
METHODS
published: 19 August 2016

doi: 10.3389/fgene.2016.00151

Frontiers in Genetics | www.frontiersin.org 1 August 2016 | Volume 7 | Article 151

Edited by:

Eli Stahl,

Mt. Sinai School of Medicine, USA

Reviewed by:

Dirk-Jan De Koning,

Swedish University of Agricultural

Sciences, Sweden

Weihua Guan,

University of Minnesota, USA

*Correspondence:

Xinyue Zhang

xinyue@uga.edu

Specialty section:

This article was submitted to

Statistical Genetics and Methodology,

a section of the journal

Frontiers in Genetics

Received: 15 May 2016

Accepted: 04 August 2016

Published: 19 August 2016

Citation:

Zhang X, Lourenco D, Aguilar I,

Legarra A and Misztal I (2016)

Weighting Strategies for Single-Step

Genomic BLUP: An Iterative Approach

for Accurate Calculation of GEBV and

GWAS. Front. Genet. 7:151.

doi: 10.3389/fgene.2016.00151

Weighting Strategies for Single-Step
Genomic BLUP: An Iterative
Approach for Accurate Calculation of
GEBV and GWAS
Xinyue Zhang 1*, Daniela Lourenco 1, Ignacio Aguilar 2, Andres Legarra 3 and

Ignacy Misztal 1

1 Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, GA, USA, 2National Agricultural

Research Institute, Las Brujas, Uruguay, 3 Institut National de la Recherche Agronomique, UMR1388 GenPhySE,

Castanet-Tolosan, France

Genomic Best Linear Unbiased Predictor (GBLUP) assumes equal variance for all single

nucleotide polymorphisms (SNP). When traits are influenced by major SNP, Bayesian

methods have the advantage of SNP selection. To overcome the limitation of GBLUP,

unequal variance or weights for all SNP are applied in a method called weighted GBLUP

(WGBLUP). If only a fraction of animals is genotyped, single-step WGBLUP (WssGBLUP)

can be used. Default weights in WGBLUP or WssGBLUP are obtained iteratively based

on single SNP effect squared ( u2 ) and/or heterozygosity. When the weights are optimal,

prediction accuracy, and ability to detect major SNP are maximized. The objective was to

develop optimal weights for WGBLUP-based methods. We evaluated 5 new procedures

that accounted for locus-specific or windows-specific variance to maximize accuracy of

predicting genomic estimated breeding value (GEBV) and SNP effect. Simulated datasets

consisted of phenotypes for 13,000 animals, including 1540 animals genotyped for

45,000 SNP. Scenarios with 5, 100, and 500 simulated quantitative trait loci (QTL) were

considered. The 5 new procedures for SNP weighting were: (1) u2 plus a constant equal

to the weight of the top SNP; (2) from a heavy-tailed distribution (similar to BayesA);

(3) for every 20 SNP in a window along the whole genome, the largest effect ( u2 )

among them; (4) the mean effect of every 20 SNP; and (5) the summation of every

20 SNP. Those methods were compared to the default WssGBLUP, GBLUP, BayesB,

and BayesC. WssGBLUP methods were evaluated over 10 iterations. The accuracy of

predicting GEBV was the correlation between true and estimated genomic breeding

values for 300 genotyped animals from the last generation. The ability to detect the

simulated QTL was also investigated. For most of the QTL scenarios, the accuracies

obtained with all WssGBLUP procedures were higher compared to those from BayesB

and BayesC, partly due to automatic inclusion of parent average in the former. Manhattan

plots had higher resolution with 5 and 100QTL. Using a common weight for a window of

20 SNP that sums or averages the SNP variance enhances accuracy of predicting GEBV

and provides accurate estimation of marker effects.
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INTRODUCTION

Genomic best linear unbiased prediction (GBLUP) and Bayesian
methods are routinely used for genomic selection (GS) and
genome-wide association studies (GWAS) in animal and plant
breeding, and in human disease studies. The main objective
of GWAS is to identify the quantitative trait loci (QTL) with
major effect, whereas GS focuses on using genomic information
to better evaluate the genetic potential of individuals. Genomic
estimated breeding value and single nucleotide polymorphism
(SNP) effect or variance can be easily derived from both GBLUP
and Bayesian methods. GBLUP assumes a normal distribution
for SNP effects, and calculates their effect from phenotypes and
a genomic relationship matrix. When not all individuals in a
population are genotyped, single-step GBLUP (ssGBLUP) is the
method of choice (Aguilar et al., 2010). According to Legarra
et al. (2014), the extra information on non-genotyped animals,
the ability to account for pre-selection, and the independency of
pseudo-phenotypes are partially responsible for gains in accuracy
over other genomic methods. Bayesian methods such as BayesA,
BayesB, and BayesC (Meuwissen et al., 2001; Kizilkaya et al., 2010;
Habier et al., 2011) are non-linear approaches that usually assign
to SNP effect a heavy tailed prior distribution, and then sample
from the posterior distribution via Markov chain Monte Carlo
(MCMC). GBLUP and ssGBLUP usually assumes equal weights
for all SNP (Meuwissen et al., 2001; VanRaden, 2008; Goddard
and Hayes, 2009). This assumption is biologically incorrect but
makes the statistics robust by limiting the number of unknown
parameters (Meuwissen et al., 2001). Nonlinear methods such
as BayesA and BayesB assume heterogeneous variances of SNP
effects, with emphasis on the SNP that links to major effects
(Meuwissen et al., 2001; Meuwissen and Mike, 2004). The
performance of these methods has been proven to be better
than GBLUP approaches in simulation studies assuming a few
QTL with large effects and many QTL with small or null effects
(Meuwissen et al., 2001; Meuwissen and Mike, 2004; Lund et al.,
2009; Guo et al., 2010). However, experiences with real dairy
cattle data indicate that Bayesian regressions have resulted in
reduced accuracy because of ignoring SNP with small effects
(Cole et al., 2009; Su et al., 2010) and that GBLUP approaches
performed well for the majority of the traits of interest in
livestock, mainly because of their polygenic nature (Hayes et al.,
2009; VanRaden et al., 2009; Aguilar et al., 2010; Chen et al., 2011;
Forni et al., 2011; Wang et al., 2014).

One way to account for locus-specific variance in
GBLUP-based methods is to include different weights for
SNP. If those weights are known, weighted GBLUP (WGBLUP)
provides genomic estimated breeding value (GEBV) similar to
those of a Bayesian procedure using the same weights (Legarra
et al., 2009). WGBLUP and WssGBLUP were developed to allow
the estimation of weights within GBLUP or single-step GBLUP
(ssGBLUP), respectively. Many studies have found advantages
of WGBLUP-based methods compared to unweighted GBLUP
(Snelling et al., 2011; Gao et al., 2012; Tiezzi and Maltecca,
2014). Sun et al. (2011) proposed two iterative procedures for
calculating weights in WGBLUP, where the iteration was used
to mimic the MCMC sampling in which both the prior and the

posterior distributions kept being updated. In the first procedure,

the weights were calculated as w(i+1)
j = û

(i)2
j , where w(i+1)

j is the

weight of SNP j at iteration i + 1 and û
(i)
j is the effect of SNP j

at iteration i. This procedure is effective for identifying top QTL
but excessively shrinks small SNP effects; thus, the accuracy of
GEBV is reduced. In the second procedure the weights were

calculated as w(i+1)
j = û

(i)2
j + t, where t =

σ 2
g

2
∑m

j=1 pjqj
, σ 2

g is

the genetic variance; p and q are the major and minor allele
frequencies at locus j, respectively, and m is the number of SNP.
This procedure introduced a constant to avoid SNP with no
effect and brought the accuracy of GEBV close to that by BayesC
but yielded Manhattan plots with lower resolution.

Recently, it was found that assigning a common weight
to markers on a chromosomal region yielded more accurate
estimates of GEBV under GBLUP-based methods (Wang et al.,
2012; Su et al., 2014). Su et al. (2014) used group-marker variance
from BayesR as a weighting factor for GBLUP in the evaluation of
a dairy cattle population. Reliabilities for 4 production traits and
mastitis were, on average, up to 1% higher and bias was reduced
by 11% when using the mean variance of 30-SNP window
compared with single SNP weighting. Xu (2013) demonstrated
improved predictability in diploid plant QTL mapping using an
artificial bin of linkage disequilibrium (LD)-linked neighboring
markers.

Wang et al. (2012) evaluatedWssGBLUP with simulation data
using di(t+1) = u2

i(t)

[

2pi(1− pi)
]

, where di(t+1) is the weight of

SNP i at iteration t+1, u2
i(t) is the effect of SNP i at iteration t, and

pi is the minor allele frequency (MAF). They iterated either on
SNP alone or on GEBV and SNP. The first procedure gave a good
identification of top QTL, and the second procedure provided
a slightly higher accuracy of GEBV compared to BayesB, but
only at the second iteration. The same study also found that the
correlation of simulated and estimated SNP effects was lower
than the correlation between simulated SNP and a sum of the
effect of 8 SNP clustered around simulated QTL.

We hypothesized that efficient SNP weighting methods could
considerably increase accuracy of predicting GEBV and help to
better estimate SNP effects underWssGBLUPmodels. Therefore,
the objective of this study was to present new procedures
to calculate SNP weights individually or for genomic regions
(windows) that would improve genomic predictions at animal
and SNP level inWssGBLUP compared to other genomicmodels.

MATERIALS AND METHODS

Data Simulation
To test our hypothesis, one trait with a mean of 1.0, a phenotypic
variance of 2.0, and an heritability of 0.5 was simulated using
QMSim (Sargolzaei and Schenkel, 2009). All the genetic variance
was caused by QTL. A total of 20 chromosomes were created
with an average length of 82 cM and containing 45,000 evenly
distributed SNP with MAF ≥ 0.05. Three scenarios were
considered involving different numbers of randomly placed QTL
(5, 100, and 500) to mimic simple traits defined by major effects
and complex traits affected by numerous minor effects. The
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scenarios were named 5-QTL, 100-QTL, and 500-QTL. All QTL
were selected among SNP, and their effects were sampled from
a gamma distribution with a shape parameter of 0.4. Both SNP
and QTL were bi-allelic with no overlap between their positions,
and a mutation rate of 2.5 × 10−5 was assumed for markers
and QTL per generation per locus. The simulated population
originated from a historical population with 1000 generations
of random mating to create linkage disequilibrium (LD) and
establish mutation-drift balance. After that, a recent population
was established from 200 males and 2600 females out of the
historical population. The simulation was carried out for 205
generations. In every generation, the above number of males
and females were selected to mate and produce 1 offspring,
forming a population with an effective size (Ne) of 743. For
all the analyses, generations 200–204 were treated as a training
population and generation 205 as a validation population, with
1240 and 300 genotyped animals respectively. The complete
dataset contained 18,400 individuals in the pedigree, of which
13,000 were phenotyped and 1540 were genotyped. Phenotypes
were the sum of general mean, true breeding values (sum of
QTL effects) and random residuals. Each simulated scenario was
replicated 10 times.

WssGBLUP and New Weighting Methods
The ssGBLUP uses SNP to construct the genomic relationships.
The genomic relationship matrix in our study was created as in
VanRaden (2008):

G =
ZDZ

′

2
∑

pi(1− pi)
,

where pi is theMAF of SNP i, Z is a matrix of centered genotypes,
and D is a diagonal matrix of weights, where dii is the weight
for SNP i. In regular GBLUP-based methods, D = I, which gives
a weight of 1 to all SNP. Strandén and Garrick (2009) derived
conversions of GEBV into SNP effects under GBLUP models and
Wang et al. (2012) extended the approach to ssGBLUP. In this
approach, weight for SNP is based on SNP effect, and the latter is
a best linear unbiased prediction derived from GEBV:

û = DZ
′

G−1ĝ,

where û is a vector of estimated SNP effects and ĝ is a vector of
GEBV. The weight for SNP i can be calculated as u2i or u

2
i 2pi(1−

pi), and in the current study we used the first way.
Improvements in the SNP weights can be obtained iteratively

either by recomputing only the SNP effects or by recomputing
SNP effects and GEBV (Wang et al., 2012). The latter also
improves predictions of GEBV and was chosen for this study.
The defaultWssGBLUP calculates and uses SNP-specific weights.
Following Wang et al. (2012), the iterative steps in WssGBLUP
were:

a) Set t = 1,D(t) = I and G(t) = ZD(t)Z
′

2
∑

pi(1−pi)

b) Compute ĝ(t) using the ssGBLUP approach

c) Compute SNP effects as û(t)i = D(t)Z
′
(

G(t)
)−1

ĝ(t)

d) Calculate SNP weight as dii
(t+1) = û2i , for all SNP i

e) NormalizeD(t+1)

f) G(t+1) = ZD(t+1)Z
′

2
∑

pi(1−pi)

g) t = t + 1
h) Iterate from b) until t − 1 = 10

Whereas the approach derived by Wang et al. (2012) calculates
SNP effects based on GEBV which combines direct genomic
value (DGV; or sum of SNP effects weighted by SNP content),
parent average (PA), yield deviation (YD), progeny contribution
(PC), and pedigree prediction (PP). Lourenco et al. (2015a)
showed that DGV is a more appropriate starting point for
calculating SNP effects, because genotyped populations may
comprise animals with different levels of accuracy. Therefore, in
the step (c) GEBV was replaced by DGV.

For all the 5 new procedures, the changes were done in step
(d) where SNP weights are calculated based on SNP effects.
Therefore, instead of using dii = û2i as SNP weight, the 5 new
procedures we propose are:

1) Constant: still using the concept of SNP-specific weights, the
weight was calculated as

d1ii = û2i + c

where c = max(û2
i(0)) is a constant chosen as the top SNP

weight in the first iteration;
2) Nonlinear A: using similar approach to VanRaden (2008),

SNP-specific weights were calculated as

d2ii = û2i /v
|si−2|

where ν is a scale parameter standing for the departure from
normality and si is the number of standard deviations from
the mean for each 2

∑

pi(1− pi);
3) Largest window: uses the concept of SNP-window weights,

with weights for a group of 20 SNP as

d3i,i = d3i+1,i+1 = . . . = d3i+19,i+19 = max(u2i , . . . , u2i+19)

where d3ii with ii from i to i+19 was used as weight for all SNP
in the window comprised of 20 SNP; it uses non-overlapping
windows;

4) Mean window: the weight for a group of 20 SNP was
calculated as

d4ii = d4i+1,i+1 = . . . = d4i+19,i+19 =
∑n

i=1 u
2
i �n

where n is the size of the non-overlapping window;
5) Summed window: the weight for a group of 20 SNP was

calculated as

d5ii = d5i+1,i+1 = . . . = d5i+19,i+19 =

n
∑

i=1

u2i

Models and Computation
Quality control of genomic data retained SNP with call rates
>0.9, minor allele frequencies >0.05, and departures from
Hardy-Weinberg equilibrium (difference between expected and
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observed frequency of heterozygous)<0.15. An average of 36,000
SNP remained after quality control, and the average LD (r2 =

correlation between loci pair) in the last generation was about
0.29.

For WssGBLUP, the model included population mean, animal
effect, and random residual error. All phenotypes (except for
validation animals), pedigree, and genotypes were accounted for.
GEBV was obtained by using the software BLUPF90 (Misztal
et al., 2002) with the simulated variance components; SNP effect
was obtained by postGSf90 (Aguilar et al., 2010; Wang et al.,
2012). A total of 10 iterations of BLUPF90 combined with
postGSf90 were used for the default WssGBLUP andWssGBLUP
with new weighting methods. Each run of postGSf90 updated
weights for SNP, whereas each run of BLUPF90 used the updated
weights to constructed G matrices and, consequently, to improve
GEBV estimates.

For GBLUP, the model was exactly as the one used in
WssGBLUP, however, only genotypes and phenotypes for
genotyped animals (except validation animals) were used
together with the simulated variance components. The software
BLUPF90 (Misztal et al., 2002) was used assuming the animals
were unrelated through the pedigree.

The model for BayesB and BayesC had similar effects to
the model used for WssGBLUP, but the animal effect was
replaced by SNP effects. The phenotypic information was
estimated breeding value (EBV) de-regressed (EBVDP) following
the approach described in Garrick et al. (2009), assuming that
0.05 of the genetic variation was not explained by the markers.
The marker effects were assumed to follow a normal distribution
with ui ∼ N(0, σ 2

ui
), and σ 2

ui
the variance of the ith SNP. The

proportion of SNP having no effect was set to 50%, 90% or

99%. Priors for σ 2
ui

were calculated as
σ 2
a

2
∑

pi(1−pi)
, where σ 2

a is

the total simulated genetic variance. Degrees of freedom for the
SNP and residual variances were set to 4 and 10, respectively.
The software GenSel (Fernando and Garrick, 2009) was used to
calculate SNP effects under the BayesB and BayesC approaches.
A Monte Carlo Markov Chain (MCMC) was run for 41,000–
50,000 and 1000–10,000 iterations were discarded as burn-in. For
BayesB, 10 Metropolis-Hasting iterations were run per MCMC.
Estimates of SNP effects were based on the posterior means of
the MCMC.

For WssGBLUP, the output for genotyped animals in the
validation population was GEBV that contained DGV, PA, PP;
whereas for GBLUP, GEBV contained only DGV. The output for
BayesB and BayesC is in the format of SNP effect, which can be
translated into DGV by multiplying a row vector of SNP content
by a column vector of SNP effects. In this way, GEBV from
Bayesian methods for validation animals contained only DGV.

Model Comparison
The 5 new weighting procedures for WssGBLUP were compared
with GBLUP, BayesB and BayesC with the proportion of markers
with no effect (π) set to 0.5, 0.9, and 0.99. The simulated
values were used as benchmark. Two comparisons were made:
(1) accuracy of predicting GEBV defined as the correlation
between true simulated breeding value (TBV) and GEBV in

the validation population (“accuracy” hereinafter); (2) ability to
detect simulated QTL, done by visual inspection of Manhattan
plots and by the amount of genetic variance explained. We
did not derive significance thresholds or P-value for the latter
comparison method because the objective was to identify the
ability of the new weighting procedures in tracking the position
simulated QTL, disregarding the significance of their effect on the
trait. In addition, several studies reported difficulty in obtaining
a measure of SNP significance when using shrinkage methods or
Bayesian methods (Servin and Stephens, 2007; Wakefield, 2007,
2009).

RESULTS AND DISCUSSION

Estimation of GEBV
Tables 1–3 show accuracies of GEBV and standard errors for the
5 new procedures to calculate SNP weights in WssGBLUP under
three QTL scenarios, along with default WssGLBUP. Table 4
shows the accuracies of GEBV for GBLUP, BayesB, and BayesC.
The average accuracies of the 5 new procedures were 0.87, 0.80,
and 0.77 under 5−, 100−, and 500-QTL scenarios, respectively,
and the standard deviation among 10 iterations ranged from 0.02
to 0.07. With default weighting, the accuracy increased initially
but declined after some iterations depending on the number of
simulated QTLs. As the number of QTLs increased, the inflection
point came earlier (on iterations 4, 3, and 2 for 5−, 100−,
and 500-QTL scenarios, respectively). The decline in accuracy
with iteration was the result of continuously adding weight to
SNP with large effects while shrinking SNP with small effects.
Consequently, the accuracy of GEBV gradually decreased with
iteration because the number of SNP with small effect increased.

For early iterations (≤5), largest, mean, and summed windows
were the most accurate methods. Using the mean weight of 20
SNP in the windows as weight for the entire window improved
accuracy by 0.01–0.09 compared to the other new procedures
under the 5-QTL scenario. For 100-QTL, the procedure that
added a constant outperformed the other new procedures,
whereas for 500-QTL both constant and nonlinear A achieved
the greatest accuracies that persisted for 10 generations. Overall,
we observed that window procedures performed better than
procedures with single SNP weights because the uncertainty was
smaller (Su et al., 2014) and it also avoided extremely small values
for SNP weights. A window size of 20 SNP was chosen over 5, 10,
50, and 100 based on accuracy (results not shown). Many factors,
including the size of the reference population and population
structure, influence the optimum window size (Su et al., 2014).
Window procedures maintained high accuracy with 5 QTL but
lost the superior performance in late iterations with more QTL.
The largest window scenario decreased in accuracy fastest among
all window procedures, especially under the 500-QTL scenario,
because it gave the greatest weight to the windows with large SNP
effects and least weight to those with small SNP effects. This over-
and under-weighting introduced bias into the solutions. In regard
to real genetic evaluations of massive data, the performance of
iterations higher than 3 may not matter because one iteration
usually takes from several hours (simple models) up to several
days (complex model and population structure).
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TABLE 1 | Average accuracy of genomic estimated breeding values (GEBV) and standard deviation across 10 replicates per iteration, for the 5-QTL

scenario under the default weighting and 5 new weighting procedures for single-step Genomic Best Linear Unbiased Prediction (ssGBLUP).

5-QTL Iterations

Procedure 1 2 3 4 5 6 7 8 9 10

Default 0.80 0.86 0.90 0.91 0.91 0.90 0.90 0.90 0.90 0.90

0.04 0.02 0.03 0.04 0.04 0.05 0.05 0.05 0.05 0.05

Constant 0.80 0.83 0.86 0.88 0.88 0.88 0.88 0.88 0.88 0.88

0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Nonlinear A 0.80 0.80 0.80 0.81 0.81 0.82 0.82 0.82 0.82 0.83

0.04 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03

Largest window 0.80 0.85 0.91 0.91 0.90 0.90 0.90 0.90 0.89 0.89

0.04 0.02 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05

Mean window 0.80 0.85 0.91 0.92 0.91 0.92 0.92 0.92 0.92 0.92

0.04 0.02 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.04

Sum window 0.80 0.85 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91

0.04 0.02 0.03 0.05 0.05 0.05 0.05 0.04 0.04 0.04

The greatest accuracy at the earliest iteration is in bold face.

TABLE 2 | Average accuracy of genomic estimated breeding values (GEBV) and standard deviation across 10 replicates per iteration, for the 100-QTL

scenario under the default weighting and 5 new weighting procedures for single-step Genomic Best Linear Unbiased Prediction (ssGBLUP).

100-QTL Iterations

Procedure 1 2 3 4 5 6 7 8 9 10

Default 0.79 0.82 0.83 0.81 0.81 0.80 0.80 0.80 0.80 0.79

0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Constant 0.79 0.81 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Nonlinear A 0.79 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Largest window 0.79 0.81 0.83 0.82 0.79 0.77 0.76 0.76 0.75 0.75

0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03

Mean window 0.79 0.81 0.84 0.83 0.82 0.81 0.81 0.80 0.80 0.80

0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03

Sum window 0.79 0.82 0.84 0.82 0.80 0.79 0.79 0.78 0.77 0.77

0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04

The greatest accuracy at the earliest iteration is in bold face.

One of the purposes of investigating new weighting methods
was to avoid sudden drops in accuracy after the peak was reached.
We observed that most of the new methods were able to fulfill
this requirement, especially when the number of simulated QTL
was small. When the number of QTL increased, the method that
adds a constant to û2 was the only one able to hold prediction
accuracies over iterations. The main reason is that the constant
value was chosen as the greatest û2 in the first iteration and
remained the same for all iterations. This indicates that the
shrinkage occurring along iterations is an important cause for the
drop in reliability when SNP weights are calculated iteratively.
The best constants for 5-, 100-, and 500-QTL scenarios were
8, 40, and 13, respectively, as they showed the highest accuracy
averaged among 10 iterations compared to other tested constants.
These values avoided SNP with no effects, which could reduce the

accuracy of GEBV, while not deviating large effects significantly.
Although adding a constant did not give as high an accuracy at
early iterations as the window procedures, the accuracy remained
stable after the peak was reached at iteration 5 (for 5- and 100-
QTL). The accuracy for the default procedure was exceeded by
the constant only in the 100-QTL scenario (+0.01). Adding a
constant to avoid under-weighting in the 5-QTL scenario, where
most SNP did not have effect on the trait, was redundant and
counterproductive. Still, in the procedure that added a constant,
the plateaued accuracies exceeded GBLUP by 0.11, 0.06, and 0.14
under the 5-, 100-, and 500-QTL scenarios (Tables 1–4). On
average, the increase was greater than the 0.06 reported in Sun
et al. (2011) that used WGBLUP in a similar simulation of 10,000
SNP and 33 QTLs. The drawback of this approach is that the
mechanism behind picking the right constant is still empirical
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TABLE 3 | Average accuracy of genomic estimated breeding values (GEBV) and standard deviation across 10 replicates per iteration, for the 500-QTL

scenario under the default weighting and 5 new weighting procedures for single-step Genomic Best Linear Unbiased Prediction (ssGBLUP).

500-QTL Iterations

Procedure 1 2 3 4 5 6 7 8 9 10

Default 0.81 0.81 0.79 0.77 0.76 0.76 0.75 0.75 0.75 0.75

0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.06

Constant 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Nonlinear A 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Largest window 0.81 0.81 0.81 0.78 0.74 0.71 0.69 0.67 0.66 0.65

0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.06

Mean window 0.81 0.81 0.81 0.78 0.75 0.73 0.71 0.70 0.69 0.69

0.04 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.06 0.07

Sum window 0.81 0.81 0.81 0.78 0.74 0.72 0.70 0.69 0.68 0.67

0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06

The greatest accuracy at the earliest iteration is in bold face.

TABLE 4 | Average accuracy of genomic estimated breeding values (GEBV) for BayesB and BayesC under 3 simulation scenarios with varying π.

Method π
a 5-QTL 100-QTL 500-QTL

Accuracy SE Accuracy SE Accuracy SE

GBLUP 0.00 0.77 0.08 0.77 0.07 0.67 0.10

BayesC 0.50 0.66 0.05 0.61 0.04 0.63 0.10

0.90 0.75 0.06 0.67 0.03 0.65 0.09

0.99 0.87 0.04 0.76 0.07 0.68 0.07

BayesB 0.50 0.88 0.07 0.65 0.06 0.42 0.17

0.90 0.89 0.07 0.68 0.07 0.41 0.16

0.99 0.90 0.07 0.72 0.07 0.47 0.15

a
π is the proportion of SNP that have no effect.

and unclear; e.g., the average genetic variance t derived from
GBLUP in Sun et al. (2011) was possibly too small for ssGBLUP.
Theoretically, a threshold between zero and the peak SNP effect
increases the bottom line of the absolute value for SNP with no
effects. This threshold should both guarantee high accuracy of
EBV and differentiate SNP effects. Number and distribution of
QTL effects are related to this threshold, but in reality these are
unknown.

The nonlinear A weighting method used in our study was
adapted from VanRaden (2008) who defined the weight of SNP
i as 1.25|si−2|, where si is the number of standard deviations from
the mean, and 1.25 represents the departure from normality.
In our study, s ranged from 1.06 to 1.12. This procedure gave
more weight to SNP with smaller effects, thus preventing the
drastic decrease in accuracy. Its inferior performance compared
with other procedures occurred for two reasons. First, oligogenic
traits are correlated with few large QTL and the mean effect
of all QTL is close to zero. Secondly, nonlinear A assigns
more weight to SNP with effects but not to those with no
effects; thus, it introduces bias into GEBV. This study showed
that nonlinear A only performed as well as some of the other

procedures (maximum accuracy of 0.81) under the 500-QTL
scenario, whereas for 5-QTL scenario it had the lowest accuracy
among WssGBLUP approaches.

The accuracies of GEBV from WssGBLUP were compared
with those from Bayesian methods (Tables 1–4). Except for the
5-QTL scenario, all WssGBLUP procedures under all scenarios
surpassed BayesC and BayesB in accuracy before iteration 7.
Accuracies for BayesB and BayesC π = 0.99 were the same under
the 5-QTL scenario. For this scenario, BayesB with 3 different
values of π and BayesC π = 0.99 outperformedWssGBLUP with
nonlinear A weights. BayesC with π = 0.99 was 7 percentage
points lower compared with the peak accuracy of the default
procedure under the 100-QTL scenario (0.76 vs. 0.83) and 13
percentage points lower under the 500-QTL scenario (0.68 vs.
0.81). The biggest difference between default WssGBLUP and
BayesB was under the 500-QTL scenario when π was 0.99 (0.81
vs. 0.41). This is consistent with previous studies (Daetwyler
et al., 2010; van den Berg et al., 2015), which indicated that
Bayesian methods perform well when the number of QTL is
small, whereas GBLUP-based methods perform better when the
number of QTs is large, because it assumes an infinitesimal
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model. Single step GBLUP also includes pedigree relationships
that contribute to the accuracy of GEBV (Legarra et al., 2009;
Aguilar et al., 2010; Christensen and Lund, 2010), whereas DGV
from Bayesian methods exclude parent average (Garrick et al.,
2009). The accuracy of GBLUP (Table 4) that had both pedigree
and parent average removed was most of the times outperformed
by BayesB or BayesC. Sun et al. (2011) also found that accuracies
for BayesB and BayesC were 2.5 and 9.9% higher compared
with GBLUP. In our study, posterior variances from BayesB and
BayesC were used to weight G in WssGBLUP, but it did not

improve the accuracy of GEBV (results not shown). When SNP
variance from the literature was used as SNP weight for GBLUP,
Zhang et al. (2014) showed considerable increase in accuracy for
most of the analyzed traits in dairy cattle.

Lourenco et al. (2015b) showed that GEBV from ssGBLUP
is composed of parent average, phenotypic information,
contribution from progeny, DGV, and pedigree prediction
(pedigree relationships among genotyped animals). The accuracy
of GEBV depends, therefore, on the weights each of these
components receive. On the other hand, the accuracy from

FIGURE 1 | Continued
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FIGURE 1 | Proportion of variance (%) explained by simulated QTL and SNP for different methods under 5-QTL simulation. (A) (a), true QTL; (b), default;

(c), constant; (d), nonlinear A: weights as ν|s−2|, where ν is a scale standing for the departure from normality, and s is number of standard deviation from mean for

each u2
i
; (e), largest window; (f), mean window; (g), sum window. (B) (a), true QTL; (b), BayesC π = 0.5; (c), BayesC π = 0.9; (d), BayesC π = 0.99; (e), BayesB π

= 0.5; (f), BayesB π = 0.9; (g), BayesB π = 0.99.

BayesB, BayesC, and GBLUP depends only on DGV, but if the
same variance is used for all SNP in GBLUP, weights for DGV
will not be optimized.

When methods that use SNP window weighting (largest
window, mean window, and summed window) were compared
to single SNP weighting (constant and nonlinear A), we observed
an average increase in accuracy of 5 percentage points for 5-QTL
(Tables 1–4). For 100- and 500-QTL, there was a decrease in

accuracy when window weighting was applied (0.80 vs. 0.81
and 0.74 vs. 0.81, respectively). When looking at the third
iteration, which was the inflection point for most of the SNP
window methods, the difference between windows and single
SNP increased to 8 percentage points in 5-QTL. Hassani et al.
(2015) observed that a SNP window of 1 SNP had the worst
performance in terms of accuracy, and an increased SNP window
helped to better capture the QTL signal when few QTL are
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simulated. In our 5-QTL scenario, largest andmeanwindow of 20
SNP had better performance than the default weighting method,
especially after the second iteration, although the difference was
small (1% point). Mean window 20 was also able to maintain
accuracy along the 10 iterations.

Differences between the first iteration (D= I) and the iteration
where the peak accuracy was reached reduced as the number
of simulated QTL increased, confirming that weights are more
important when traits are influenced by fewer QTL. Thus,
for the majority of the traits of interest in livestock breeding,

ssGBLUP is able to attain the greatest accuracies without using
weights for SNP. For specific traits influenced by few QTL
or traits known for being influenced by important QTL (e.g.,
DGAT1 in milk fat and milk protein in dairy cattle) using
weights that are common to a SNP window may help to better
capture the signal from the QTL in that region. Therefore, using
weights for SNP windows helps to improve the accuracy when
a relatively small number of markers lose the ability to capture
the possible QTL effects. Possibly, differential SNP weighting
better depicts the covariance structure ofG and reflects the actual

FIGURE 2 | Continued
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FIGURE 2 | Proportion of variance (%) explained by simulated QTL and SNP for different methods under 100-QTL simulation. (A) (a), true QTL; (b),

default; (c), constant; (d), nonlinear A: weights as ν|s−2|, where ν is a scale standing for the departure from normality, and s is number of standard deviation from

mean for each u2
i
; (e), largest window; (f), mean window; (g), sum window. (B) (a), true QTL; (b), BayesC π = 0.5; (c), BayesC π = 0.9; (d), BayesC π = 0.99; (e),

BayesB π = 0.5; (f), BayesB π = 0.9; (g), BayesB π = 0.99.

contribution of SNP to additive genetic variance of a trait (Su
et al., 2014).

QTL Identification
The average number of QTL with major effect that account for
50% of the total variance in 5-, 100-, and 500-QTL scenarios were
1.5 (0.5), 6.0 (2.0), and 26.1 (2.8). Figures 1–3 show Manhattan
plots for SNP effects in 5-, 100,- and 500-QTL. Figures 1A, 2A,

3A show effects for default and proposed weights forWssGBLUP,
whereas Figures 1B, 2B, 3B show effects for default WssGBLUP,
BayesB, and BayesC. Under all QTL scenarios, using weights for
SNP window produced clearer Manhattan plots than the single
SNP weights. Although up to 20% of the simulated QTL were not
correctly detected, most QTL with large effects were identified
and few peaks were spurious associations. The good performance
of window procedures resulted from assigning equal weights to
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neighboring SNP. This is especially instrumental to scenarios
with many effects that are likely to be correlated with the majority
of the QTL. The procedure with a constant reduced the difference
between large and small SNP effects; hence, the plot was of lower
resolution and had many small peaks compared to the default
WssGBLUP. This was expected because SNP with small effect
had a boost due to the extra weight added. A similar pattern was
found in the nonlinear A procedure because the weighting factors
had a limited range for all SNP. We observed that the shrinkage
of SNP effects was bigger for the constant and nonlinear A

methods under all scenarios. In the 500-QTL scenario, single SNP
weighting caused an underestimation of SNP effects and SNP
window weighting caused an overestimation, whereas default
WssGBLUP returned SNP effects of the same scale as the
simulated QTL. These results confirm that using weights for SNP
when the trait is influenced by several QTL is not beneficial for
better estimating SNP effects. If the trait is influenced by few
QTL, using the maximum, average or sum of effects in a window
of 20 SNPwould help to capture clear signals fromQTL. Bayesian
methods, especially BayesB, best detected the simulated QTL

FIGURE 3 | Continued
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FIGURE 3 | Proportion of variance (%) explained by simulated QTL and SNP for different methods under 500-QTL simulation. (A) (a), true QTL; (b),

default; (c), constant; (d), nonlinear A: weights as ν|s−2|, where ν is a scale standing for the departure from normality, and s  is number of standard deviation from

mean for each u2
i
; (e), largest window; (f), mean window; (g), sum window. (B) (a), true QTL; (b), BayesC π = 0.5; (c), BayesC π = 0.9; (d), BayesC π = 0.99; (e),

BayesB π = 0.5; (f), BayesB π = 0.9; (g), BayesB π = 0.99.

under the 5-QTL scenario, however, with a different scaling of the
SNP effect. The scaling of the SNP effect was very variable under
the 5-QTL scenario. Under the 100- and 500-QTL scenarios,
BayesB captured <1% of the SNP and assigned extremely high
variance to them, especially in the 500-QTL scenario. This is
because of the extreme shrinkage and avoidance of SNP with
small effects, which caused bias in estimating SNP variances

(Calus and Veerkamp, 2007). Furthermore, BayesB and BayesC
patterns depended on the choice of π.

Applying common weights for groups of SNP can help
to increase the resolution of Manhattan plots; however, the
resolutionmay be limited by the effective number of independent
markers as proposed by Li et al. (2012). In their human
genetics study, they showed that, when the ratio of effective

Frontiers in Genetics | www.frontiersin.org 12 August 2016 | Volume 7 | Article 151

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Zhang et al. GEBV and GWAS using WssGBLUP

number of markers to total number of markers is high (i.e., less
redundant SNP), the threshold to declare a SNP as significant
is more stringent, which indicates that the resolution worsens.
Pocrnic et al. (2016) showed that the number of independent
markers relates to the effective population size (Ne), where
small populations share less independent markers. Perhaps, a
Manhattan plot with high resolution (with noisy pattern) is a
feature of smaller genotyped populations.

CONCLUSION

New procedures for calculating SNP weights in WssGBLUP can
be effective in improving both the accuracy of GEBV and SNP
effects. GEBV from WssGBLUP are more accurate than those
from BayesB and BayesC, although different priors and π for
the latter can change the ranking of the methods. Procedures
that consider weights for a SNP window may be the best choice
compared to single SNP given that the true number of QTL
may not be known in real data. In addition, considering a
group of SNP in the same genomic region may be the most
appropriate way to capture the signal of an unknown QTL. The
WssGBLUP method is especially useful for GWAS and GEBV
estimation when only a fraction of the population is genotyped.
WssGBLUP with 3 iterations may be enough to reach maximum
predictivity of GEBV and SNP effects when a trait is influenced by
few QTL.
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