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Abstract. We exhibit a new class of grammars with the help of
weightfunctions. They are characterized by decreasing the weight dur-
ing the derivation process. A decision algorithm for the emptiness
problem is developed. This class contains non-contextfree grammars.
The corresponding language class is identical to the class of ultralinear
languages.
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Introduction

The emptiness problem for classes of grammars containing non-contextfree
grammars is in general difficult to solve. The reader should remember that this
problem is undecidable for contextsensitive grammars. Moreover the word prob-
lem can be reduced to the emptiness problem under very mild conditions. We
exhibit a class of grammars with a solvable emptiness problem, which contains
non-contextfree grammars. Our method uses weightfunctions such that the weight
decreases during the derivation process, moreover a criterion is added, which sep-
arates via the weightfunction variables and terminals. This class of grammars is
called the class of weightreducing grammars. For this class we develop a decision
algorithm for the emptiness problem. Furthermore we show that the corresponding
language family is exactly the family of ultralinear languages.
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1. Basic notations and definitions

Let X be an alphabet, then X∗ is the set of words w over X (free monoid). �
is the empty word and X+ = X∗ \ �. Fixing x ∈ X we define the homomorphism
|w|x : X∗ → N by |y|x = δx,y (y ∈ X, δx,y is Kronecker’s symbol), hence |w|x is
the number of occurrences of x in w.

For X ′ ⊆ X we define: |w|X′ =
∑

x′∈X′ |w|x′ , therefore |w|X = |w| is the
length of w.

A (Chomsky-)grammar G is a quadruple G = (V, T, P, σ) where V, T are
alphabets with V ∩ T = ∅, σ ∈ V and P ⊆ V + × (V ∪ T )∗ is a finite set.

We call V the set of variables, T the set of terminals, A = V ∪T the alphabet
of G, σ the startsymbol and P the set of productions. As usual (p, q) ∈ P will
be written p → q.

With respect to the underlying Semi-Thue-System (A, P ) we define
derivations of words in the following way. For every w, w′ ∈ A∗ we write w � w′

iff there exist u, v ∈ A∗, p → q ∈ P such that w = upv and w′ = uqv. w
∗
� w′ is

the reflexive and transitive closure of �.
For every grammar G the generated language L(G) is defined by

L(G) =
{

w ∈ T ∗ | σ
∗
� w

}
·

Grammar classes are denoted by Γ and the associated language family is
L(Γ) = {L | ∃ G ∈ Γ : L(G) = L}.

We are mostly interested in the following grammar classes:
• ΓCh = all Chomsky-grammars;
• Γcf = {G ∈ ΓCh | ∀ p → q ∈ P : |p| = 1};
• Γlin = {G ∈ Γcf | ∀ p → q ∈ P : q ∈ T ∗ · (V ∪ �) · T ∗};
• Γfin.index = {G ∈ ΓCh | ∃k ∈ N ∀w ∈ L(G)
∃σ = u0 � u1 � . . . � un = w ∀ 0 ≤ i ≤ n : |ui|V ≤ k} (see [1]);

• Γultralinear = {G ∈ Γcf | ∃ a partition (Ai)n
i=1 of V, ∀ i ∈ [1 . . . n],

ξ ∈ Ai : ξ → p ∈ P ⇒ p ∈ (T ∪ ⋃i−1
k=0 Ak)∗ ∪ T ∗ · Ai · T ∗} (see [4]).

The corresponding language families are LCh, Lcf , Llin, Lfin.index and Lultralinear.
We assume the reader to be familiar with the basic concepts of grammars and

languages (see [5, 6]).

2. Weightreducing grammars

Definition 2.1. Let G ∈ ΓCh, γ : A∗ → N a homomorphism.
γ reduces G iff

(i) ∀p → q ∈ P : γ(p) ≥ γ(q);
(ii) ∀x ∈ A : γ(x) = 0 ⇔ x ∈ T .

Definition 2.2. A grammar G is weightreducing iff there is a homomorphism
γ that reduces G.
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The class of weightreducing grammars is denoted by Γwr and Lwr is the associ-
ated language family.

Remark. Our definition is something of a counterpart of contextsensitive gram-
mars. For contextsensitive grammars the weight is increasing.

Observation 2.1.

(i) w
∗
� w′ ⇒ γ(w) ≥ γ(w′);

(ii) σ
∗
� w ⇒ |w|V ≤ γ(σ).

Example 2.1. For any G ∈ Γlin let γ(ξ) = 1 for all ξ ∈ V .
Then γ reduces G.

Example 2.2. Consider for any k ≥ 1 the grammar G1,k with σ = σk and the
set of productions

σk−i → (σk−i) | (σk−i−1)σk−i−1 | � (0 ≤ i ≤ k − 2)

σ1 → (σ1) | �.

Choose: γ(σk−i) = 2k−i(0 ≤ i < k) then γ reduces G.

Observe that with the help of D1,k = L(G1,k) the index-hierarchy is shown
in [4].

Example 2.3. Consider the grammar G with σ → σcξ | �, ξ → aξb | �, then
L(G) = (c · {anbn | n ≥ 1})∗.

G is a finite-index grammar, but not weightreducing.
Since Llin ⊆ Lwr by Example 2.1 and Lfin.index ⊆ Lcf by the Ginsburg-Spanier-

theorem [3] we conclude Llin ⊆ Lwr ⊆ Lfin.index ⊆ Lcf by Observation 2.1(ii).
We now study the question, how reducing γ′s can be calculated.

Theorem 2.1. The question wether a grammar allows a reducing function, i.e.
is a weightreducing grammar or not, is decidable.

Proof. Let G be a grammar with V = {ξ1, . . . , ξn} and σ = ξ1. Since by con-
dition (ii) of Definition 2.1 a possible γ must automatically fulfil γ(x) = 0 for
x ∈ T , only the γ(ξi) have to be determined. But then conditions (i) and (ii) of
Definition 2.1 rewrite to

(1) p → q ∈ P ⇒ ∑n
i=1(|p|ξi − |q|ξi) · γ(ξi) ≥ 0;

(2) γ(ξi) > 0 for 1 ≤ i ≤ n.
Therefore the construction of a reducing γ is equivalent to solve the following
system of linear inequations with variables x1, . . . , xn over Q :

n∑
i=1

(|p|ξi − |q|ξi) · xi ≥ 0 (p → q ∈ P ) and xi > 0(1 ≤ i ≤ n).

If γ is reducing then xi = γ(ξi) (1 ≤ i ≤ n) is a solution, conversely if (x1, . . . , xn)
is a solution then defining γ(ξi) = λxi for 1 ≤ i ≤ n and suitable λ ∈ N we obtain
a reducing γ. �
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3. Ultralinear and weightreducing grammars

We want to show: Lultralinear = Lwr. To do this we study certain transforma-
tions of grammars. The following definitions introduced in [2] are useful:

Definition 3.1. For every G ∈ ΓCh and for every w ∈ A∗ the rank of w r(w) is

defined by r(w) = sup{|u|V | u ∈ A∗ and w
∗
� u}.

Observation 3.1.

(i) If G ∈ ΓCh then: w1, w2 ∈ A∗ ⇒ r(w1w2) ≥ r(w1) · r(w2).
(ii) If G ∈ Γcf then: w1, w2 ∈ A∗ ⇒ r(w1w2) = r(w1) · r(w2).

Definition 3.2. A grammar G ∈ ΓCh is variable-bounded iff there exists a

constant k ∈ N such that for every w ∈ A∗ : σ
∗
� w ⇒ |w|V ≤ k.

Theorem 3.1. If G ∈ ΓCh is weightreducing then G is variable-bounded.

Proof. Let G ∈ Γcf be weightreducing and γ the corresponding weightfunction.
Suppose G is not variable-bounded. Consider k = γ(σ) and a word w ∈ A∗ with

σ
∗
� w and |w|V > k. But then γ(w) ≥ |w|V > k ≥ γ(σ), a contradiction to

Observation 2.1(ii). �
A variable ξ ∈ V is reachable from σ iff σ

∗
� uξv for some u, v ∈ A∗.

Theorem 3.2. If G ∈ Γcf is variable-bounded and every variable is reachable from
σ then G is weightreducing.

Proof. Let G ∈ Γcf be variable-bounded by k and every ξ ∈ V reachable from σ.
In this case the rank r has the property r(ξ) ≤ k for every ξ ∈ V . Furthermore
by definition of r, r(x) = 0 for every x ∈ T . Hence, r is a reducing function for G
because Observation 3.1(ii) ensures that r is a homomorphism in the contextfree
case. �

Combining Theorems 3.1 and 3.2 we get

Theorem 3.3. If G ∈ Γcf and every ξ ∈ V is reachable from σ then G is variable-
bounded iff G is weightreducing.

Theorem 3.4. The family of ultralinear languages coincides with the family of
contextfree weightreducing languages.

Proof. In [2] is shown: If G ∈ Γcf then G is ultralinear iff G is variable-bounded.
�

Theorem 3.4 doesn’t transfer directly to Lwr. This is due to the fact that the
rank of G ∈ ΓCh is in general not a homomorphism and Theorem 3.2 does not
hold in the general case if G is any Chomsky-grammar.
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Consider for example the grammar G given by

σ → ξβ

ξβ → aξbβcγd

ξ → a

β → b

γ → c.

G is variable-bounded with k = 3 but not weightreducing.
But there is another way to show Lultralinear = Lwr and that we prove Lwr =

L(Γcf ∩ Γwr) using a construction similar to the one showing Lfin.index = L(Γcf ∩
Γfin.index) found in [3].

For every alphabet A and k ∈ N let A≤k = {w ∈ A∗ | |w| ≤ k}.
Theorem 3.5. The family of ultralinear languages coincides with the family of
weightreducing languages.

Proof. Like mentioned above we show Lwr = L(Γcf ∩ Γwr). Consider G ∈ Γwr.
Then G is variable-bounded with k = γ(σ) by Theorem 3.1.

Our aim is to replace every production p → q with p ∈ V + by a set of contextfree
productions simulating p → q . This is possible because there are only finitely
many x, y ∈ V ∗ such that xpy occurs in a word derivable from σ. Every xpy of
this kind interpreted as a new single variable builds the left hand-side of a new
production. Then we can show that the resulting contextfree grammar remains
variable-bounded and generates the same language as G.

More precisely, given a word w = v0x1v1 . . . xnvn with n ≥ 0, vi ∈ V ∗ (0 ≤
i ≤ n), xi ∈ T (1 ≤ i ≤ n), associate to it a new word f(w) defined by f(w) =
〈v0〉x1〈v1〉 . . . xn〈vn〉. Identify 〈�〉 with the empty word �. Then f(w) is defined
over the new alphabet T ∪〈V +〉. Note that if a set M of words over A is “variable-
bounded” in the sense that |w|V ≤ k for every w ∈ M , the new set of words f(M)
is defined over T ∪ 〈V ≤k〉 and this alphabet is finite.

Now, define the new contextfree grammar G′ by

T ′ = T, V ′ = 〈V ≤k〉 \ 〈�〉, σ′ = 〈σ〉

and

P ′ = {〈xpy〉 → f(xqy)|p → q ∈ P and xy ∈ V ≤k−|p|}·
Clearly, P ′ is finite, because P is finite and V ≤k−|p| is finite for every p on the left
hand-side of a production in P .

Furthermore, if u � w by some production in G, f(u) � f(w) by some produc-
tion in G′ and vice versa.

Hence σ
∗
� w if and only if f(σ)

∗
� f(w) where f(σ) = 〈σ〉 = σ′ showing

L(G) = L(G′).
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It remains to show, that G′ is variable-bounded. Consider a derivation σ′ =

〈σ〉
∗
� u in the new grammar G′. Then u = f(w) for some w ∈ A∗, i.e. σ

∗
� w

is a derivation in G. But then |w|V ≤ k, since G is variable-bounded with k. By
construction |u|V ′ = |f(w)|V ′ ≤ |w|V ≤ k, i.e. G′ is variable-bounded with the
same k as G and the statement follows directly by Theorem 3.2. �

Corollary. The emptiness problem for Γwr, i.e. the question whether a grammar
G ∈ Γwr generates the empty set or not, is decidable.

Proof. Let G ∈ Γwr and γ the weightfunction. If γ is not given compute it by
Theorem 2.1. Then the following algorithm decides if L(G) = ∅:

Let k = γ(σ).

(1) Construct the corresponding contextfree and weightreducing grammar G′

by Theorem 3.5 with |P ′| ≤ |V ≤k| · |P |.
(2) Decide if σ′ � w for some w ∈ T ∗. This may be done with the help of the

following algorithm:
(2.1) construct the grammar G′′ from G′ replacing every terminal in every

production by the empty word;
(2.2) construct the directed graph with nodes from 〈V ≤k〉≤k such that two

nodes u and v are connected by an edge if and only if v is directly
derivable from u by a production of G′′;

(2.3) decide if there is a path from 〈σ〉 to the empty word. �

4. Closing remarks

We haven’t discussed any complexity question for the possible algorithms. The
suggested approach to the emptiness-problem for weightreducing grammars in-
volves:

(i) the solution of a (special) system of linear inequalities over Q;
(ii) the construction of a specific directed graph associated to the grammar

under inspection;
(iii) solving a specific pathproblem for this graph.

The last problem depends heavily on the size of the constructed graph, so this
would be the crucial point.
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