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ABSTRACT

In this work we demonstrate an improvement in the state-of-the-

art large vocabulary continuous speech recognition (LVCSR) per-

formance, under clean and noisy conditions, by the use of visual

information, in addition to the traditional audio one. We take a

decision fusion approach for the audio-visual information, where

the single-modality (audio- and visual- only) HMM classifiers are

combined to recognize audio-visual speech. More specifically,

we tackle the problem of estimating the appropriate combination

weights for each of the modalities. Two different techniques are

described: The first uses an automatically extracted estimate of

the audio stream reliability in order to modify the weights for each

modality (both clean and noisy audio results are reported), while

the second is a discriminative model combination approach where

weights on pre-defined model classes are optimized to minimize

WER (clean audio only results).

1. INTRODUCTION

In [1] we present decision fusion algorithms that focus on both

state synchronous (combining likelihoods at the state level) and

phone synchronous modeling (combining likelihoods at the phone

level) of the audio and visual streams. The model investigated in

this approach was a multi-stream HMM, and a phone synchronous

variant, a product HMM. The state (phone) conditional observa-

tion likelihood of these models is the product of the observation

likelihoods of their audio-only and visual-only stream components,

raised to appropriate stream exponents that capture the reliability

of each modality.

In this article, we expand on exponent estimation further. Two

techniques are presented:

In the first technique we investigate possible refinements of

stream exponent dependence, making use of an automatically ex-

tracted audio stream reliability, estimated on the basis of the de-

gree of voicing present in the audio signal [2]. This approach fol-

lows the concept of audio-visual adaptive weights used in [3].

We first consider exponents that are utterance dependent, estimat-

ing the average voicing over the utterance frames. This approach

gives us a relative improvement of about 7% in clean and 26% in

noisy speech (cocktail party “babble” speech noise at 10dB SNR),

when compared to the audio only WER. We also show an improve-

ment compared to the multi-stream HMM used in [1]. Next we

explore frame dependent exponents, using per frame voicing es-

timates. The results are compared with the baseline and the per

utterance exponent results.

The second technique is a discriminative model combination

(DMC) [4] approach: The audio and visual streams are used in-

dependently to train models which are then combined along with

a language model, with weights optimized to minimize the WER

on a held out set. The two modalities are only synchronized at the

utterance level in this approach. Similar to the work in [5, 6], we

consider exponents static for each modality, or dynamic (hypothe-

sis dependent). We present results only in clean speech conditions,

where we show a 5% relative improvement over a baseline which

combines two different audio models by N-best rescoring.

Section 2 describes the experimental setup for this work. Sec-

tion 3 presents the general form of the fusion model. The two

weighting techniques are presented in sections 4 and 5 respec-

tively. We conclude with a discussion of the accomplishments of

this work and some ideas for future directions.

2. DATABASE - EXPERIMENTAL SETUP

To allow experiments on continuous large vocabulary, speaker in-

dependent audio-visual speech recognition, a database has been

collected at IBM for the purposes of the CLSP/JHU summer 2000

workshop [7]. For the noisy experiments a cocktail party “babble”

speech noise was added to the audio signal at 10dB SNR. Baseline

ASR systems were obtained during the workshop, for clean and

noisy audio, using HTK. The acoustic models were cross-word tri-

phone HMMs with about 75K Gaussian mixtures. All the models

developed at the workshop were used to rescore word lattices, gen-

erated with the IBM LVCSR recognizer which used pentaphone

cross-word HMMs with about 50K Gaussian mixtures [8]. The

speaker independent (SI) test set (1038 utterances; 2.5 hours) de-

fined in the workshop was used for these experiments, while a held

out set was used for tuning the parameters.

3. MULTI-STREAM HMMS FOR AUDIO-VISUAL

FUSION

In this work we are using a multi-stream HMM to combine the au-

dio and visual modalities (streams). As described in [1] the model

computes the class conditional observation likelihood as a prod-

uct of the observation likelihoods of its single-stream components,

raised to the appropriate stream exponents that capture the reliabil-

ity of each modality. Given the bimodal (audio-visual) observation

vector o�t� � fo�t�A �o�t�V g the state emission (class conditional)

probability of the multi-stream HMM is:

Pr�o�t�jc� �
Y

s�fA�Vg

�
JscX
j��

wscjNDs
�o�t�s �mscj� sscj��

�sct
(1)

where the stream exponents �s c t are non-negative and, in general,

depend on the modality s , the HMM state (class) c , and locally,

on the utterance frame (time) t . Such model has been considered
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Fig. 1. Top: Local estimates of R in clean and in noisy speech

(“babble” noise 10dB), and XNR reference, for a database utter-

ance. All calculations are performed on 128ms speech windows

shifted by 64ms. Bottom: Noisy audio spectrogram of the same

utterance.

in multi-band audio-only ASR, among others [9], and, as a two-

stream HMM, in small-vocabulary audio-visual ASR tasks [10,

11, 3].

In (1) the likelihoods are combined at the state level (state

synchronous multi-stream model). We can choose to combine the

likelihoods at a class level (class can be phone, syllable, word, or

even utterance) allowing different degrees of asynchrony between

the two streams. We refer to this model as a class-synchronous

product model [1, 8]. During maximum likelihood (ML) training

of the model, the weights �sct were kept fixed. Their values were

optimized on held out data prior to the ML training of the Gaussian

mixtures of the single-stream HMMs.

4. VOICING AS A MEASURE OF AUDIO RELIABILITY

Various signal-to-noise ratio estimates have been used in the liter-

ature in order to assign an audio-stream weight [12]. Here, we

propose the use of a measure of voicing, correlated with SNR, as

a means of estimating the reliability of the audio observations, and

we apply it to audio-visual weighting. We employ an equivalent

harmonicity index (HNR) [13, 14] to estimate the average voic-

ing per utterance. Based on this index, we subsequently estimate

utterance based stream exponents.

We use the autocorrelogram of a demodulated signal as a ba-

sis for differentiating between a harmonic signal and noise. In the

case of Gaussian noise, the correlogram of a noisy cell is less mod-

ulated than a clean one [13]. The peaks in the autocorrelogram of

the demodulated cell isolate the various harmonics in a signal. This

can be used to separate a mixture of harmonic noises and a domi-

nant harmonic signal. It is interesting that such separation can be

efficiently accomplished, using a time window of duration in the

same range as the average phoneme duration.

We get an audio reliability estimate for each frame of 128ms

duration. Before the autocorrelation we compute the demodulated

signal after half wave rectification, followed by band-pass filtering

in the pitch domain ([90,350] Hz). For each cell, we calculate the

ratio R � R��R�, where R� is the local maximum in time delay

segment corresponding to the fundamental frequency, and R� is

the cell energy. This measure is strongly correlated with SNR in

the 5–20dB range [15]. Figure 1 demonstrates explicitly the cor-

Clean audio Noisy audio

WER% (relative) WER% (relative)

Audio-only 14.44 — 48.10 —

AV-MS 14.62 +1.2 36.61 -23.9

AV-MS-UTTER 13.47 -6.7 35.27 -26.7

AV-PROD 14.19 -1.7 35.21 -26.8

AV-PROD-UTTER — 35.43 -26.3

AV-PROD-LOCAL — 37.15 -22.8

Table 1. Audio-visual decision fusion WER(%). We compare

with three different baselines: Audio-only, AV-MS and AV-PROD.

Relative WER improvements are computed as the relative (%) gain

over the audio-only baseline.

relation of this measure in clean and noisy speech with the noisy

signal SNR: We plot R estimates on 128ms speech windows of

a noisy utterance, against the R estimates in the clean audio case,

and a linear SNR-alike measure, defined asXNR � �S��S�N�� ,

where S is the energy of the clean signal and N is the noise only en-

ergy. Notice that R and XNR do not give exactly the same kind of

information, but they are quite strongly correlated. Their correla-

tion factor is 0.84, computed over the entire SI test set. Locally, R
is higher than XNR on voiced parts, and it is lower on other parts.

This local divergence on a per frame level could be exploited to

obtain a local stream weighting scheme.

4.1. Utterance Dependent Stream Exponents

In this first approach, audio speech reliability is calculated only

from the regions where the speech is dominant. We assume that

regions where local SNR is higher than 0dB (strongly correlated to

the regions where R � ��	 ; see also Figure 1) are speech regions.

We subsequently calculate stream exponents �A t , constant for all

t within the utterance, to be the mean of all R values higher than

0.5. We assume this to be an adequate estimate of voicing within

the utterance. Then, in (1): �V t � �� �A t .

We found that the audio weight �A t is mostly speaker depen-

dent and, in a smaller extent, utterance dependent [8]. For the

entire SI test data set, the average �A t is calculated to be ��
� and

��
� for the clean and noisy audio case, respectively.

4.2. Local Frame Dependent Stream Exponents

Since we estimate frame reliability on 128ms signal intervals, we

can use these estimates to compute the local frame weights, using

the piecewise-linear mapping function proposed by Meier in [16].

We experimented also with other linear functions of R inspired

from studies as in [11] without success so far. We optimized the

parameters of the Meier function on a small held out set. Thus we

compute the weights as: �A t � min�max�R�t����	�� ��
�.

4.3. Experimental Results - Discussion

The WER results for different systems, for the SI test set, are

presented in Table 1. We compare our results to an audio-only

and two audio-visual baselines. The audio-only baseline uses the

HTK trained acoustic model (see section 2). The AV-MS model is

the state synchronous audio-visual multi-stream model described

in (1), while the AV-PROD model is a phone synchronous product

model (see section 3). The details for the development of these



models are described in [1, 8]. These baseline systems are trained

using audio weight �A optimized on a held out set for clean (noisy)

speech: 0.7 (0.6) for AV-MS, and 0.6 (0.7) for AV-PROD. The

video weight was set to �V � �� �A. These values for the expo-

nents were kept fixed during testing with these systems.

In both clean and noisy conditions the AV-MS-UTTER model

(utterance dependent stream exponents) outperformed the compa-

rable AV-MS one, resulting to almost 7% relative WER reduction

with respect to the audio-only system. In the clean audio case this

model even outperformed the AV-PROD model.

Our attempts to modify the weights for the AV-PROD model in

noisy conditions were not as successful. The AV-PROD-UTTER

model is slightly worse that the AV-PROD (fixed global weights).

The result deteriorates more when we use local per frame weights

(AV-PROD-LOCAL). It seems that the ML training of the phone-

synchronous product model, captures some of the information about

stream reliability that we are trying to use in order to modify the

original weights. We notice that our improvement over the model

with global weights is much better in clean than in noisy condi-

tions. This may be due to the fact that our estimate of the audio

stream reliability (voicing) is more accurate in clean speech.

Further investigation is due to examine more appropriate vari-

able weights over the noisy product model. A different mapping

function for R can be explored for that purpose [15].

5. DISCRIMINATIVE COMBINATION OF AUDIO AND

VISUAL MODELS

The Discriminative Model Combination (DMC) approach [4] aims

at an optimal integration of independent sources of information in

a log-linear model that computes the probability for a hypothesis.

The parameters of this new model are the weights of the log-linear

combination, and are optimized to minimize the errors in a held

out set.

When we have independent observation streams as sources of

information, and we have trained maximum likelihood models in-

dependently for each of these streams, then the DMC approach is

equivalent to optimizing the stream weights for model (1). In the

implementation of this approach though, we use an asynchronous

version of that model allowing the two streams to be synchronized

only at the utterance boundaries.

The combination of the models can be performed either stati-

cally, with constant weights [4], or dynamically, where the param-

eters may vary for different segments of a hypothesis [17, 6]. In

the dynamic combination the weights aim to capture the dynamic

change of confidence on each of the models combined for each

hypothesized segment.

5.1. Static Combination

We can combine the audio and visual models’ scores, along with

a language model score, as independent sources of information

in the DMC framework. If we denote by Ps�hjOs�, with s �
fA�Vg, the probability provided by the audio (visual) models �,

we define, in the DMC framework, the log-linear model that com-

bines all the available information I (audio/visual/linguistic infor-

�We note that the acoustic model and visual models typically provide
a conditional probability of the observations given the hypothesis but we
approximate the likelihood of the hypothesis, given the observations, using

mation) as:

P �hjI� �
�

Z��I�

�
� Y
s�fA�Vg

Ps�hjOs�
�s

�
APLM �h��LM (2)

where PLM �h� is the language model probability and Z��I� is a

normalization factor so that the probabilities for all h � H add to

one. In this formulation we only have one static weight for each

stream.

5.2. Dynamic Combination - Phone Dependent Weights

We can combine the scores from the available information sources

dynamically, within the simple form of an exponential model, by

weighting each of the scores with different exponents, for different

segments of a hypothesis [17]:

P �hjI� �
�

Z��I�

�
�

NY
i��

Y
s�fA�Vg

Ps�hi�
�s�hi�

�
APLM �h��LM (3)

where hi is the ith segment in hypothesis h. In this model we see

that the exponent value changes with time across each utterance.

The weights ���� we use are tied across different classes of

segments so that we have only a small number of parameters to

optimize. Motivated by the work for multi-lingual model combi-

nation [5, 6], we chose the stream weights to depend on the identity

of the hypothesized phones. Since the phones are not well defined

for the visual model, we used visemic classes instead (these are the

visually distinctive phones [8]).

5.3. Parameter Optimization

The above defined model is used to rescore the N-best lists and

choose the MAP candidate. We train the parameters ���� in (2) and

(3) so that the empirical word error count induced by the model is

minimized. Since the objective function is not smooth, gradient

descend techniques are not appropriate for estimation. We use the

simplex downhill method, known as amoeba search to minimize

the number of word errors on a held out set [17].

5.4. Experimental Results - Discussion

We used only the clean speech utterances for our experiments. A

held out set of about 1500 utterances was set aside in order to

optimize the weights, and the SI test set available at the workshop

was used for testing. For the purposes of the experiments, 2000-

best hypotheses were obtained for each utterance using acoustic

model scores provided by IBM and they were then rescored with

the new acoustic and visual models created during the workshop

using HTK �.

Bayes rule and a uniform language model Pu�h� � c. Thus:

Ps�hjOs� �
�P �Osjh�Pu�h�X

h�

�P �Osjh
��Pu�h

��
�

�P �Osjh�X

h�

�P �Osjh
��

� �P �Osjh�

�The IBM system used to generate the N-best lists had a WER of
14.24%. Due to the rescoring of these N-best hypotheses with the HTK
audio only model, the new baseline is better than the one obtained using
the HTK model alone in Table 1 (ROVER effect).



Experiment train SI test

WER WER (relative)

0. Baseline acoustic � 12.8 13.65 ( – )

1. Static (acoustic + visual) weights 12.5 13.35 (-2.0)

2. 1 acoustic + 13 visemic weights 12.2 13.22 (-3.1)

3. phonemic + 13 visemic weights 11.8 12.95 (-5.1)

Table 2. DMC experimental results on clean audio.

We performed 3 experiments:

Experiment 1: The audio and visual models are combined stati-

cally with one weight for each of the models.

Experiment 2: One global weight is still used for the audio model

scores, but we use 13 different weights for visual models corre-

sponding to the each of the 13 visemic classes.

Experiment 3: Different weights are used for each of the 43 audio

phone-models and each of the 13 visemic-classes.

The results are depicted in Table 2. We found this method effi-

cient enough to obtain an extra 5% relative improvement over the

improved baseline, resulting to a total of 10% relative improve-

ment over the workshop clean audio baseline (see Table 1). There-

fore half of the improvement in the system is due to the use of the

visual information.

Our exponent parameterization scheme is rather simple: We

only allow exponents that depend on the identity of hypothesized

phones/visemes. Different exponent classification schemes, using

information about the reliability of each model, might be worth

exploring in future work. We also need to point out one of the

limitations of this approach: The lack of synchronization. The two

streams are used independently and their scores are combined only

at the utterance level. This way the weaker visual model cannot

utilize the information provided by its better audio model about

the word or phone boundaries.

6. CONCLUSIONS

We demonstrated two different techniques for improving speech

recognition using audio-visual models. The techniques are aiming

at optimal weighting schemes for audio-visual fusion. We showed

significant improvements in LVCSR, particularly in clean speech

which in previous work had been difficult to improve with the use

of visual information.

Future work can further explore HNR based exponent modifi-

cation that could eventually show improvements even in the prod-

uct model. It will also be interesting to examine ways of combin-

ing the two approaches. Namely, we can explore the discriminative

optimization of HNR-based class exponents, and the application of

DMC with different levels of asynchrony between the two streams.
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