatric morbidity. 

Keywords: Hierarchical linear model; Iterative generalized least squares; Multistage sampling; 
Pseudolikelihood; Scaled weights; Variance components 

1. Introduction 

Sample surveys often employ multistage sampling schemes which involve unequal selection 
probabilities at some or all stages of the sampling process. Although these schemes are 
chosen mostly for cost and administrative reasons, the hierarchical population structure 
underlying such schemes is often of interest to survey data analysts. Multilevel models 
(Goldstein, 1995) provide an important class of regression models that may be employed to 
represent such structures. 

Sampling schemes are commonly ignored in multilevel analyses of survey data. One 
argument in favour of this practice is that multilevel models can incorporate as covariates 
certain characteristics of the sampling design, such as strata and cluster indicators, and that 
conditionally on these characteristics the sampling design is ignorable in the sense of Rubin 
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(1976). This argument may be inadequate, however, when units at any level of the hierarchy 
are selected with unequal probabilities in ways that are not accounted for by the model. 

As an example, we consider the survey of psychiatric morbidity, conducted by the Office for 
National Statistics in 1993 with about 10000 adults living in private households in Great 
Britain (Meltzer et al., 1995). The sample was obtained by a stratified multistage sampling 
design. Postal sectors on the 'small users' postcode address file were taken as primary sampling 
units. A sample of 200 of these sectors was selected by systematic probability proportional to 
size sampling. The size measure was the number of postal delivery points (corresponding 
approximately to addresses). Within each sampled sector, a simple random sample of 90 
delivery points was selected. Interviewers visited the resulting 200 x 90 = 18000 delivery 
points and, among those containing at least one person aged 16-64 years, selected one such 
person at random. Thus the probabilities of selection of sectors and individuals vary according 
to sector size and delivery point size (number of eligible adults). 

A multilevel analysis of data from such a survey, with individuals as level 1 units and postal 
sectors as level 2 units, may be of interest to assess the spatial homogeneity of psychiatric 
morbidity (e.g. Duncan et al. (1995)). It is conceivable that psychiatric variables of interest 
may be statistically related to either the sector size or the delivery point size. For example, the 
prevalence of neurotic symptoms and sector size might be positively associated through a 
common positive association with the sector's population density. Similarly, the prevalence 
of neurotic symptoms might be negatively associated with delivery point size because of the 
effect of lone parent households which tend to have higher levels of neurotic symptoms and 
lower average numbers of eligible adults. A data analyst may not, however, be given access to 
one or both of these size variables, for example for confidentiality reasons, or may not include 
them as covariates in the model if they are not scientifically meaningful. 

When the sample selection probabilities are related to the response variable even after 
conditioning on covariates of interest, the conventional estimators of the model parameters 
may be (asymptotically) biased. The aim of this paper is to study weighting procedures that 
are appropriate for multilevel modelling, designed to correct for this bias. This corresponds 
to the analogous purpose of weighting in standard (single-level) regression models. For two 
reasons, weighting in multilevel models is not, however, a trivial extension of conventional 
methods of weighting. 

Weighting in standard regression models can be viewed as an application of the 
'pseudomaximum likelihood' (PML) approach as outlined in Skinner (1989), following ideas 
of Binder (1983). The basic idea of PML is that sample selection would not lead to bias if 
the values for all population units were observed, as in a census. If this were the case, we 
could compute the population (census) likelihood and achieve consistent estimation by 
maximizing this likelihood. When standard regression models are fitted to survey data, the 
finite population values are considered as independent so that the census log-likelihood is a 
sum which may be estimated consistently by simple weighting of the sample observations. 
The parameter value maximizing this estimated log-likelihood is the PML estimator which, 
under general conditions, is consistent for the corresponding model parameter. The first 
reason why multilevel models are different is that the finite population values are not 
independent in such models and so the census log-likelihood is not a simple finite population 
sum, implying that it cannot be estimated by simple weighting of the sample observations. 

A second consequent reason why weighting for multilevel models is different in principle 
from conventional weighting is that the overall inclusion probabilities of the ultimate sample 
elements do not carry sufficient information for appropriate bias correction, unlike the single- 
level regression case. This fundamental issue will be illustrated in the following sections. 
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It should be emphasized that the multilevel model is assumed to be correctly specified and 
the weighting methods are designed solely to adjust for the effects of sampling that are not 
accounted for by the covariates included in the model. It is often argued that weighting can 
also protect against model misspecification (Pfeffermann, 1993) but this issue is not explored 
here. 

Basic definitions and assumptions are set out in Section 2. The weighting approach is 
developed in Section 3 and its properties considered in Section 4. Scaling of the weights is 
discussed in Section 5 and variance estimation is considered in Section 6. The properties of 
the various estimators are evaluated in Section 7 by a simulation study and in Section 8 by 
analysing data from the survey of psychiatric morbidity. Section 9 contains some sum- 
marizing remarks. 

Some proposals for weighting at the element level were made in Goldstein (1995). In their 
appendix, Pfeffermann and LaVange (1989) proposed a PML approach for the estimation of 
the fixed regression coefficients in a multilevel model. They also proposed consistent weighted 
estimators for the model variances, but these require knowledge of the joint second-order 
sample selection probabilities which are often not available. The present paper may be viewed 
as extending their work in various ways, in particular by also considering PML estimation of 
the variance components by using only first-order selection probabilities. Shah and LaVange 
(1994) also considered weighted estimation of the fixed regression coefficients. Longford (1995) 
and Graubard and Korn (1996) considered various weighted estimators of the variance com- 
ponents parameters for a simple two-level model. 

2. Model and sampling design assumptions 

Consider a two-level population, with M level 2 units (primary sampling units in survey 
sampling terminology) and Nj level 1 units within the jth level 2 unit (j= 1, . . ., M). Let yij 
be the value of the response variable associated with the ith level 1 unit within the j th level 2 
unit (i = 1, . . ., Nj;j = 1, . . ., M). Suppose that the yv are generated by the two-level model 

where xu,  zv and zov are fixed covariate row vectors of dimensions p, q and 1 respectively, 
p is a iixed p x 1 vector of parameters and uj and uij are mutually independent normally 
distributed disturbances, uj N(0, a),uij -- N(0, a2).The term zguj allows for random level 2 
regression coefficients which, in the simplest case of xii, = 1, q = 1 and zv = 1 reduces to the 
random intercept model. It will commonly be the case that zoii = 1, but the possibility of 
unequal zov permits the representation of known patterns of heteroscedasticity within 
clusters. See Goldstein (1995) for further discussion of this model. 

The following two-stage sampling scheme will be assumed. At the first stage, m level 2 units 
are selected with inclusion probabilities r, (j= 1, . . ., M). At the second stage, nj level 1 
units are selected within the jth selected level 2 unit with probabilities rju.The (uncon- 
ditional) sample inclusion probabilities are therefore rv= rjlirj.The sampling mechanism 
may be informative in that the probabilities riliand rjcould be related to the error terms 
uj and uij and hence to the yij. 

3. Estimation 

To apply PML estimation directly, we could in principle write down a closed form expression 



26 D. Pfeffermann, C. J. Skinner, D. J. Holmes, H. Goldstein and J. Rasbash 

for the 'census likelihood', estimate the log-likelihood function and then maximize the 
estimated function numerically. For computational efficiency and estimation simplicity we 
prefer, however, to begin with an established estimation method for the standard case, 
iterative generalized least squares (IGLS), and then adapt this by analogy with PML. The 
IGLS algorithm involves iterating between estimation of P and estimation of ( a ,  2)and is 
equivalent to maximum likelihood in the standard case under normality (Goldstein, 1986). 
We proceed by first writing down expressions for the 'census estimators' of /3 and (Q, c2), 
which would be used in the IGLS algorithm if the entire population had been observed, and 
then replacing these census estimators by weighted sample estimators. 

Consider therefore the IGLS algorithm for the hypothetical case where the values (yU, xii, 
20, zOU) are observed for all population units, i = 1, . . ., Nj, j = 1, . . ., M. Let Yj= 
(ylj, . . ., yNii)', 4= (xlj, . . ., xNji)' and ej = (elj, . . ., eNji)', where eO = zUuj+ zoUvU.Then 
the model defined by equation (1) for the population values may be expressed in matrix form 
as 

2where 5= Z j Q q  + 2 o j ,  Zj = (zb, . . ., %)'and Dj = diag(zolj, . . ., dNii). 
Let s = q(q + 1)/2 + 1 and let 8 = (81, . . ., 8,)' be the s x 1 vector containing the distinct 

elements of and 8, = 2.Then 5may be expressed as a linear function of 8, 

where Gkj = ZjHkjq!+ Sk,Dj, H,, is a known q x q matrix containing 0s and Is and Sks is the 
Kronecker delta. Let Ej@] = ( 5  - -.P)(Y,. - Ik;.,B)' and note that Eii@] has expectation 
Vj(8). Following Anderson (1973) and Goldstein (1986), the IGLS algorithm involves the 
computation of a sequence of census estimators p,$)and @of P and 19, r = 1, 2, . . ., as 
follows. 

Stage I: set = P(')-'Q('), 

where P(') = Cj X,Vj1X,, Q")= zjqv;' 5 and V j ,  = Vj(@-I)), and Cj denotes sum over 
j =  1 , .  . ., M. 

Stage 2: set 8$) = R(')-' SI'), (4) 

where the klth element of the s x s matrix R(') is Cj t r ( ~ i ; ' G ~ ~ i ; ' G ~ )  and the kth element 
of the s x 1 vector fl)is Xj ~~{v; 'G~~v~'E~[P( ' ) ] [ .  The iterative process is initialized at some 
value 19;). Under standard conditions, P,$)and 8;) converge to 'IGLS census estimators' PC 
and Bc as r +oo. 

The census estimators are functions of the population values and hence are not operational 
if sampling is used. We therefore replace these census estimators by sample estimators ( p ) ,  
Q"), I?''), $')), with ,8and 8 being estimated by the limiting values and 8" of 

If p ) ,  . . ., ,$'(') are taken as the sample versions of P('),. . ., s('), ,8 and 8" are the standard 
unweighted IGLS estimators. These estimators ignore the sampling scheme, however, and we 
therefore consider survey sampling methods to estimate consistently the finite population 
quantities P('),. . ., s('). 

Our proposed approach consists of replacing each sum over the level 2 population units j by 
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a sample sum weighted by wj = TY' and each population sum over the level 1 units i by a 
sample sum weighted by wiu= TG' where .rrj and ribare the corresponding selection 
probabilities. We refer to the resulting estimators as theprobability-weighted IGLS (PWIGLS) 
estimators. If the wj and wiu are integers, the PWIGLS estimators could be obtained by 
duplicating (yy, xy, zy, zoy) wiu times for each sample unit (i, j), duplicating the resulting sets of 
synthetic level 1 units wj times for each j and then applying standard IGLS estimation. Such a 
procedure is, however, computationally very inefficient if the wj or wili are large. Instead we 
seek a simpler approach. 

We first obtain expressions for P@),. . ., s(')as functions of sums over i and j. To simplify 
the exposition, we consider here the case q = 1, when there is just one random effect at level 2, 
and indicate the extension to q > 1 in Appendix A. When q = 1 

~ = / a, (T5, +where TI, = Xi xu$/&., T2, = Xi xyzy/$, T3, = Xi ~ ~ TI, ~ Xi Y y z y / ~ y ,  z ~ ~= ,z'32/G2)-', T5, = Xi zy/zOy, u2 = var(uj) is the scalar value of a,G2 and s2are the IGLS census 
estimators from iteration r - 1 and Xi denotes sum over i = 1, . . ., N,. Similarly, 

= 2 i?. -where bj = (G2+ s~/T~,)-', TW Xi i?;, 6, = (Xi ey~y/~oi~)/T5j, ( e  - z j ) / z 0  and 
e..--yr - xy/3@).Note that, from equations (6) and (7), P'A, . . , S (4' -are functions of sums 
over i and j, as desired. 

The PWIGLS estimators are obtained by replacing population sums of the form Xj 4 and 
Xi dy by the corresponding sample sums Xj wj4 and X; wilidl, where Xj denotes sum over the 
sample level 2 units j and E; denotes sum over the sample level 1 units i. Note that the 
weighted sample sums are unbiased and consistent for the corresponding population sums 
under the randomization distribution induced by the sampling process (see Section 4). We 
estimate N, in R(')by 4 = Xi wiu, even if the A) are known, since we found in our simulation 
study that the use of N, leads to slightly more biased estimates of a2. 

Since computer software for the standard IGLS algorithm is widely available, it would be 
attractive if the PWIGLS algorithm could be implemented by transforming the data and 
applying the standard IGLS algorithm to the transformed data. We therefore consider the 
following transformation. 

-112 -112 -112Step A: replace zy by W , ~ ' / ~ Z ~ ;  wili = wy zoy.replace zoy by w, zoY 

Following the application of step A, it is straightforward to show that the sample versions 
of P@)and Q(') defined in equations (6) may be expressed as 

P") = C", (PI, -A,T2,P;,), 
j 
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where f' -Zfwiljxux$/zii.,p2j= Zfwiu xuzu/z&,f+:j = ZfwiIjxuYu/zii~, = Zfw ~ ~ ~ ~ z ~ / z ~ ~ ,
'J -4 ~2 -14 = (PSj+ + //w) and f!'5j = ZiW ~ ~ Z ~ / Z ~ ~ .The est~mators p)and d(')in equations (8) are 

precisely the PWIGLS estimators defined before and so stage 1 of the PWIGLS algorithm is 
achieved simply by transforming the data using step A and then applying stage 1 of the 
standard IGLS algorithm. For given 4 = (2,G2)', b = is the same estimator as f'@)-'&(') 
in Pfeffermann and LaVange (1989). It turns out that step A also achieves the necessary 
weighting for estimating s(')in equations (7). For, following step A, the sample version of s(') 
becomes 

where gj = (G2+ P6i= ZfwiliC;., Gj = wiueuzu/~u)/fsj = (eu- zuGj)/zou.(Zf and Cu 
Unfortunately, the same is not true for estimating R('),since application of only step A yields 

which differs from the PWIGLS estimator: 

We therefore propose to augment step A with the necessary additional adjustment to A!). 

Step B: (a) insert the weights wj into each of the sums in I?:); 
(b) replace nj in the (2, 2) element of I?!) by = Cj" wiu 

In summary, PWIGLS estimation may be implemented by first transforming the data by step 
A and then applying the standard IGLS algorithm, modified by step B. Initial values Po)and 
8" for the PWIGLS algorithm may be com uted as Po)= (EJAtiTlj);l Zj d(o)2= 0COPand = ZJwjPp/ Zsw .(fi(i - I), where P6i = Zfwiu(eF)- zuuj ) /zOu, ef) = yu - xuP0)J J 
and if) = Efwiljeu zu/z&/PSj. 

4. Consistency of probability-weighted iterative generalized least squares 
estimators 

The PWIGLS estimators )('Iand &)defined in Section 3 are consistent for the corresponding 
6':)andfig)census estimators under the randomization (repeated sampling) distribution, 

subject to the standard weak kinds of regularity conditions on the sampling scheme required 
for the consistency of Horvitz-Thompson-type estimators. Note that the establishment of 
randomization-based consistency properties requires a formulation of the way that the 
sample and population sizes mutually increase (Isaki and Fuller, 1982). In particular, to 
establish randomization-based consistency of the proposed PWIGLS approach requires both 
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m and the nj to increase. This is because the sums over level 1 units enter non-linearly and the 
bias effect of this non-linearity may not vanish for small nj. For example, #/FSjin equation 
(11) is biased for b ; / ~ , ~  in equation (7) and this bias need not disappear in the weighted sum 
over j if nj is fixed. 

If the estimators p)and are consistent for the census estimators fig)and 0g), the limiting 
(as r + oo) PWIGLS estimators b and 8 will converge to the corresponding census IGLS 
estimators PCand 0,. Since the latter are consistent for the model parameters, .the PWIGLS 
estimators are likewise consistent for these parameters with respect to the joint distribution 
induced by the model and the sampling scheme. See, for example, Pfeffermann (1993) for 
further discussion. 

The requirement that both m and the nj increase is unattractive since, in practice, the nj are 
often small. In fact, consistency of ,&) but not can also be established when only m 
increases assuming fixed values 8' and Lj2. TO see this, rewrite equations (8) as the population 
sums = Xj Xi k)xU and &(" = Xj Xi %yU, where the ki depend on the selected samples 
(k;, = 0 if i j  is not sampled) and the values xu, zU, zoo, wj and wUbut not on the yo. It follows 
under standard regularity conditions on the k; that, as m + oo, P)- '{xj  Xi Ep[ki]xu}+ I 
and {Ej Xi ~~[k~ . ]x~) - '&( ' )  + P in probability, where Ep denotes expectation with respect 
to the randomization distribution. Hence ,&) is consistent for ,8 as m increases, given 8' 
and 2'. 

5. Scaled estimators 

In this section we consider scaling the weights in the PWIGLS estimators to reduce small 
sample biases, while retaining consistency. We note first from equations (8), (9) and (1 1) that 
fi  and 8 are invariant to scale multiplication of the wj. Hence we restrict attention to scaling 
the wiu, i.e. replacing each wiu in the expressions for the PWIGLS estimators by w;u = Ajwiu, 
where the Aj are constants to be determined. We write the resulting estimators as ,&Aj) and 
&(Aj). 

In choosing the scaling factors we shall treat m and the Nj as large, a common situation, but 
treat the nj as fixed and possibly small. The argument presented in Section 4 for the consistency 
of b(') as m + oo for fixed nj is equally valid when the wiu are scaled, provided that the Aj do 
not depend on the yU. This suggests that the choice of the Aj may not have a large effect on the 
bias of &Aj) when m is large. Hence, we focus on choosing Aj to reduce the bias of the 
estimator 8(Aj) of the variance components. To determine a simple expression for the preferred 
A .  we make some approximations. First, we consider asymptotic expressions for Lj2(')(Aj) and 
8'(')(Aj), defined by equations (9,(9) and (1 I), where $,PSjand P6jincrease in proportion to 
Nj, say, and then omit terms of lower order, to obtain 

where gj(Aj) denotes the value of gj when wiu is replaced by Ajwiu and so forth. Next, we 
evaluate the expectation Ecwith respect to the model by assuming that sampling of level 1 
units (but not level 2 units) is approximately non-informative, which we expect to be the case 
in most practical applications. Noting that 
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CSwi,juijzij/zoo 
iij = uj + i 

r f ,  
and treating Lj2 and c2in Lj(Xj) as fixed, it follows from expression (12) that for sufficiently 
large m 

p5j/p7j Also a'($ p7j/p5j), and 
expression (1 3) 
where Aj = and lf7j= Xi w & z ~ / & ~ .  = - so from 

Both these expressions for bias tend to 0 as 4.and psjincrease for fixed Aj, illustrating that 
scaling the weights wili does not affect the asymptotic model unbiasedness of the PWIGLS 
estimator of 0 even with fixed nj. Note also that these two expressions, representing the 
o(N;') terms in the bias, are 0 when Xj = 5.This suggests that we take Aj as our choice of Aj 
to reduce the bias of 8. However, Xj depends on the zij and zoo and this would become 
complicated when models with several choices of zo or zoo are entertained. As a further 
simplification we suppose therefore that the zij and zoo are approximately uncorrelated with 
the wiUwithin level 2 units so that Aj becomes approximately G;', where Gj = wiu.Xi W ; ~ / X ~  
(In fact, Aj = 6;' for the random intercept model where zo = zoo= 1). We refer to the scaled 
weight w$ = wiu/Gj as scaling method I .  The ii;. may be interpreted as the 'design effect' 
required to reduce the 'naive sample size' 4 in the unscaled PWIGLS estimator to the 
'effective sample size' (Xi w ~ ~ ) ~ / X ~  w;~. 

As an alternative scaling method 2, we consider Xj = G;', where iij= X: wiU/nj. This factor 
reduces the naive sample size 4.to the actual sample size nj and, being similar to Gj, might 
also be expected to reduce the bias of 8 when the nj are not large. It has two additional 
advantages. First it avoids the need for part (b) of step B since the scaled version of 4 
becomes identical with nj. Second, for the random intercept model with q = 1, zij = zoo= 1, 
and equal sample sizes nj, step B is made redundant altogether provided that the wj are also 
scaled to sum to m. This is so since 4,4 and pSjare constant under scaling and the 
incorporation of the weights wj in the sums C,s in i?!) in equation (10) is redundant. Note that 
selection of the level 2 units with unequal probabilities and equal-sized samples of level 1 
units is quite common in practice. 

Finally we note that if the wj and wiu are constant across i and j then for both scaling 
methods the scaled PWIGLS estimator is identical with the standard IGLS estimator unlike 
the unscaled estimator. In this case the sampling can be assumed to be non-informative and 
so the scaled estimators should be asymptotically efficient. 

6. Variance estimation 

We consider estimating the variance of the PWIGLS estimators with respect to the combined 
model and randomization distributions. It follows from Pfeffermann (1993) that for suf- 
ficiently small sampling fractions at both levels this variance can be estimated consistently by 
estimating just the randomization variance. This can be implemented by use of the delta 
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method, which becomes particularly simple if the level 2 units are treated as being selected 
with replacement, permitting us to consider only the level 2 selection in the computation of 
the variance estimators (Skinner, 1989). For small fractions m/M, this is generally not a 
restrictive assumption. In what follows we give the variance formulae for the unscaled 
estimator for the case q = 1. Estimation of the variances of the scaled estimators or the 
unweighted estimators is carried out in the same way. For the case q = 1, the delta method 
variance estimator of b is 

where = limr,,(p)), cj lir.x..e-/z2oo - J 2~ 2 w..e-z-/z& and e- -Yq -xijb.= E: w. v o  6.p . Es t i r o o  o -

Similarly, the delta method variance estimator of 8 is 


where I? = limr,,(k(r)) and 

7. Simulation study 

7.1. Design of experiment 
To evaluate the properties of the various estimators, we conducted a small simulation study. 
Finite population values yq were generated from the model yq = /3 + uj + uq; uj N(0, w2), 
uq N(0, u2), j = 1, . . ., M, i = 1, . . ., $. Results for the values ,I3 = 1, w2 = 0.2 and u2 
= 0.5 are reported here. The number of level 2 units in the population was M = 300. The 
sizes N,were determined by N, = 75 exp(ii,.), with ii,. generated from N(0, w2), truncated below 
by -1 . 5 ~  For w2 =and above by 1 . 5 ~ .  0.2 the N, lie in the range [38, 1471, with mean around 
80. We report results for the following sampling schemes. 

(a) Informative at both levels: m level 2 units were sampled with probability proportional to 
a 'measure of size' X,,so that .n;. = r n ~ , / E r X , ;  the measure X, was determined in the 
same way as Nj but with ii,. replaced by uj, the random effect at level 2. The level 1 units 
in the j th  sampled level 2 unit were partitioned into two strata according to whether 
uq > 0 or uij < 0 and simple random samples of sizes 0/25nj and 0.75nj were selected 
from the respective strata. The sizes nj were either fixed, nj = no, or proportional to Nj. 

(b) Informative only at level 2: the scheme is the same as (a), except that simple random 
sampling was employed for the selection of level 1 units within each sampled level 2 
unit. 

(c) Non-informative: the scheme is the same as (b), except that the size measure Xj was set 
equal to Nj. 

For each sampling scheme and parameter values the process of generating the finite 
population values and selecting the sample (one sample per population) was repeated 1000 
times. For each sample the standard (unweighted) IGLS estimators and the PWIGLS 
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estimators (unscaled and two scaled versions) as well as their corresponding variance 
estimators were computed. To assess the importance of step B of the weighting process, the 
scaled (method 2) estimator obtained by application of only step A was also computed. 
Application of only step A without scaling yields absurd results for (1j2, 32) since these 
estimators solve the equations i?t)J = s(')with the coefficients in I?:) being unweighted 
(equation (10)) and s(')being weighted (equation (9)). 

7.2. Results 
The results were generally more sensitive to the sample numbers of level 1 units than to the 
sample number of level 2 units. Hence, we report only results for the case where the sample 
number of level 2 units is m = 35. Increasing this value to m = 75 was generally found not to 
affect biases greatly, ceteris paribus. We report results for four different sample sizes within 
level 2 units: a fixed sample size n, =no = 38; proportional allocation n, = 0.4Nj, for which 
the mean of the nj is about 38; a fixed size nj = no = 9; proportional allocation nj = O.lNj 
(mean of about 9). 

Tables 1-3 show the simulation means of the various estimators. It is evident that the 
unweighted estimators of each parameter can be seriously biased when the sampling at both 
levels is informative. When the sampling is only informative at level 2, the bias in the 
estimation of a2, a within level 2 unit parameter, disappears, but the unweighted estimators of 
,O and w2 remain biased. The bias largely disappears when the design is non-informative. The 
minor bias in the estimation of w2 appears to represent the usual small sample bias of 
maximum likelihood estimation. 

The unscaled weighted estimator performs well in removing the bias of the unweighted 
estimator for the larger sample sizes (n, = 38 or n, = 0.4Nj). This is evident under both 
informative sampling schemes with all three parameters. For the smaller sample sizes (n, = 9 

Table 1. Simulation means of point estimators of pt 

Sampling design Unweighted Weighted estimators 

estimator 


Unscaled Scaled Step A only 

I 2 

Informative at both levels 
nj = 38 1.41 1.OO 1.00 1.00 1.00 
nj = 0.4Nj 1.46 1.OO 1.00 1.00 1.OO 
nj =9 1.48 1.OO 1.00 1.00 1.OO 
nj =O.lNj 1.51 1.04 1.04 1.03 1.03 

Informative only at level 2 
nj = 38 1.17 1.01 1.01 1.01 
nj = 0.4Nj 1.17 1.01 1.01 1.01 
nj = 9 1.17 1.01 1.01 1.01 
nj =O.lNj 1.17 1.OO 1.01 1.OO 

Non-informative 
nj = 38 1.OO 1.00 1.00 1.OO 
nj = 0.4Nj 0.99 0.99 0.99 0.99 
nj = 9 1.00 1.00 1.OO 1.OO 
nj =O.lNj 1.OO 1.OO 1.OO 1.OO 

?The true value of P is 1;the number of sampled level 2 units is m = 35; the number of replications 
is 1000. 
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Table 2. Simulation means of point estimators of w2t 

Sampling design Unweighted Weighted estimators 

estimator 


Unscaled Scaled Step A only 

I 2 

Informative at both levels 
nj = 38 0.191 0.197 0.188 0.191 0.191 
nj = 0.4Nj 0.178 0.201 0.181 0.189 0.189 
nj = 9 0.158 0.220 0.137 0.169 0.169 
nj = O.lNj 0.155 0.252 0.131 0.173 0.174 

Informative only at level 2 
nj = 38 0.183 0.196 0.190 0.190 
nj = 0.4Nj 0.182 0.201 0.189 0.189 
nj = 9 0.179 0.235 0.185 0.185 
nj = O.lNj 0.181 0.261 0.189 0.189 

Non-informative 
nj = 38 0.193 0.198 0.192 0.192 
nj = 0.4Nj 0.194 0.205 0.194 0.195 
nj = 9 0.194 0.242 0.192 0.192 
nj = O.lNj 0.189 0.259 0.190 0.191 

?The true value of wZ is 0.2; the number of sampled level 2 units is m = 35; the number of 
replications is 1000. 

or nj = 0. IN,), the bias in the estimation of w2 and u2remains non-negligible, however, and of 
similar magnitude and direction under all three sampling schemes. Other simulations not 
reported here with m = 75 yielded similar biases. It appears that the sample sizes within level 
2 units is the critical factor affecting the bias of the unscaled PWIGLS estimators. 

Next, we discuss the performance of the scaled estimators. As suggested in Section 5, 
scaling leaves the estimator ,8 in Table 1 approximately unbiased. The theory in Section 5 
suggests the use of scaling method 1 to reduce bias in the estimation of w2 and u2 for non- 
informative sampling at level 1. For sampling schemes (b) and (c) the two scaled estimators 
are identical and, allowing for the standard small sample bias of the maximum likelihood 
estimator, scaling acts to reduce the bias of both the unweighted estimator and the unscaled 
weighted estimator in the case of small sample sizes. For the informative sampling scheme 
(a), method 1 seems to overcorrect and scaling method 2 is preferable, although it still 
displays non-negligible bias for the small sample sizes. The bias reduction from scaling is even 
more evident in Table 3 in the estimation of 2 ,  although again method 1 seems to over- 
correct and some bias arises for method 2 for the smaller sample sizes in scheme (a). 

The use of only step A for the scaled estimator yields very similar results for scaling 
method 2 in most cases. (As noted in Section 5, when the nj are fixed, the two estimators are 
identical.) The only exception is the estimation of 2 under sampling scheme (c) with varying 
sample sizes nj. In this case nj is related to wj as both nj and w j '  are proportional to Nj. This 
bias appears to arise because the absence of the weights wj in the (2, 2) element of fit)in 
equation (10) implied by the use of only step A leads to bias if wj is related to nj. 

Table 4 contains results for the standard deviations of the point estimators and for the 
means of the sample estimators of these standard errors. The relative properties of the various 
estimators for the smaller sample sizes (nj = 9 and nj = O.lNj) were similar to those for the 
larger sample sizes (nj = 38 and nj = 0.4Nj) and so only the latter results are reported here. As 
expected, weighting leads to some inflation of standard errors, but for the cases of the larger 
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Table 3. Simulation means of point estimators of 27 

Sampling design Unweighted Weighted estimators 
estimator 

Unscaled Scaled Step A only 

I 2 

Informative at both levels 
n, = 38 0.437 0.496 0.506 0.503 0.503 
n, = 0.4N, 0.420 0.494 0.510 0.503 0.503 
n; = 9 0.432 0.475 0.558 0.527 0.527 
n, = O.lN, 0.414 0.460 0.559 0.521 0.520 

Informative only at level 2 
nj = 38 0.500 0.493 0.499 0.499 
n, = 0.4N, 0.500 0.491 0.501 0.501 
n; = 9 0.501 0.450 0.501 0.501 
nj =O.lNj 0.503 0.441 0.503 0.503 

Non-informative 
nj = 38 0.500 0.493 0.500 0.500 
nj = 0.4N; 0.500 0.491 0.501 0.433 
nj =9 0.501 0.451 0.500 0.500 
n, =O.lNj 0.500 0.438 0.499 0.424 

?The true value of d is 0.5; the number of sampled level 2 units is m = 35; the number of 
replications is 1000. 

biases of the unweighted estimators, as under scheme (a), this inflation is negligible compared 
with the corresponding decrease in bias. Note that for scheme (c), where weighting is 
redundant, the inflation in standard errors is the smallest. The standard errors of the three 
weighted estimators are generally very similar. The standard error estimators perform 
extremely well, with remarkably little bias except in the case of the standard error of the 
estimator 3' obtained using step A only. 

8. Application: survey of psychiatric morbidity 

We now return to the example introduced in Section 1. We take the response variable to be 
the score on the clinical interview schedule-revised (CISR). This schedule is made up of 14 
sections, each section covering a particular area of neurotic symptoms. 13 sections are scored 
with integer values from 0 to 4 and one section from 0 to 5. More frequent and more severe 
symptoms result in higher scores. The overall CISR value obtained by summing scores across 
the sections is a measure of psychiatric morbidity and takes integer values from 0 to 57. 
Values of 12 and above are taken to indicate significant psychiatric morbidity (Meltzer et al., 
1995). 

We study the dependence of the CISR score on the following covariates, allowing for 
variation both within and between postal sectors: 

age, 0 (under 40 years) or 1 (over 40 years); sex, 0 (female) or 1 (male); work, 0 (not 
working) or 1 (working); housing tenure, 0 (renter) or 1 (owner); urban, 0 (not urban) or 1 
(urban); qualifications, 0 (A-level and above) or 1 (other). 

In addition, we consider two size variables: Sj, delivery point count the number of delivery 
points in postal sector j ;  Ag, the number of eligible adults at the delivery point containing 
person i in sector j. 
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Table 4. Simulation standard deviations of point estimatorst 

Sampling design Unweighted Weighted estimators 
estimator 

Unscaled Scaled (method 2) Step A only 

Estimation of P 

Informative at both levels 

nj = 38 78 (77) 90 (85) 89 (85) 89 (85) 

nj =0.4Nj 76 (75) 90 (86) 90 (86) 90 (86) 


Informative only at level 2 

nj = 38 74 (75) 86 (85) 86 (85) 86 (85) 

nj = 0.4Nj 75 (76) 87 (86) 87 (86) 87 (86) 


Non-informative 

nj = 38 79 (77) 85 (82) 85 (82) 85 (82) 

nj =0.4Nj 79 (78) 85 (84) 85 (83) 85 (83) 


Estimation of wZ 

Informative at both levels 

nj = 38 49 (47) 54 (49) 54 (49) 54 (52) 

nj =0.4Nj 47 (45) 55 (50) 55 (50) 55 (53) 


Informative only at level 2 

nj = 38 50 (45) 58 (49) 58 (49) 58 (52) 

nj =0.4Nj 51 (46) 58 (50) 58 (50) 58 (53) 


Non-informative 

nj = 38 50 (48) 52 (49) 52 (49) 52 (51) 

nj =0.4Nj 51 (48) 55 (50) 54 (50) 55 (51) 


Estimation of o2 

Informative at both levels 

nj = 38 19 (18) 26 (25) 24 (23) 24 (42) 

nj = 0.4Nj 19 (19) 27 (26) 27 (26) 30 (45) 


Informative only at level 2 

nj = 38 20 (20) 22 (22) 21 (21) 21 (40) 

nj =0.4Nj 22 (21) 23 (22) 23 (23) 27 (43) 


Non-informative 

nj = 38 20 (20) 20 ( 19) 21 (21) 21 (40) 

nj =0.4Nj 20 (20) 21 (21) 21 (21) 22 (32) 


?Means of estimated standard errors are given in parentheses; all values are multiplied by 1000. 

The dependence of CISR value on Aij appears to be mainly according to whether there is 
one or more adults (the marginal CISR means are 7.0, 5.3, 5.2 and 5.5 for AV = 1 ,  2, 3 and 4 
respectively) and so we define the additional variable adults, taking the values 0 (Aij2 2)  or 1 
( A -B = 1). 

Initial attempts to fit the multilevel model (1) to these data resulted in residuals which 
were far from normal. We therefore applied the transformation y = (CISR score)'I2 which 
approximately produces normal residuals and removes the heteroscedasticity present when y 
is taken as the raw CISR score. We fit the following random intercept model to the 
transformed y-variable for various choices of covariate vectors xv: 
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We computed the unweighted IGLS estimator and three PWIGLS estimators (unscaled, 
scaled by method 2 and scaled by method 2 with step A only). The variance estimators 
defined in Section 6 were used to provide standard errors. The weights wj and wili were 
computed as described earlier from the T,, which are proportional to the sizes Sj, and the rib, 
which are products of the sample selection probabilities, = 90/SjAU, and the response 
probabilities ribgiven sample selection: rib= Among the 18000 selected delivery 
points, the number of responding adults was 10 108. See Meltzer et al. (1995) for a description 
of the calculation of the response probabilities. In addition to unit non-response, there is also 
some item non-response and we only used data on the 9608 adults with complete responses. 
We scaled the response probabilities of Meltzer et al. (1995) accordingly so that Xi; wili 
unbiasedly estimates Nj under the assumption of completely random item non-response 
within sectors and completely random unit non-response within the response weighting 
groups. We treat the resulting values of ribas given, ignoring possible error in the estimation 
of the T;~. The resulting weights wj and wib have means 38.3 and 147.2 and standard 
deviations 20.2 and 93.2 respectively. 

Our attempt at finding a parsimonious model led to the choice of covariates in the first 
model in Table 5. The model includes main effects for the two size variables and six other 
covariates together with three two-way interactions. Irrespective of the estimation method 
used, there is strong evidence of both significant covariate effects and significant between-area 
differences, as reflected by the estimators of w2.There is, however, no evidence of any effect of 

Table 5. Estimates for the psychiatric morbidity data? 

Parameter Unweighted Weighted estimators 
estimator 

Unscaled Scaled (method 2 )  Step A only 

Model including size variables 
p constant 

Age
Sex 
Work 
Housing tenure 
Urban 
Qualifications 
Adults 
Delivery point count/1000 
Work x sex 
Adults x qualifications 
Adults x age 

wZ 
u2 

Model excluding size variables 
p constant 

Age
Sex 
Work 
Tenure 
Urban 
Qualifications 
Work x sex 

wZ 
u2 


?Standard errors are given in parentheses. 
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the size variable Sj, the number of delivery points in the sector, with any of the four 
estimators. The apparent non-informativeness of the sampling of the postal sectors is further 
supported by the closeness of the unweighted and scaled weighted estimates of w2. A similar 
result was observed in the simulation study for the non-informative schemes at level 2 (see 
Table 2). In contrast, the effect of applying the unscaled weights is to increase the estimate of 
u2 considerably. Such increases were also observed in Table 2. It follows from equation (12) 
that when the Nj are large, as in our case, the effect of the second method of scaling may 
be to reduce ij2 by roughly the average of 62/nj across j (when zii = zoii = 1 as here). The 
sample mean of the l/nj is here 0.022 and 62= 2 so the observed difference 0.117 - 0.070 = 
0.047 between the unscaled and scaled weighted estimators of w2 is indeed close to 
2 x 0.022 = 0.044. As in the simulation study, the weighted estimates employing step A only 
are very similar to the scaled weighted estimates, except for the estimate of o2 and its 
associated standard error. Our tentative interpretation is that the scaled weighted estimator is 
the least biased and thus preferable although more numerical evidence is desirable. 

The effect of weighting on the estimated p-coefficients nowhere exceeds one standard error, 
but a large effect is not expected since we have included in our model the size variables S' and 
Aii which largely determine the selection probabilities. The four estimates for a given 
coefficient have always the same sign and are generally very similar. Note also that, unlike the 
results in Table 4, the standard errors of the weighted and unweighted estimators are very 
similar; this could result from a larger sample and smaller variation of the level 2 weights. 

As noted in Section 1, we might expect the sample selection process not to lead to bias, if 
the model is well specified and includes as covariates the variables determining the sampling 
rates. To examine this further, we exclude the covariates which involve Sj and Aii, to 
represent what could arise if these variables were unavailable or dropped from the model on 
substantive grounds. The results are given in the second part of Table 5. 

We see again that (scaled) weighting has no effect on the estimate of w2, suggesting that the 
sampling of sectors is not informative with respect to y. The effect on the other parameter 
estimates is also not substantial, although there are reasons to believe that some of the 
differences represent selection effects rather than sampling error. For example, in the first 
model the presence of the adults x age interaction means that the (scaled) weighted estimated 
decrease in the mean of y for a person over 40 years of age is 0.10 if the person lives with other 
adults but 0.28 (= 0.10 + 0.18) if not. Similar decreases are estimated by the unweighted and 
unscaled estimators. The corresponding unweighted and scaled weighted estimates of the age 
coefficient in the model, excluding size variables 0.14 and 0.11 respectively, represent 'average 
effects' across the categories of the adults variable but in different proportions. The 
unweighted estimate attaches greater weight to one-adult households since these are 
oversampled. The scaled weighted estimate corrects for this disproportionate sampling and, 
since the age effect is lower for adults living with other adults, the weighted estimate of the age 
coefficient is lower than the unweighted estimate and in fact very close to the estimate in the 
first model for adults living with other adults. 

9. Conclusions 

Unequal probabilities of selection at any level of a hierarchical sampling scheme may bias 
standard estimators of parameters in an associated multilevel model. In particular, bias may 
even arise for standard 'self-weighting' designs where all level 1 units have equal overall 
inclusion probabilities, if higher level units have unequal selection probabilities. It is often 
possible to control for such bias by including relevant 'design variables' as covariates in the 
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multilevel model, but this may not be possible because of data availability or not be desirable 
for scientific reasons. 

In this paper we consider two approaches to weighting IGLS estimators for multilevel 
models. The first approach uses reciprocals of selection probabilities and follows the broad 
principles of the pseudolikelihood approach. The second approach scales the weights in one 
of two ways. We also consider a simplified version of the second approach, implemented by 
applying the standard IGLS algorithm to a transformation of the data. 

All three approaches are successful in removing the bias in the estimation of /3. The first 
approach provides approximately unbiased and consistent estimators of the variance 
component parameters, but bias may arise when the level 1 sample sizes are small. Scaling 
helps to reduce this bias, especially when sampling is non-informative at level 1. When 
sampling is informative at level 1, scaling can overcorrect the bias although the second 
method of scaling generally seems preferable to no scaling. We have not identified any 
major effects of scaling on efficiency in our limited simulation study. Applying the standard 
IGLS algorithm after transforming the data is found to perform very similarly to scaled 
weighting in most cases, but when the level 1 sample sizes are related to the level 2 weights 
some bias seems to arise. It therefore seems difficult to recommend this as a general 
approach. 

We tentatively recommend the weighted scaling method 2 as a means of reducing bias 
caused by informative sampling. In our simulation study these estimators perform fairly well 
and the associated variance estimators display remarkably little bias. We emphasize, 
however, that this study has only considered a limited set of possible forms of informative 
sampling and only a simple multilevel model. Even under these circumstances, some 
significant biases in the estimation of the level 2 variance arise when the level 1 sample sizes 
are small. 

There appears to be little disadvantage in terms of bias or precision in using the scaled 
weighted estimators when sampling is non-informative. However, given the wide availability 
of unweighted estimators in standard multilevel modelling software, it will still be of interest 
in practice for survey data analysts to know whether there is a need for weighting, i.e. 
whether the sampling is informative. Some approaches to testing for informative sampling 
in single-level models are considered by Pfeffermann (1993) and Skinner (1994). These 
approaches might be extended to multilevel models. In this case it may be useful to test 
informativeness at each level and then to consider approaches which weight only at levels that 
are judged informative. 

A final point relates to the performance of the variance estimators. As shown in Table 4, 
the estimators proposed perform very well for all the sampling schemes and estimators 
considered. The computation of these estimators is very simple even under complex sampling 
schemes. The use of the method 2 scaled estimators when the selection at both levels is with 
equal probabilities corresponds to the classical use of the standard IGLS estimators and it 
would be interesting to compare the performance of these estimators with the performance of 
variance estimators derived from the estimated information matrix. 
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Appendix A: Probability-weighted iterative generalized least squares estimation 
when q > 1 

We indicate here how the theory of Section 3 extends to the case q > 1. Replacing aj (defined below 
equation (6)) by A, = (z,!D;'z, + 6%-')-I, where d and fi are the IGLS census estimates from 
iteration r - 1, we note that crdefined below equation (3) satisfies 

v:' 	 -G-~D:' -B~D:'Z.A .z!D:'.
Jr  - I I I J J J 	 (I6) 

Hence, the terms in equation (3) can be expressed as 

P'" = C (x,!D;'x;. -$D;'Z,A~Z,!D;'X;.), 
J 

Given G2 and fi, stage 1 of the IGLS algorithm depends therefore only on the 'sufficient statistics' 
$D;'X,, $D;' q,$D;'z,!D;' rJ and z,!D;'z. (1'-' - 1, . . ., M). As for the case q = 1, each of these 
terms may be expressed as a sum over i, e.g. &D; X .  - X i  xu&$/&. Turning to stage 2, note first from 
equation (16) and the definition of A, that v ~ ' G ~ ,id-26ks1N+ G-'D~'Z,B~~Z,!, where Gk, is defined 
below equation (2), 1 is the N, x N, identity matrix and hkj= & 2 ~ , f i - ' ~ k ,- bk,Aj. Letting Ck, = 
-6,,A, + Bk, -BkjZ,!D,3Z,A,, the klth element of R(')in equation (4) can be expressed as 

{6ks61s4+ 61, tr(z,!Djl z,ckj) + bks tr(z,!Dyl Z,H~) + tr(Z,!D;' z,c~,z,!D;'z,H~)} (17)
i 


and the kth element of s(')can be expressed as 

It follows that stage 2 depends on the same sufficient statistics as stage 1 and also on the sizes N, of the 
level 2 units. PWIGLS estimation may again be achieved by applying step A to the sample data and 
modifying the resulting IGLS algorithm by step B which now becomes 

(a) insert wj into the sample sum corresponding to equation (17) and 
(b) replace nj in the first term in the sample version of equation (17) (this term is 6,6,nj) 	 by

4 = z; Wili. 
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