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Weighting sequence variants based 
on their annotation increases the power 
of genome-wide association studies in dairy 
cattle
Zexi Cai* , Bernt Guldbrandtsen, Mogens Sandø Lund and Goutam Sahana

Abstract 

Background: Genome-wide association studies (GWAS) are widely used to identify regions of the genome that 

harbor genetic determinants of quantitative traits. However, the multiple-testing burden from scanning tens of 

millions of whole-genome sequence variants reduces the power to identify associated variants, especially if sample 

size is limited. In addition, factors such as inaccuracy of imputation, complex linkage disequilibrium structures, and 

multiple closely-located causal variants may result in an identified causative mutation not being the most significant 

single nucleotide polymorphism in a particular genomic region. Therefore, the use of information from different 

sources, particularly variant annotations, was proposed to enhance the fine-mapping of causal variants. Here, we 

tested whether applying significance thresholds based on variant annotation categories increases the power of GWAS 

compared with a flat Bonferroni multiple-testing correction.

Results: Whole-genome sequence variants in dairy cattle were categorized according to type and predicted impact. 

Then, GWAS between markers and 17 quantitative traits were analyzed for enrichment for association of each annota-

tion category. By using annotation categories that were determined with the variants effect predictor software and 

datasets indicating regions of open chromatin, “low impact” variants were found to be highly enriched. Moreover, 

when the variants annotated as “modifier” and not located at open chromatin regions were further classified into dif-

ferent types of potential regulatory elements, the high impact variants, moderate impact variants, variants located in 

the 3′ and 5′ untranslated regions, and variants located in potential non-coding RNA regions exhibited relatively more 

enrichment. In contrast, a similar study on human GWAS data reported that enrichment of association signals was 

highest with high impact variants. We observed an increase in power when these variant category-based significance 

thresholds were applied for GWAS results on stature in Nordic Holstein cattle, as more candidate genes from previous 

large GWAS meta-analysis for cattle stature were confirmed.

Conclusions: Use of variant category-based genome-wide significance thresholds can marginally increase the power 

to detect the candidate genes in cattle. With the continued improvements in annotation of the bovine genome, we 

anticipate that the growing usefulness of variant category-based significance thresholds will be demonstrated.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Cattle is one of the most important domestic animals 

in human history. Both breeding programs and genetic 

studies in cattle depend largely on the availability of a 

reliable cattle reference genome [1] and reference popu-

lations [2]. In addition, genome-wide association studies 

(GWAS) have identified valuable links between genetic 

variants and variations in complex traits [3, 4]. For 

example, numerous GWAS have been conducted in cat-

tle to investigate production traits such as milk yield [5, 

6], milk composition [7], and mastitis [8–10]. However, 

GWAS alone cannot distinguish causative variants from 
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variants which are in perfect, or near-perfect, linkage dis-

equilibrium (LD) with them.

To address this problem, additional information from 

independent sources are needed. For example, gene 

expression data have facilitated the identification of 

candidate genes from GWAS data [11], and expression 

quantitative trait loci (eQTL) data [12, 13] have helped 

map causative variants within regulatory regions. More 

recently, Brown et al. [14] proposed a ‘causal-variant evi-

dence mapping using nonparametric resampling’ (CaVE-

MaN) method to pinpoint causative mutations in eQTL 

studies. By integrating eQTL data with results from 

GWAS, genes with expression levels that are associated 

with complex traits due to pleiotropic effects (e.g., when 

both gene expression and trait variation are affected) can 

be identified [13]. However, large-scale eQTL studies can 

be expensive because they require generation of RNAseq 

data specific to the population under study, especially in 

the case of livestock species for which initiatives such as 

the GTEx [15] project in humans do not exist.

Due to many reasons, such as LD, inaccuracy of impu-

tation, random sampling errors, etc., the lead single 

nucleotide polymorphism (SNP) may not be the causa-

tive one [6]. Using additional information to prioritize 

variants within the QTL interval has become a popular 

strategy [16]. It was recently demonstrated that the use 

of a variant annotation tool [17] and its evolutionary con-

servation score [16] can help prioritize variants. In par-

ticular, variant annotation can be used across different 

studies without being tissue- or trait-specific. �e power 

to identify associations between genetic variants and 

phenotypes may be further improved by using functional 

annotation information [18–20]. For example, Sveinb-

jornsson et al. [21] reported an increase in power for the 

detection of associations when an annotation enrich-

ment-based weighted Bonferroni adjustment was used to 

correct for family-wise error rate (FWER).

In this study, we implemented a previously proposed, 

category-based Bonferroni adjustment based on the 

enrichment (the probability of a causal variant being 

from a category divided by the probability of a non-

causal variant being from the same category) of variant 

annotations observed for association signals [21] that 

were obtained from a GWAS conducted in Nordic Hol-

stein cattle. �is adjustment is based on the hypothesis 

that different types of variants have varying probabilities 

of being causal mutations, which means the enriched cat-

egories of variants could have lower thresholds estimated 

from their enrichment. �e GWAS results for 17 quanti-

tative traits were used to extract the lead SNP along with 

other significant SNPs showing LD  (r2 > 0.2) with the lead 

SNPs, as potential causal variants to estimate the enrich-

ment of each of the annotated variants’ categories. We 

make the hypothesis that the category-based significance 

threshold will increase the power of a GWAS study. We 

tested this hypothesis by performing an association study 

on stature in cattle and comparing the results with those 

of a previously reported large meta-analysis in cattle stat-

ure and genes reported for human height.

Methods
Phenotype and genotype data

Since, no animal experiments were performed in this 

study, approval from an ethics committee was not 

required.

Phenotypic records on 17 traits/indices for Nordic Hol-

stein cattle were obtained from a central national database 

(Nordic Cattle Genetic Evaluation (NAV), http://www.

nordi cebv.info/). For details on the genetic evaluations 

performed for these 17 traits/indices in Nordic countries, 

see http://www.nordi cebv.info/produ ction . �e pheno-

typic values used in the association analysis included de-

regressed proofs that were derived for animals based on 

the effective daughter contributions of sires and maternal 

grandsires [22, 23], which were obtained from the NAV 

routine genetic evaluations by using the MiX99 software 

[24]. De-regressed proofs were available for 5373 sires 

(the total number of animals varying according to trait). 

A short description of the 17 traits/indices is presented in 

Additional file 1: Table S1.

An association study was performed by using imputed 

WGS data, as previously described by Iso-Touru et al. [5] 

and Wu et  al. [25]. A total of 4921 bulls were genotyped 

with versions 1 or 2 of the Illumina BovineSNP50 Bead-

Chip (54  k) system (Illumina, San Diego, CA, USA). �e 

54 k genotypes were imputed to the WGS level by using a 

2-step approach [26]. First, all the animals were imputed to 

a high-density (HD) level, by using IMPUTE2 v2.3.1 and 

a multi-breed reference of 3383 animals (1222 Holsteins, 

1326 Nordic Red Dairy Cattle, and 835 Danish Jerseys), 

which had previously been genotyped with the Illumina 

Bovine HD BeadChip [27]. �e distribution of imputation 

accuracies according to minor allele frequency is described 

in [25]. �ese imputed HD genotypes were imputed with 

Minimac2 [28] to the WGS level by using a multi-breed ref-

erence of a total of 1228 animals that included 1148 animals 

from Run4 of the 1000 Bull Genomes Project [2] (288 Hol-

stein, 56 Nordic Red Dairy cattle, 61 Jersey cattle, and 743 

cattle from other breeds [2]), and 80 animals from Aarhus 

University (23 Holsteins, 30 Nordic Red Dairy cattle, and 

27 Danish Jerseys). �e 1000 Bull Genome Project data are 

described in Daetwyler et  al. [2] and the whole-genome 

sequence data from Aarhus University are described in 

Brøndum et al. [29]. A total of 22,751,039 bi-allelic variants 

were present in these imputed sequence data. After exclud-

ing SNPs with a minor allele frequency lower than 1%, 

http://www.nordicebv.info/
http://www.nordicebv.info/
http://www.nordicebv.info/production
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and SNPs that deviate from Hardy–Weinberg proportions 

(P < 1.0−6), 16,503,508 SNPs on 29 autosomes in Nordic 

Holstein cattle were retained for association analyses.

Methodology for the detection of multiple QTL

We performed a GWAS according to a previously 

described approach [6]. First, a single SNP GWAS analy-

sis was performed by using GCTA [30] for each chromo-

some as the first round. Next, SNPs were ranked based on 

their − log10 (P) values. �e SNP with the highest − log10 

(P) value, referred to as the lead SNP, was identified for 

each chromosome. If the − log10 (P) value of the lead SNP 

exceeded 8.5 (a threshold value representing a 0.05 type 

I error-rate after Bonferroni correction for 16,503,508 

simultaneous tests, e.g., − log10 (P) ≈ 8.5), the SNP geno-

type dosage was fitted as a covariate, and rerun in asso-

ciation analyses for the same chromosome as a second 

round. If the result of this second round detected another 

SNP with a − log10 (P) value exceeding 8.5, and this 

SNP was also significant in the first round (e.g., − log10 

(P) > 8.5), we fitted it as another covariate, and then 

scanned the chromosome in a third round. �is same pro-

cedure was repeated for each chromosome until no addi-

tional SNPs remained significant. A list of the lead SNPs 

identified in each round was compiled. In each round, we 

checked whether the lead SNP was the only significant 

SNP identified within ± 1 Mb of flanking region. If it was, 

the SNP was not considered as a lead SNP since it could 

represent a false positive or be mapped to a wrong loca-

tion in the genome. Details regarding the 17 traits and the 

GWAS results are in Additional file 1: Table S1.

GWAS for stature in Nordic Holstein cattle

Stature in cattle is measured from the top of the spine 

between the hips to the ground. In Denmark, this trait 

is measured in cm. We performed a GWAS for stat-

ure according to the method described above. However, 

first we removed extreme phenotypic records according 

to Tukey’s rules of quartiles ± 1.5 × interquartile range. 

�e remaining 4832 phenotypic records were associated 

with 15,535,049 imputed SNPs. �e number of markers 

used for association with stature differs from that used in 

the GWAS conducted for the 17 traits (described above) 

since the set of sires was not exactly the same in both 

analyses.

LD estimation and variant annotation

PLINK was used to estimate pairwise LD  (r2) between 

lead SNPs and all the other SNPs on the same chromo-

some. All SNPs that had an  r2 with the lead SNPs higher 

than 0.2 were extracted. �e SNPs that were not signifi-

cant in the association study were discarded in order to 

generate a list of possible causal variants. �ese SNPs 

were annotated with the variants effect predictor (VEP) 

(version 92.0) software [17]. �e variants were subse-

quently classified into annotation categories according to 

the impact for the consequence type predicted by VEP. 

When a SNP had multiple annotations, the annotation 

with the highest impact predicted by VEP was retained. 

Information on transposase-accessible chromatin, i.e. 

ATAC-seq peaks [31], as well as histone modifications, 

i.e. H3K27Ac and H3K4me3 peaks [32], were retrieved 

from previously published studies. �e locations of the 

UTR regions were obtained from Ensembl [33]. �e loca-

tions of predicted regulatory elements (RE) were also 

obtained from a previous study [34], while the locations 

of non-coding RNAs (ncRNAs) were retrieved from the 

RNAcentral database [35].

Assessment of category enrichment and category-based 

Bonferroni correction

Methods to assess the enrichment of each category, the 

enrichment confidence intervals, and weighted Bon-

ferroni corrections were previously described [21]. 

We classified all the variants based on the VEP anno-

tation: (1) high impact variants (e.g., stop_gained, 

stop_lost, start_lost, frameshift, splice_acceptor, and 

splice_donor variants), (2) moderate impact vari-

ants (missense_variants), (3) low impact variants 

(synonymous, stop_retained, upstream_gene, down-

stream_gene and splice_region variants), and (4) other 

variants (including SNPs with a consequence predicted 

as “modifier”). In addition, we further classified other 

variants (annotated by VEP as “modifier”) using open 

chromatin (OC) information to two categories, which 

resulted in a total of five categories: (1) high impact 

variants, (2) moderate impact variants, (3) low impact 

variants, (4.1) OC variants (annotated by VEP as “mod-

ifer” and located at ATAC-seq peaks [31] or H3K27Ac 

and H3K4me3 peaks [32]), and (4.2) variants with no 

known function i.e. NKF variants (including SNPs with 

a consequence predicted as “modifier”, which were not 

located in OC). Finally, we further classified the NKF 

variants (category-4.2 above) into four categories lead-

ing to a total of eight categories. �e four NKF cat-

egories were: (4.2.1) variants located within 5′ and 3′ 

untranslated regions (UTR), (4.2.2) variants located in 

predicted RE according to a recently proposed algo-

rithm based on conservation among mammals [34], 

(4.2.3) variants located within ncRNAs retrieved from 

the RNAcentral database [35], and (4.2.4) variants 

with no known information (NKI) predicted as “mod-

ifier” and not located in any of these first three types 

of sequence. First, we considered UTR, since these 

regions mediate the initiation and termination of trans-

lation. Next, we considered the experimental datasets 
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of accessible chromatin (ATAC-seq) [31] and active 

motifs (H3K27Ac and H3K4me3) [32]. Second, we con-

sidered RE for two reasons: (1) because promoters and 

transcription factor binding sites are near transcription 

start sites [36, 37], and regions proximal to genes tend 

to exhibit greater enrichment of significantly associ-

ated variants in GWAS [38]; and (2) predicted RE can 

potentially help identify causal mutations [34]. ncRNAs 

play a major role in gene expression regulation [39], 

although their specific functions are largely unknown 

[40]. �e detailed classification of variants is in Addi-

tional file 1: Table S2.

According to Sveinbjornsson et  al. [21], we esti-

mated the probability of a causal variant being a par-

ticular annotation type (according to the five or eight 

categories that we established in this study) by using a 

maximum likelihood method. Accordingly, the enrich-

ment of an annotation category was estimated based on 

the probability of a causal variant being from a class, 

divided by its genomic frequency. �e significance 

threshold for each annotation category was then esti-

mated based on a category-based Bonferroni correction 

threshold that was established based on enrichment of 

the annotation class. For example, for a total number of 

sequence variants tested (T), the number of variants in 

an annotation category C (TC), and enrichment of cat-

egory C (eC), cj is the category to which the jth sequence 

variant belongs with enrichment eCj, and the weight for 

the jth sequence variant is [21]:

where Pwtj and Pbc are weighted significance thresholds 

for the jth variant and Bonferroni corrected FWER, 

respectively.

Bootstrapping and con�dence interval estimation 

for enrichment

Association signals (QTL) were resampled 100 times 

with replacement. For each resample, we estimated 

enrichment for annotation categories and calculated 

the averages and 95% confidence intervals. �e code 

for bootstrapping procedure is included in the R code 

provided in Additional file  2 together with the code for 

enrichment estimation.

Results
GWAS for 17 traits in Nordic Holstein cattle

A total of 5373 animals with 16,503,508 imputed SNPs 

were subjected to GWAS for 17 traits. A previously 

described pipeline [6] was used to detect the ‘lead’ 

wj =

ecj
1
T

∑
C Tcec

,

Pwtj = Pbc × wj ,

variants that showed the highest association for each 

association signal. A total of 261 QTL (see Additional 

file 1: Table S1) were detected with a genome-wide asso-

ciation significance threshold of − log10(p) > 8.5. Signifi-

cant associations were observed for 16 of the 17 traits 

examined (see Additional file 1: Table S1). Due to long-

range LD in the bovine genome [5], sequence variants 

that were in LD with the lead SNPs  (r2 > 0.2) and genome-

wide significant were identified as possibly causal. In 

total, 78,593 possibly causal variants on 29 autosomes 

were selected for further analysis.

Annotations for all possible causal variants

�e variant effect predictor (VEP) software (version 92.0) 

[17] was used to predict the maximal consequence of 

the variants on the nearest genes (e.g., within 5-kb flank-

ing regions). A summary of the annotations obtained is 

in Fig.  1. Most of the annotated variants are intergenic 

variants or intron variants (Fig.  1a). Among the coding 

sequences, the most abundant variants are synonymous 

variants and missense variants (Fig.  1b). We also exam-

ined the distribution of annotations among the possible 

causal variants and the lead variants. �e total number of 

variants in these two sets were equal to 78,593 and 261, 

respectively. �e overall distributions of the annotations 

for these two groups (Fig. 1c–f, respectively) were similar 

to that of the entire set of variants (Fig.  1a, b). We also 

observed that no high impact variants (e.g., “stop gained” 

or “start lost” variants) were present among the lead 

SNPs identified.

Enriched annotations and annotation-based signi�cance 

thresholds based on VEP annotation

Based on the VEP-derived annotations, we classified all 

the annotation types obtained into four categories: (1) 

high impact variants, (2) moderate impact variants, (3) 

low impact variants, and (4) other variants. �e other 

variants included SNPs that were annotated by VEP as 

intergenic variants, and those with a consequence pre-

dicted as “modifier”. A plot of category enrichment is in 

Fig.  2. In contrast with the results of previous GWAS 

that involved quantitative and binary phenotypes 

in humans [21], low impact variants were the most 

enriched (245-fold enrichment) category instead of the 

high impact variants (Table 1). �e next most enriched 

category was the moderate impact variants, and these 

exhibited a fivefold enrichment (Table  1). We did not 

observe enrichment for high impact variants and ‘other 

variants’.

Incorporation of information of open chromatin

While an extensive dataset of DNase I hypersensi-

tivity sites (DHS) is available for the human genome 
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[21], such data are much more limited for the bovine 

genome. However, an assay for transposase-accessible 

chromatin with a high-throughput sequencing (ATAC-

seq) dataset for cattle was recently generated to explore 

accessible chromatin regions in the bovine genome 

[31]. In addition, a histone modification dataset (for 

H3K27Ac and H3K4me3) was created to mark active 

motifs across the bovine genome [32]. �erefore, in 

combination with VEP-derived annotations, we clas-

sified all the annotation types obtained into five cat-

egories: (1) high impact variants, (2) moderate impact 

variants, (3) low impact variants, (4) open chromatin 

(OC) variants, and (5) variants with no known function 

(NKF). �e latter included variants that are not known 

to affect biological processes, including SNPs annotated 

by VEP as intergenic variants, and those with a conse-

quence predicted as “modifier” which were not located 

within OC regions. A plot of category enrichment is in 

Fig. 3. In contrast with the results of a previous GWAS 

that involved quantitative and binary phenotypes 

in humans [21], low impact variants were the most 

enriched (405-fold enrichment) category instead of the 

high impact variants. Moreover, in spite of a large vari-

ance in the interval of enrichment for the low impact 

variants, the lower boundary still represented a high 

level of enrichment (Table  2). �e next most enriched 

category was the moderate impact variants, and these 

exhibited a fivefold enrichment, followed by the high 

impact variants that exhibited a fourfold enrichment. 

�e lower boundary of the high impact variants was 

Fig. 1 VEP annotations for the variants examined in this study. a Overall distribution of VEP annotations for all variants. b Annotation distribution for 

the variants present in coding sequences of all variants (c), for possible causal variants from the LD analysis, d for possible causal variants in coding 

sequences from the LD analysis, e for lead variants, and f for lead variants in coding sequences
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not enriched and this category included only 19 vari-

ants (Table 2). Furthermore, enrichment was observed 

only for 2 of 100 replicates (with values of 177-fold and 

133-fold, respectively; (see Additional file 3: Table S3). 

�erefore, we did not consider that these high impact 

variants were true positives. Finally, the OC category 

exhibited a 2.5-fold enrichment. Based on these enrich-

ment values, a category-based significance threshold 

was calculated for each variant category (Table 2).

Incorporation of additional genomic information 

to address NKF variants

�e enrichment observed for each of these eight cat-

egories (including sub-categories from ‘modifiers’) is 

provided in Table 3 and represented in Fig. 4. �e most 

enriched variants were high impact variants (33.69-fold 

enrichment), which is similar to the enrichment profile 

of human variants reported in [21]. �e moderate impact 

variants exhibited a 17.16-fold enrichment and the low 

impact variants exhibited a 7.30-fold enrichment. �e 

ncRNA category exhibited a 22.70-fold enrichment, the 

UTR category exhibited a 16.64-fold enrichment, and the 

OC and RE categories exhibited 3.59-fold and 2.53-fold 

enrichments, respectively.

Variant annotation-based signi�cance thresholds in GWAS

To assess the power of using annotation category-based 

significance thresholds, we applied this approach to a 

GWAS conducted for stature in cattle and identified 35 

QTL on 21 chromosomes (see Additional file 4: Figure 

S1 and Additional file 3: Table S4). �e number of sig-

nificant variants within each of the four, five and eight 

categories of classified annotations (as described above) 

Fig. 2 Enrichment of VEP and OC annotations for the four-category annotation system. Relative enrichments for four categories of variants. The 

error bars indicate the standard errors derived by bootstrapping. Enrichment is shown on the y-axis on a logarithmic scale

Table 1 Enrichment of four annotation categories and their category-based signi�cance thresholds

The con�dence interval for each degree of enrichment is the 95% con�dence interval obtained from bootstrapping resampled QTL 100 times

*Indicates that the category-based signi�cance was not calculated for this annotation class since there was no enrichment for this category

Category Number of possible causal 
variants

Enrichment Con�dence interval Category-based 
signi�cance threshold

High impact 19 0.017 − 0.00013 to 0.034 NA*

Moderate impact 391 4.40 3.84–4.96 6.88e−9

Low impact 799 245.45 236.44–254.45 3.84e−7

Other 102,214 0.89 0.88–0.89 NA*
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Fig. 3 Enrichment of VEP and OC annotations for the five-category annotation system. Relative enrichments for four categories of variants. The 

error bars indicate the standard errors derived by bootstrapping. Enrichment is shown on the y-axis on a logarithmic scale

Table 2 Enrichment of �ve annotation categories and their category-based signi�cance thresholds

The con�dence interval for each degree of enrichment is the 95% con�dence interval obtained from bootstrapping resampled QTL 100 times

*Indicates that the category-based signi�cance was not calculated for this annotation class since there was no enrichment for this category

Category Number of possible causal 
variants

Enrichment Con�dence interval Category-based 
signi�cance 
threshold

High impact 19 4.92 0.18–9.65 5.87e−9

Moderate impact 391 5.04 4.13–5.96 6.00e−9

Low impact 799 405.08 362.29–447.88 4.82e−7

Open chromatin 7227 2.49 2.33–2.65 2.96e−9

No known function 94,987 0.72 0.70–0.74 NA*

Table 3 Enrichment of eight variant categories and their category-based signi�cance thresholds

The con�dence interval for each degree of enrichment is the 95% con�dence interval obtained from bootstrapping resampled QTL 100 times

*Indicates that the category-based signi�cance was not calculated for this annotation class since there was no enrichment for this category

Category Number of possible causal 
variants

Enrichment Range of enrichment Signi�cance 
threshold

High impact 19 33.69 16.85–50.54 1.02e−7

Moderate impact 391 17.16 13.56–20.75 5.20e−8

Low impact 799 7.30 4.74–9.87 2.21e−8

3′ and 5′ UTR 343 16.64 12.56–20.43 5.04e−8

Open chromatin 7152 3.59 3.30–3.89 1.09e−8

Regulatory elements 9520 2.53 2.33–2.73 7.65e−9

Non-coding RNAs 95 22.70 15.27–30.12 6.88e−8

No known information 85,104 0.53 0.51–0.55 NA*
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are in Tables  4, 5 and 6, respectively. When adjusted 

thresholds based on the four-category classifications 

were used in comparison with a flat Bonferroni mul-

tiple-testing correction across the tested variants, the 

total number of significant variants increased from 

58,539 to 58,992 (Table  4). �en, when we checked 

whether the additional genes that were identified 

with the category-based thresholds had been previ-

ously identified as candidate genes in a meta-analysis 

study on bovine stature [41], we found that TNNI2 and 

TCP11 were identified by the new significant variants 

(n = 453). Subsequently, when we checked for overlap 

between the newly identified genes and those from a 

previous study on human height [42], we detected five 

overlapping genes i.e. ANKRD52, DNMT1, SCN4A, 

TP53I13, and TCP11 that may be associated with cattle 

stature and human height.

When adjusted thresholds based on the five-category 

classifications were used versus a flat Bonferroni multi-

ple-testing correction across the tested variants, the total 

number of significant variants increased from 58,539 

to 58,993 (Table  5). �e list of identified genes is simi-

lar to that obtained with the four-category classification 

threshold, except that one additional gene FBP1 was 

included. When adjusted thresholds based on the eight-

category classifications were used versus a flat Bonferroni 

multiple-testing correction across the tested variants, 

the total number of significant variants increased from 

58,539 to 61,191 (Table 6) and the newly identified vari-

ants (n = 2652) included TNNI2 and TCP11, as obtained 

by using the four- or five-category classification thresh-

olds. When we checked for overlap between these newly 

identified genes with the previous study on human height 

[42], in this case, we detected more genes i.e. GHR, 

THADA, RPS6KA1, TP53I13, TCP11, VGLL4, KCNJ12, 

PPP2R3A, GCKR, and ZBTB38 that may be potentially 

relevant for cattle stature and human height.

Fig. 4 Enrichment of VEP annotations and further classification of NKF variants into UTR, RE, and ncRNA in an eight-category annotation system. 

Relative enrichments for seven categories of variants are presented. Error bars indicate standard error values derived from bootstrapping. 

Enrichment is shown on the y-axis according to a logarithmic scale

Table 4 Comparison of  the  numbers of  signi�cantly 

associated SNPs identi�ed by  applying an  annotation 

category-based Bonferroni correction to  each annotation 

category

Category Number of signi�cant variants

With conventional 
Bonferroni correction

With category-based 
Bonferroni correction

High impact 9 9

Moderate impact 208 234

Low impact 378 805

Other 57,944 57,944

Total 58,539 58,992
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Discussion
�e goal of this study was to investigate whether cat-

egories of variants with different probabilities of being 

functional can be identified based on enrichment values 

obtained from categorization of GWAS results. When we 

classified all the variants on the basis of VEP annotation 

only, we observed a greater enrichment of “low impact” 

variants and a limited enrichment of “moderate impact” 

variants (Table 1). When we classified all the variants into 

five categories based on: (1) their impact predicted by 

VEP, (2) an ATAC-seq dataset indicating accessible chro-

matin regions [31], and (3) a histone modification dataset 

(involving H3K27Ac and H3K4me3) [32], we observed 

a greater enrichment of “low impact” variants and lim-

ited enrichment of “high impact”, “moderate impact”, 

and OC variants (Table  2). In contrast, when we classi-

fied the original GWAS variants into eight categories, a 

more than tenfold enrichment was observed for the “high 

impact”, “moderate impact”, UTR, and ncRNA categories 

(Table  3), whereas “low impact” variants, OC, and RE 

categories exhibited a limited enrichment. �is variant 

enrichment profile differs from that reported in a study 

on human data [21], for which the enrichments observed 

were in line with the magnitude of the predicted conse-

quences of the variants. �us, the variants with conse-

quences that were predicted to be more severe displayed 

a greater enrichment. One reason for this difference in 

results may be the inclusion of both quantitative traits 

(n = 96) and binary (disease) phenotypes (n = 123) in 

the human study [21] versus the use of only quantita-

tive traits (n = 17) in the bovine study. For complex dis-

ease traits, a loss-of-function variant can induce a disease 

state. Consequently, such variants have a higher prob-

ability of being causal for complex disease phenotypes. 

Economic traits in dairy cattle are generally quantitative 

traits that are affected by genetic variants in many genes, 

each gene having a small effect. Furthermore, in addition 

to loss-of-function and gain-of-function mutations, most 

of the causal mutations that underlie economic traits are 

likely to belong to regulatory variants which control the 

up- or down-regulation of genes. Among the categories 

of enriched variants that we identified in our study, most 

of them had a link with the regulation of gene expression, 

such as cis-regulatory elements (e.g., upstream gene vari-

ants, downstream gene variants, and UTR) [43] and ncR-

NAs [40]. �ese variants can alter translation efficiency, 

particularly the synonymous variants [44], UTR [45], and 

ncRNAs [40]. In addition, they can affect transcript splic-

ing, particularly the ncRNAs [40] and splice region vari-

ants. As a result, these variants can alter the functions of 

encoded proteins. A previous study demonstrated that 

regulatory elements are a major source of quantitative 

trait variation [46]. We go one step further and suggest 

that variants that affect both gene expression and protein 

translation (including translation efficiency and protein 

product stability) could be the source of quantitative trait 

variation.

Data from GWAS on stature in cattle were also used to 

check if an approach using an annotation category-based 

significance threshold can identify more associations 

than the use of a uniform Bonferroni multiple-testing 

correction threshold. A recent meta-analysis conducted 

in cattle [41] proposed a list of candidate genes that affect 

bovine stature. With the three annotation classification 

approaches that we used here, we identified two addi-

tional candidate genes, TNNI2 and TCP11. Furthermore, 

comparison between the new list of genes reported here 

and that from a previous GWAS conducted on human 

height [42] revealed five additional genes with the four-

category enrichment method, six additional genes with 

the five-category enrichment method, and ten addi-

tional genes with the eight-category enrichment method. 

Table 5 Comparison of  the  numbers of  signi�cantly 

associated SNPs identi�ed by  applying an  annotation 

category-based Bonferroni correction to  each annotation 

category

Category Number of signi�cant variants

With conventional 
Bonferroni correction

With category-based 
Bonferroni correction

High impact 9 10

Moderate impact 208 226

Low impact 378 852

Open chromatin 3700 3661

No known function 54,244 54,244

Total 58,539 58,993

Table 6 Numbers of  signi�cantly associated SNPs 

identi�ed by  using di�erent signi�cance thresholds 

for each annotation category

Category Number of signi�cant variants

Bonferroni 
correction

Category-based 
Bonferroni 
correction

High impact 9 11

Moderate impact 208 334

Low impact 378 507

3′ and 5′ UTR 194 296

Open chromatin 3657 4620

Regulatory elements 6621 7911

Non-coding RNAs 69 109

No known function 47,403 47,403

Total 58,539 61,191
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Several reasons can explain why our approaches detected 

only a fraction of the candidate genes reported in previ-

ous studies [41, 42]: (1) loss of power for NKF and NKI 

categories, since we mixed variants with different prob-

abilities due to lack of information for most variants; in 

this case, the enrichment estimation for NKF, NKI and 

unannotated variants that belong to another annotation 

category will be affected; (2) some of the causal variants 

reported in the meta-analysis study on bovine stature 

[41] and in the GWAS study on human height [42] do not 

segregate in the Nordic Holstein population; and (3) the 

relatively poor annotation of the bovine genome com-

pared with the human genome. Nevertheless, our find-

ings demonstrated that implementation of an annotation 

category-based significance threshold approach results in 

a larger number of high confidence candidate genes that 

include significant SNPs than the use of a flat Bonferroni 

multiple-testing significance threshold.

In this study, we observed distinct enrichments when 

two variant classification systems were used (e.g., 5 vs. 8 

categories of classification) although the same number 

of potential causal variants was present in each system. 

�ere are two possible explanations for this observa-

tion: (1) the number of traits included in the analysis was 

small, thereby resulting in the detection of a limited num-

ber of QTL, e.g. there were only 19 high impact poten-

tial causal variants; with resampling, the number of high 

impact potential causal variants can fluctuate between 

extremes, as observed for the different replicates (see 

Additional file 3: Table S3); and (2) the number of anno-

tation categories that were considered, and the underly-

ing genetic architecture of the traits, may be contributing 

factors, e.g. a larger distribution of the enrichment level 

was observed across the categories established in this 

study when the variants were categorized into eight 

classes instead of five (see Additional file 3: Table S5).

In our study, we achieved slightly higher power with the 

classification of variants into categories based on annota-

tions (Table 4 vs. Table 5 vs. Table 6). Further improve-

ments are expected as the knowledge on the function 

of different genomic features in cattle increases. �ere 

are more and more studies that report the functions of 

non-coding sequences. For example, long ncRNAs have 

been identified as key regulators of chromatin states [47], 

microRNAs have been shown to play key roles in animal 

development and physiology [48], and cis regulatory ele-

ments may be located in 5′ or 3′ UTR. In combination 

with trans-regulatory elements, these elements regulate 

the level of gene transcription [49, 50]. In a human study 

[21], NKF variants were categorized according to the 

presence or absence of overlap with DHS. �e group of 

variants that overlapped with DHS was more enriched 

with GWAS hits than the group of variants that did not 

overlap with DHS. �ese results provide support for 

future efforts to classify NKF variants, especially in cat-

tle for which this information is not currently available. 

In our study, an ATAC-seq dataset [20] of accessible 

chromatin and a histone modification dataset (H3K27Ac 

and H3K4me3) [34] provided additional genomic infor-

mation. In spite of these additional data, the OC variant 

category was only moderately enriched (Tables 2, 3) but 

these datasets were each generated from a single tissue 

from a few individuals, which could have introduced 

errors. Alternatively, predicted regulatory elements could 

be used, although they may introduce noise and reduce 

the estimated degree of enrichment. In our study, the 

NKF variants were divided into five categories according 

to their relation to UTR, OC, predicted RE [34], ncRNAs 

[35], and NKI variants. We anticipate that as the func-

tional annotation of dairy cattle genomes improves, the 

power of this approach will increase.

Conclusions
Analysis of the results from GWAS conducted on 17 

quantitative traits in dairy cattle revealed high levels 

of enrichment for “high impact” variants, “moderate 

impact” variants, “low impact” variants, variants located 

in 3′ and 5′ UTR, and variants located in potential 

ncRNA regions. By setting category-based genome-wide 

significance thresholds based on these annotation enrich-

ment data, we were able to identify new candidate genes 

that affect stature in cattle. We anticipate that future 

improvements in the annotation of the bovine genome, 

will optimize the usefulness of this approach even more.
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