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Abstract. The g-theorem describes the possible face-vectors of a simple polytope P. 
Much of the author's proof of the necessity of its conditions, while working within the 
polytope algebra Fl, in fact only used the spaces of weights on P. Even though this proof was 
conceptually easier than the original, which employed techniques from algebraic geometry, 
nevertheless the properties of H which are needed still require some effort to establish, 
despite a recent simpler approach to FI itself. In the earlier paper, doubt was expressed 
about whether two basic results could be proved directly for weights; later, it appeared that 
there might also be a possible problem concerning an alternative definition of the product 
of certain weights. In this paper these questions are settled, in the context of developing an 
independent theory of an algebra ft of weights on polytopes. Since the construction of f2 
is more approachable than that of H, a yet easier proof of the g-theorem is now available. 

1. Introduction 

In [ 12] we showed how the necessity of the conditions of the g-theorem concerning the 

possible f-vectors  of simple d-polytopes, which was conjectured in [10], and proved 

in [16] using deep techniques of algebraic geometry, could be established using the 

polytope algebra FI of [1 1]. (The sufficiency of the conditions was proved in [2].) Thus a 

proof is now available, which is "elementary", in the sense that it works entirely within 

convexity. (The polytope algebra itself is not exactly straightforward, although a shorter 

approach to part of the theory has been expounded in [14].) 

However, it has been pointed out to us by Gil Kalai (private communication) that 

there is a potential lacuna in the proof. More specifically, in Section 5 of [12] a special 

case of the multiplication in FI is extended to what are called weights, which are only 

subsequently shown actually to belong to FI all along. The question raised was whether 

it was clear that the induced multiplication of a weight by a general element of FI was 

well defined. The same flaw could also vitiate the proof of the main result of [ 13] (and 

its subsequent applications), which assumes this fact as well. 
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In this paper we bridge the gap. In fact, we show considerably more; a statement we 

made in the first part of Section 5 of [12] is also incorrect, but fortunately in a beneficial 

sense. It turns out that, contrary to what we suggested there, it is relatively easy to show 

that the product of two weights (as an extension of the product in FI) is well defined, 

and is also a weight (see Section 6). The basis of this result is something rather deeper; 

in Section 5 we show that linear mappings on polytopes induce homomorphisms on 

weight spaces. A consequence is that the weights form an algebra f2; we develop various 
properties of this algebra here. 

It is worth noticing that the multiplication on weights just extends a geometric method 

of calculating mixed volumes (compare [I] and, for a more abstract approach, [1 I]). 

Indeed, it might well be appropriate to think of the weight algebra f2 as the algebra of  
mixed volumes, since we prove in Section 11 that f2 is generated as an abelian group by 

mixed volumes (or even actual volumes) of faces of polytopes. 

A further simplification of [ 12] now results, in that we may throw away the scaffolding 

of the polytope algebra, and carry out the whole proof without it. In fact, the essential parts 

of the proof in [12], as applied to the g-theorem, did only employ weights. The reader 

who may wish to work through [12] in the light of the weight algebra can effectively 
discard much of that paper. In the final section we detail the appropriate modifications 

and substitutions to [12]; we also take the opportunity to provide some corrections to it. 

(We thank Gil Kalai and Isabella Sheftel for diligently working through [12], and raising 

searching questions about these various points. It is at Gil Kalai's prompting that we 

have added this section.) 
An alternative construction of the weight algebra is described in [4]. However, there are 

considerable differences between that approach and ours. The starting point of [4] is the 

Chow ring; in other words, the much heavier machinery of algebraic topology provides 
the background. It should be noticed that this context restricts the scalars involved to 

be rational. In contrast, and in keeping with our general view that machinery should be 

kept as simple as possible, here we use only fairly low-level technology. While we do 

not carry out our study in such generality, it may also be remarked that slight changes in 

language will enable our constructions to be performed in vector spaces over arbitrary 
ordered fields, which need not be archimedean. 

We should further draw attention to connexions between weights and the concepts of 

rigidity and stress on polytopes; for representative samples of the literature see [6]-[8] 

and [17]. We hope to explore these relationships more deeply in a subsequent paper. 

2. Minkowski Linear Combinations 

We frequently use Minkowski linear combinations in this paper, and so we discuss the 

basic notions here. We largely follow Section 14 of [5] to which we refer for further 
details, but we slightly vary some terminology, and also introduce notation which is 

more convenient for our purposes. 
We denote by 7 9 the family of all (convex) polytopes in E d, by j r ( p )  the set ofaU faces 

of P ~ 7 9, and by ~-r (p)  the subset of its r-faces (r-dimensional faces). The Minkowski 

or vector sum P 4- Q of P, Q ~ 79 is given by 

P + Q : = { x + y I x t P ,  y 6  Q}. 
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We often abbreviate {t} to t, particularly in the context of  a translate P + t, with P ~ 79 

and t E E a. I f  P ,  Q ~ 79 are such that P = Q + Q '  for some Qr ~ 79, then we call 

Q a summand of  P .  Note that a translate of  a summand is also a summand. The scalar 

multiple of  ~. E R is 

ZP  : =  {Lx I x  e P}; 

almost invariably we have ~. > 0. As usual, we write P - Q for P + ( - 1 )  Q, and so on. 

We write Q ~ P if~.Q is a summand of  P for some ~. > 0; observe that this relation 

is clearly transitive. Further, we write P "~ Q for the equivalence relation given by 

P ~ _ Q ~ _ P .  

We define the support functional rl(P, .) of P E 79 by 

r/(P, u) : =  max{(x, u) J x E P} 

for u ~ E d. If  u is a unit vector, then rl(P, u) is the support parameter of  P in direction 

u. For u �9 E d, we denote by 

P~ :=  {x e P I (x, u) = rl(P, u)} 

the face of  P in direction u, and if  u ~ o, the zero vector in E d, then 

H ( P ,  u) : =  {x E E d J (x, u) = r/(P, u)} 

is the corresponding support hyperplane with outer normal u. Note that r/(t, -) = (t, -) 

for t ~ Ig d, and that Po = P. 

We also denote by UF, p the outer unit normal vector to a polytope P at a facet F 

(face of  codimension 1). It will be a convention that such a vector is always taken to be 

parallel to P when dim P < d. 

It is immediate that, for Minkowski sums and scalar multiples, we have 

r/(P + Q, - )  = r l(P,-)  + r/(Q,-) ,  

r /(zP, .) = Zr/(P,-) ,  

when P, Q E 7 9 and ~ > 0. It thus follows that, for such P,  Q, and ~., 

( P + Q ) u  = P u + Q u ,  

()~P)u = )~Pu, 

for each vector u. Hence, if Q _ P ,  then Q,  _ Pu for each normal vector u. 

The normal cone N(F ,  P) to P ~ P at a (non-empty) face F is the cone of  outer 

normals to support hyperplanes of  P which contain F ;  that is, 

N(F ,  P) : =  {u e IE d I F c Pu}. 

The normal fan of  P is then 

.A/'(P) :=  {N(F,  P) [ F E 5r(P)},  

the complex consisting of  the normal cones to the faces of  P .  
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A necessary and sufficient condition for Q _~ P is that Af(P)  be a refinement of  

.N'(Q); indeed, for a Minkowski sum, A/'(P + Q) is the common refinement of .N'(P) and 

.N'(Q). Thus if P ~_ Q, then.N'(P) = .N'(Q), so that P and Q are strongly isomorphic; 

that is, the polytopes are isomorphic, and the isomorphism between their faces is given 

by P~ .~  Qu for each vector u. We denote by K;(P) the strong isomorphism class of 

P �9 79; that is, 

/C(P) := {Q �9 791 Q --- P}. 

Looking at strong isomorphism from the viewpoint of normal cones accounts for the 

alternative term normally equivalent sometimes used instead of strongly isomorphic; see 

for instance [4]. 

We may also observe here that if Q is any polytope, and P is obtained from Q by 

any sufficiently small parallel displacements of its facet hyperplanes, then.Af(P) refines 

.N'(Q), so that Q __ P. In particular, there is always a simple polytope P with the same 

number of facets as Q, such that Q __ P; a simple d-polytope P has precisely d facets 

through each of its vertices. A useful remark for the future is the following. 

L e m m a  2.1. If Q is any polytope in E d, then a simple d-polytope P exists such that 

Q~_P. 

Proof By adding any d-polytope to Q if necessary, we may assume that dim Q = d. 

I f  P is obtained from Q by any sufficiently small parallel displacements of its facet 

hyperplanes, then .A/'(P) refines .A/'(Q), so that Q _ P,  as required. [] 

3. Weights 

We begin with a basic definition. An r-weight on P �9 79 is a real-valued function a on 

f r ( p )  which satisfies the Minkowski relation on each G �9 jr~+l (p) ,  namely 

L a(F)UF.G = O, 
F ~.ff c'r ( G ) 

where the normal vector UF.6 is defined as in Section 2. Note that this condition is 

satisfied when a (F) = v o l  r ( F )  is the ordinary r-volume of F; of course, this motivates 

the definition. Throughout, we adopt the convention for an r-weight a that a(F) = 0 if 

F is a face of P with dim F # r. We denote by ~2r(P) the real vector space of r-weights 
d 

on P, and write f2(P) := ~ = o  f2r(P). 

Before we proceed further, we look at some particular values of r. If  r = 0, then a 

weight takes the same value on each vertex (the Minkowski relation implies that this is 

true for the two vertices of an edge). If  r = d - 1, and P is a d-polytope with n facets, 

then f2d-1 (P)  has dimension n -- d. To see this, choose a linear basis o f E  d from among 

the outer normal vectors to the facets of P,  and then observe that weights a(F) can be 

assigned arbitrarily to those facets F of P whose normals do not belong to this basis. 

Finally, again when P is a d-polytope, f2d(P) ~ I~, since P is the only d-face of itself 

(the Minkowski relations now have no force). 
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In fact, what we have here is not as general as it could be. There is an abstract concept 

of  weight; we repeat some basic definitions from [11] (compare also [4]). Let L be an 

s-dimensional linear subspace of  E d, and denote by C (L) the family of  polyhedral cones 

in L with apex o. Then the cone group E(L)  is the abelian group with a generator (K) 

for each K 6 C(L); these generators satisfy the relations (V): (K t3 K' )  + (K t-I K ' )  = 

{K) + {K') whenever K U K'  ~ C(L) also, and (S): (K) = 0 if d i m K  < s; thus E(L)  

is the abstract group for simple valuations on C(L). Of course, E (L) has a rather trivial 

group structure, and we can identify one of  its elements as a finite family o f  cones with 

integer multiplicities (which may be negative). 

For s = 0 . . . . .  d, the cone group E s is defined to be 

dim L = s  

Last, the full cone group E is 

d 

s=O 

Now let a 6 • | ~d - r ,  say a = Y'4C otK | {K). The component cones K together 

have finitely many edges, in the directions of  the unit vectors U l . . . . .  un, say. Adjoining 

suitable extra uj if  necessary (which would refine the cones K),  we may suppose that the 

uj span Ea positively. There are finitely many strong isomorphism classes of  d-polytopes 

whose facets have the uj as normal vectors to their facets; let P be the Minkowski sum 

of one representative from each of  these classes. The normal cones to the r-faces of  P 

may further refine the cones K. If  F 6 F (P) ,  then extend the definition of  a by setting 

a(F) : =  L o~K. 
N(F,P)CK 

Then we call a an r-weight if a e f2r (P),  so that it is an r-weight on some polytope in 

the previously understood sense. We denote by ~2r the vector space of  all r-weights in 
d f2 IE d, and write f2 :=  t~)r=0 r. 

It remains to remark that we can verify the Minkowski relations directly from the 

cones, so that the definition just given does not really depend on the particular polytope 

P on which they are checked; we repeat the appropriate part of  [11]. A k-frame is an 

ordered orthogonal set U = (Ul . . . . .  uk) of unit vectors in E d. We extend the notation 

of  Section 2 by defining recursively the face of  a polytope P in direction U to be 

Pts : =  (Pcu,,...,uk-O)uk, 

with P0 :=  P. Then Pts is a face of  P of  dimension at most d - k. 

Let K be a k-cone and let U = (ul . . . . .  uk) be a k-frame. We say that U is adapted 

to K if there is a sequence {o} = Qo c Ql c__ . . .  c__ Qk = K of  faces of  K,  such 

that uj ~ a j  - Qj -1  for each j = 1 . . . . .  k. Geometrically, this means that uj lies in 

the cone generated by Qj with the apex a relatively interior point of  Qj-1. If  F is an 

r-face of  the polytope P,  and U is a (d - r)-frame, then Ptr = F precisely when U is 
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adapted to the normal cone N(F, P). Following [11], but with a different notation, if  

a = )--~-r otr | {K) (in the sense above) is an r-weight,  we define au by 

au : =  2.,, O~K. 

U adapted to K 

The abstract criterion for an r-weight a is thus 

E a(w,u)U -~ O, 
u.L W 

for each (d -- r - 1)-frame W. When a 6 g2r (P)  for some polytope P,  this coincides with 

the previous definition, in view of  our convention that a(F) = 0 whenever dim F 5k r. 

What should especially be observed is that this condition is completely independent 

of  the particular polytope P above on which a may be realized as a weight. The fact that 

.N'(P) is a refinement of  A/'(Q) if Q 5 P also reinforces this perception; the discussion 

in Section 2 then shows that any given set of  weights may be thought of  as elements 

of  f2 (P)  for some simple polytope P.  In spite of  this observation, we shall continue to 

work with weights on actual polytopes. There is a straightforward reason: the various 

constructions we describe are firmly rooted in the geometry of  polytopes, and the reader 's 

intuition will, it is hoped, be reinforced from this viewpoint. However, all computational 

details will readily be seen to work at the abstract level, and so we try to refrain from 

tedious emphasis of  this in what we do below. 

We end with a brief remark. We may identify a ~ ~r(P) with a (row) vector a : =  

(a(F) [ F ~ ~-r(p)), indexed by the f r (P)  faces F ~ ~ r ( p ) ,  where f j ( P )  denotes the 

number of  j - faces of  P for j = 0 . . . . .  d. We denote by U~.~+I the f~(P) x df~+l (P) 

matrix whose "entries" are the 1 x d blocks UF.6, with F 6 ~'r (P)  and G 6 5 rr+l (P) ;  

here, conventionally, we write UF, G : =  O if F is not a facet o f  G. The condition for 

a ~ f2~(P) is then just aU~.~+l = o, so that a 6 ker Ur, r+l. 

In [9], Lee has suggested the following pretty interpretation of  ker U~r+l; the re- 

lationship between these two kernels is analogous to that between affine stresses and 

infinitesimal motions in the dual context of  simplicial polytopes (see [8] and [17]). 

Changing indices, an element of  ker UT_Lr associates a vector v(F) ~ IE d with each 

F e ~ (P) ,  such that 

E (UJ, F, v(F)) = 0 
FE.~r(F) 

for each J ~ 9 vr-~ (P).  We may now think of  v(F) as a flow in F ;  observe that only 

the part of  v(F) which is parallel to F plays an effective r61e. The term (Uj.r, v(F)) 

is that part of  the flow which moves over the facet J of F ,  if we think of  v as moving 

the whole r-volume of  F parallel to v(F). The equation thus represents conservation o f  

flow at each (r -- 1)-face J ;  in other words, v is a circulation on 5t"~ (P).  Notice also the 

way in which the Minkowski relation on an r-face F is involved in this interpretation; it 

ensures that the same amount of  flow leaves F as enters it. 
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4. Coherent Subdivisions 

Much of our discussion depends upon the different subdivisions of one polytope which 

arise from it as the union of certain projected faces of another, and the relationships 

between them. The appropriate context is that of fibre polytopes, as introduced in [3], 

although we do not need all the machinery of that paper. 

Let P be a d-polytope and let Q be an n-polytope, such that P is the image of Q 

under some linear mapping ~o. It is often convenient to take Q _ E n and P _ E d, so 

that the linear mapping is ~o: IE n --+ E n. Then P will admit many subdivisions into 

d-polytopes which are images under go of faces of Q; certain of these are constructed as 

follows (compare the much earlier discussion in [18]). 

The inverse image of a point x ~ P determines a section orfibre Q (x) :=  Q t3 {x}~o -1 

of Q, which is (n - d)-dimensional when x e int P, the interior of P. We call such a 

fibre general i f x  r G~0 when G ~ .~'(Q) satisfies dim G < d; in this case, each m-face 

of Q(x) is of the form G N {x}~0 -1 for some G ~ ~d+m(Q). These general fibres fall 

into finitely many strong isomorphism classes, determined by the regions into which 

P is divided by the images G~0 of the (d - 1)-faces G of Q. Note that a special fibre 

Q(x) (that is, one which is not general) is the limit of general fibres Q(x') for which 

Q(x) "<__Q(x'). 
Let Q be the Minkowski sum of one fibre chosen from each such strong isomorphism 

class. After a suitable translation, we may regard Q as lying in ker ~o. Then Q is strongly 

isomorphic to thefibre polytope of the projection ~o, whose definition is 

Fib(Q, ~o) . _  VOid(P) Q(x) dx; 

the integral is well defined, since it can be described alternatively as the polytope whose 

support functional is the corresponding average of the support functionals of  the fibres. 

We therefore stretch terminology a little, and refer to Q itself as the fibre polytope of the 

projection qg, and denote it by the same symbol Fib(Q, qg). We formulate things in this 

way, because then the concept extends to the similar situation where we work in spaces 

over an arbitrary ordered field instead of IR. 

Now Fib(Q, ~0) determines subdivisions of P in the following way. Pick any (unit) 

normal vector v ~ ker q~. Then v gives a face Q (x) o of each fibre Q (x). Over each strong 

isomorphism class/E of fibres of Q, this face Q(x)o is the intersection of {x}~0 -1 with 

the same face of Q, which we denote by G(/C, v). The subdivision of P induced by v 

then consists of the polytopes, G(/C, v)~o. It is clear that this choice does indeed induce 

a subdivision of P, which we denote by ~D(v). A subdivision of P which arises in this 

way is additionally called coherent (we follow here the terminology of [3], if  not always 

the notation). 

We begin with an obvious remark. 

Lemma 4.1. If Fib(Q, ~o)v is a k-face of Fib(Q, ~o), then the components of D(v) 
consist of the images of faces of Q of dimension at most d + k. 
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Proof The reason is that the corresponding face Q (x)v of a general fibre Q (x) also has 

dimension at most k, and this is the intersection of {x}~0 -1 with a face of Q of dimension 

at most d + k. [] 

In particular, we have: 

Corollary 4.2. The coherent subdivisions of  P are in one-to-one correspondence with 

the non-empty faces of  Fib(Q, ~o). When one face of Fib(Q, ~o) is contained in another, 

then the first subdivision is a refinement of  the second. 

The finest coherent subdivisions thus correspond to vertices of Fib(Q, ~o), and are 

called tight; these are the ones which most interest us in what follows. The subdivision 

corresponding to Fib(Q, ~o), regarded as a face of  itself, is the trivial one. 

A special case occurs frequently in our later discussion. When n ----- d + 1, there are 

two tight subdivisions of P, since Fib(Q, ~o) is a line segment. In this case, ker ~o = lin{v} 

for some unit vector v. One tight subdivision D(v) then consists of the images G~o of 

those facets G of Q for which y + / z v  r Q for each y ~ G and # > 0; these facets form 

what we call the upper surface of Q, relative to v (or, more loosely, to ~o). The other tight 

subdivision is D ( - v ) ,  arising from the analogously determined lower surface of Q. 

We also need to look at a subdivision ~D := ~D(v) which corresponds to an edge E of 

Fib(Q, ~0), giving the transition from one tight subdivision to another. By Lemma 4.1, 

the components of ~D are images G~0 of faces G of Q with dim G _< d + 1. When 

dim G = d + 1, then G~0 is doubly covered by images of  d-faces of Q, namely those 

arising from the upper and lower surfaces of G relative to ~0. The tight subdivisions 

arising from the vertices of E then have G~0 replaced by the images of one or another of 

these two surfaces. 

We end the section by describing how we may identify the faces G of Q given by the 

vector v above, which contribute to a coherent subdivision D(v)  of P = Q~o. It is now 

preferable to take ~0: E n ~ lEd. Let G ~ .~'(Q) be such that G~o is a polytope in ~D(v); 

we do not suppose that dim(G~o) = d. We need only concern ourselves with a fibre Q (x) 

such that x ~ relint(G~o), where relint denotes the relative interior. We see that G is such 

that Q(x)~ ~ G n Q(x). Then v ~ N(G O Q(x),  Q(x)) implies that v + w ~ N(G,  Q) 

for some w ~ (ker~0)• to see this, observe that a hyperplane in {x}~o -1 which supports 

Q(x) is contained in one in lEn which supports Q, and this will necessarily contain G, 

since {x}~o - l  n relint G # i~. Since the argument is reversible, there follows: 

L e m m a  4.3. A face G of Q is such that G~o E D(v) if and only if  

(v + (ker ~0) • M N(G,  Q) ~ ~. 

The criterion for a tight subdivision refines Lemma 4.3. 

Theorem 4.4. Let P ~ E d and Q ~ E n be polytopes, and let ~o: E n ~ IE d be a 

linear mapping such that P = Q~o. The coherent subdivision ~D(v) arising from a vector 

v E ker~0 is tight if and only if 

(v + ker~0) • n relint N(G,  Q) = 0 
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whenever G E 9r(Q) with dim G > d. In this event, 

~D(v) = {G~o I G E :F(Q) and (v + (ker ~o) L) A N(G, Q) ~ 13}. 

371 

5. Linear Mappings 

This section is devoted to a core result, on which much of the subsequent discussion is 

based. 

Theorem 5.1. A linear mapping between vector spaces induces a corresponding linear 

mapping between their weight spaces. 

We establish the result for the weight spaces of polytopes. However, since the de- 

scription of tight coherent subdivisions can be formulated in terms of normal cones, it 

will be clear that the definition of the linear mapping will not actually depend on the 

polytope on which any particular weight is carried. 

We employ the notation of Section 4, and assume that P E IE d and Q E lE~ are 

polytopes with P = Q~0 for some linear mapping ~0: lEn __+ lEa. However, we begin 

with a very important observation, 

The definition of weight appears to depend on the euclidean structure (that is, on the 

inner product and norm). In fact, an alternative picture makes it clear that this is not 

the case, and provides a useful insight into several results we prove below. The case 

n = r + 1 and d -- r illustrates what is happening in sufficient generality. As we have 

seen in Section 4, there are two tight subdivisions of P,  which arise from the upper and 

lower surfaces of Q relative to a unit vector v which spans the kernel of ~o. I f  u := uo, Q, 

the outer normal to Q at its facet G, then G is upper or lower according to whether 

(u, v) > Oor (u, v) < O. 

The Minkowski relation for an r-weight a on Q generalizes the case of r-volume volt. 

It just says that the total areas of the two coverings of P induced by the subdivisions 

coincide with volr(P);  note that the scaling factor of the area of the facet G above 

under the projection on the hyperplane v -L in lEr+l orthogonal to v is [(u, v)[. Thus 

the Minkowski relation for a general weight a merely substitutes a(F)  for vol~(G). 

However, it is clear that an oblique projection will preserve the relative scalings of  these 

r-volumes; that is, it will multiply the existing scalings I (u, v)l by some fixed additional 

factor. Now the picture is a purely linear one, since linear mappings are equivalent to 

oblique projections. 

We thus deduce a linear version of the Minkowski relation. Continuing with the 

notation above, for each r-face G of Q, let ~/~.~ > 0 be defined by 

yt,~0 volt(G) := vol~(G~o). 

It is clear that Yt,~ really depends only on the linear subspace parallel to G; it is just 

volt (C~0) when C is a unit r-cube in this subspace. Further, YG,~0 = 0 when ~0 is singular 

on G. Then we have: 
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Lenmaa 5.2. I f  ~o is a linear mapping on Q with a one-dimensional kernel, and if  

a ~ ~2r(Q), then 

E yG,ea(G) = ~ yG,~oa(G), 
G upper for ~o G lower for ~o 

where upper and lower are relative to some vector which spans ker ~p. 

The same circle of ideas leads to another useful observation. 

L e m m a  5.3. Let Q bean (r + 1)-polytope, and let a ~ ~r  ( Q ). I f  tp is a linear mapping 

which is one-to-one on Q, define a~o: .Tr~ (Q~o) ---> IR by 

(a~o)(G~o) := ~:G.~a(G). 

Then a~o ~ f2r(Q~o). 

Proof. The proof results from applying tp to the picture of the Minkowski relation 

generalized to oblique projections. The numbers )'G,~ give the relative scalings of 

all r-volumes involved in an oblique projection, and thus the Minkowski relation is 

preserved. [] 

We are now in a position to discuss the general result. Let ~0 be a linear mapping, let 

Q be a polytope, and let a e ~2 r (Q) .  We then define a~o: )r~ (Q~0) ---> 1~ by generalizing 

the idea of Lemma 5.3. Let F ~ .7"r (P),  with P := Qq~. Choose some tight coherent 

subdivision of P induced by ~o; this induces a tight coherent subdivision 9 ,  say, of F 

also. Define 

(a~o)(F) :=  ~ yG.~a(G), 
G~o~D 

with Ya.e as above. We first have: 

L e m m a  5.4. The definition of a~o is independent of  the subdivision ~D. 

Proof We can write the definition as 

(a~o)(F) = ~ (a~o)(G~o), 

G~o~TD 

again using the convention of Lemma 5.3. We change the subdivision 79 by moving along 

an edge-path of the fibre polytope Fib(Q, ~o). In moving from one vertex to an adjacent 

one, we saw in Section 4 that the subdivision of F alters through interchanging, for one 

or more (r + 1)-faces J of Q, the image of the upper surface of J under ~o with the image 

of the lower surface. Lemma 5.2 applied to such a face J shows that the terms in the sum 

above arising from the upper surface equal those coming from the lower surface, which 

proves the result. [] 

For the other part of Theorem 5.1, we have: 
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L e m m a  5.5. The image aq~ is a weight. 

Proof. Consider a (tight) subdivision D of an (r + l )-face F of P. Each (r + l )-polytope 

G~o ~ D satisfies the Minkowski relation, by Lelmna 5.3. However, on an interior r-face 

J~o in ~D, with J ~ j r ' ( Q ) ,  the terms in the Minkowski relations involving J~0 for the 

two (r + 1)-dimensional components G~o which contain it are equal and opposite in 

sign, because the corresponding unit outer normals uj , .G,  are. Hence, if we sum the 

Minkowski relation over all these polytopes G~o, we end up with the Minkowski relation 

for a~o on F itself, as wanted. [] 

Although we have formulated everything in terms of  weights on polytopes, Theo- 

rem 4.4 makes it clear that the definition of  the image a~o of  a weight a under a linear 

mapping ~0 can be expressed abstractly, so that a~0 does not depend on a belonging to 

f2 (Q) for any particular polytope Q. 

We end the section with an obvious remark. 

Theorem 5.6. I f  ~o and ~ are linear mappings for which the composition ~o~ is defined, 

then, for any appropriate weight a, 

a(~0@) = (a~o)~. 

6. The Weight Algebra 

The object of  this section is to define an algebra structure on weights. More specifically, 

given a e f2r (P)  and b ~ f2s (Q), with P ,  Q both polytopes in E a, we define a commu- 

tative and associative product ab, and show that the result belongs to f2r+s (P  + Q). It 

will follow from the definition and the description of  the induced subdivisions of  P + Q 

that the product is really one of  elements of  ~.  Later we are most interested in the case 

that P = Q is a (simple) d-polytope, so that P + P = 2 P ;  we have observed in Section 3 

that f2(P)  = f2 (2P)  in a natural way. 

The multiplication will be induced by Minkowski addition; we proceed through the 

direct product. 

Le rama6 .1 .  Weightsa ~ f2r(P)andb ~ g2s(Q)induceaweightaxb ~ g2r+s(P• Q). 

Proof. First, recall the convention in Section 3 about an r-weight a, that we write 

a(F) = 0 if dim F y6 r. We then define a x b by 

(a x b) (F  x G) :=  a(F)b(G) ,  

for F ~ j r ( p )  and G 6 j r (Q) .  We call a x b the direct product of a and b. The 

Minkowski relation thus needs to be checked only on two kinds of  f aces - - a  product of  

an #-face of  P and an s'-face of  Q, with r '  = r + 1 and s '  = s, or with r '  = r and 

s' = s + 1. By symmetry, it is enough to consider the former case. I f  F '  is an (r + 1)-face 
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of P and G an s-face of Q, then the unit normal vector to F'  x G at a facet F • G is 

just (UF, F, , 0) ,  where UF, F, is that to F'  at F. The Minkowski relation for F' ,  namely 

E a(F)UF, F, = O, 

F 

then at once implies 

E ( a  x .b) (F  x G)UFxG.F'xG = E a(F)b(G)(UF,  F,, o) = (o, o), 
F F 

so that a x b ~ ~'~r+s (P x Q), as claimed. [] 

We now come to our main result. 

T h e o r e m  6.2. I f  a ~ f2r (P)  and b E f2s (Q),  then there is an associative and commu- 

tative product ab E f2r+s (P  + Q). 

Proof. The sum mapping era: E d • E d --* E d is defined by 

(x, Y)era :=  x + y, 

for x, y 6 E a. We then define ab by 

ab :=  (a x b)~ra. 

This is clearly well defined by Theorem 5.1, and is obviously commutative since Minkow- 

ski addition is also. For the associativity, we write ~o • ~ for the linear mapping obtained 

by applying ~0 and ~ separately to the terms of a product of linear spaces, and td for the 

identity mapping on E a, and use 

( ~  x td)aa = (~a x erd)tra, 

applied to E d • E a • E d. Using Theorem 5.6, the induced homomorphism applied to a 

product (a • b) • c = a • (b x c) of weights leads to (ab)c = a (bc), as required. [] 

Before we go further, we see how we actually multiply two weights. We first consider 

a special case, when r + s = d. I fd im(P  + Q) < d, the product will be zero anyway, so 

we suppose that dim(P + Q) = d. We apply the technique of Section 4; a tight induced 

subdivision D expresses P + Q as a union of direct sums F + G, with F, G faces of 

complementary dimensions of P, Q, respectively. With dim F = r and dim G = s, there 

is a constant VF, G which depends only on the translation classes of their affine hulls, such 

that 

VF,G VOlr (F) vols(G) :=  VOld(F q- G); 

PF,G is the volume obtained by replacing F and G by unit cubes of the appropriate 

dimensions in their affine hulls. 
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To calculate ab, with a ~ f2r (P) and b e f2s (Q), we now substitute a (F)  for VOlr (F) 

and b(G) for vols(G) for each such direct sum F + G which occurs in the subdivision 

D, and take the total over all of them. That is, we have 

(ab)(P)= E VF, Ga(F)b(G)" 
F+GE2) 

The polytopes F + G  which occur in D can be deduced from the criteria of Theorem 4.4 

(see also [1] and [15]). In E a x E d, the normal vector concerned is of the form (v, - v )  

for some nonzero vector v e E a. The subspace (ker ~0) • is now {(x, x) I x ~ Ed}, and 

the conditions on (ker ~0) J- (or on v) reduce to relint N(F, P) tq relint(N(G, Q) - v) = 0 

whenever F e j r ( p )  and G e ~ ' (Q)  are such that dim F + dim G > d. If  this holds, 

then the polytopes F + G e D(v) are those for which dim F + dim G = d, and 

N(F, P) r (N(G, Q) - v) ~ 0. Since these criteria depend on the normal cones to 

the faces of the polytopes rather than on the polytopes themselves, we conclude that 

the product is really defined on f2r | f2s. For convenience, though, we usually work in 

suitable subspaces ~2r ( P ) . 

More generally, if r + s < d, the value that ab assigns to an (r + s)-face of P + Q is 

that obtained by performing the above calculation in that face, using some tight induced 

subdivision. Of course, ab = 0 if r -t- s > d. 

The multiplication defined above is an algebra multiplication; it is clear that O~a)b = 

~.(ab) = a(~b) for any weights a and b and scalar ~.. Moreover, the multiplication is 

also distributive over addition, because ordinary multiplication of numbers is. With these 

remarks, we may summarize the above discussion in: 

Theorem 6.3. 

(a) On any polytope P, the weight space f2 ( P ) is a graded algebra. 

(b) The space ~ of all weights is a graded algebra. 

It is easily seen that the identity in ~ is 1 | (E a) e g20. This corresponds to the 

0-weight iQ e g2o(Q) for any polytope Q, given by iQ(V) = 1 for each vertex V of 

Q. Notice that multiplication by iQ will induce an injection iQ: f2(P) ~ f2(P + Q) 

for any other polytope P. In Lemma 2.1 we saw that a polytope in E d is a summand of 

some simple d-polytope. There then follows: 

Theorem 6.4. Any given weight in f2 can be regarded as an element off2 ( P) for some 

simple d-polytope P. 

7. Homomorphisms 

We have already used the fact that linear mappings between spaces induce linear map- 

pings on the corresponding weights. We now show that, in fact, there is an induced algebra 

homomorphism. Another such homomorphism is induced by restriction of weights to a 

face of a polytope. 

We begin with linear mappings. 
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Theorem7.1 .  Let ~o: E n ~ E d be a linear mapping, and let a, b ~ f2(E"). Then 

(ab)tp = (a~o)(btp). 

Proof As in Section 6, ~o induces a linear mapping ~0 x ~0: E n x E n ~ E a x E a, 

defined by (x, y)tp := (x~0, y~0) for x, y ~ E n. Further, 

o-.~ = (~0 x ~0)cra, 

with the notation introduced in Section 6. It is clear that the product weights satisfy 

(a • b)(~o • ~o) = (a~o) • (b~0); 

the result now follows from the commutation with the sum mappings, using 

Theorem 5.6. [] 

We have an immediate consequence. 

Corol lary 7.2. Linear mappings induce algebra homomorphisms on the correspond- 

ing weight spaces. 

We now come to restrictions. Here, it is definitely better to think of weights as sitting 

on the faces of  polytopes. I f  P ~ 79 and F ~ j r ( p ) ,  then a weight a 6 f2 (P)  clearly 

gives a restriction a IF to the faces of P contained in F. 

Theorem 7.3. Restriction of  weights to a face of  a polytope is an algebra homomor- 

phism. 

Proof This result is transparent, since restriction is clearly a vector space homo- 

morphism, and calculation of products of weights is, in any case, carried out 

intrinsically. [] 

It will not generally be the case that f2(F) = f2(P)IF for F ~ .T(P).  The simplest 

example is given by a square pyramid. For ease of explanation let P be a pyramid which 

is a half-octahedron, with base the square F. The 1-weights on the three edges of a 

triangular face of P must be equal, whence dim f21 (P) = 1. However, F is a polygon 

with four edges, so that dim ~21 (F)  = 2 (compare Section 3). 

8. The First Weight Space 

For several reasons we need an alternative way to perform multiplication by an element 

of f21. In preparation for this, we discuss the first weight space f21 (P) for an arbitrary 

polytope P, and then consider further the special case when P is simple. 

First, suppose that P '  is another polytope, such that P '  "~ P. Then P '  naturally 

corresponds to an element p '  ~ f21 (P),  with the weight p ' (E)  on an edge of P just the 

length of the corresponding edge of P ' .  Conversely: 
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L e m m a  8.1. A positive weight pr ~ f21 (P) corresponds to a polytope pr ~ p,  which 

is unique up to translation. 

Proof. In saying that p '  is positive, we obviously mean that p'(E) > 0 for each E 

of P. For the proof, we follow the argument of Section 15.1 of [5]. The edge E '  of P '  

corresponding to an edge E of P will have length p'(E).  To each vertex w of P we 

associate a vertex w t of P ' ,  in the following way. Fix one vertex v r of pr, corresponding 

to an initial vertex v of P. If  the vertex w of P is adjacent to v, so that E ----- conv{v, w} 

is an edge of P, then the corresponding vertex w r of pr is defined by 

pr(E) 
w r : =  v r + ~ (to - v ) ,  

where p ~ f21(P) similarly gives the length p(E)  of the edge E of P. Hence, if 
E r := conv{v', wr}, then E r does have length p'(E). 

We now iterate this process. I f  the vertex w of P is reached from v by means of a chain 

of edges E1 . . . . .  Era, then w r is reached from v' by means of the corresponding edges 

El . . . . .  E~,; each edge in the (directed) path can thus be thought of as a vector, defined 

as above. To see that w r is well defined, suppose that we have two different edge-paths 

from v to w; we must show that they yield the same point w r. Tracing one edge-path 

followed by the reverse of the other leads to a closed edge-path in P, and thus a vector 

arising from the directed path. We may contract this path to the vertex v over the 2-faces 

of P. The Minkowsld relations for pr on these 2-faces ensure that each such contraction 

leaves the vector corresponding to the path unchanged; at v it reduces to o, so that it was 

originally o, leading to the required conclusion. 

To see that the convex hull pr of these vertices w r satisfies pr ~ p ,  we proceed 

by induction on the dimension. To each proper face F of P corresponds a strongly 

isomorphic polytope F'; in particular, this is true when F is a facet of P. Every vertex 

of P which does not lie in F is at the end of a path of edges, each directed away from 

the support hyperplane H of P which contains F. The corresponding edges of P '  are 

directed away from the parallel hyperplane H r which contains Fr; the remaining vertices 

of P '  thus lie on the same side of this hyperplane, so that H '  supports P'. It follows 
easily that pr ~ p ,  and pr is uniquely determined by the initial choice of  o r, as we had 

to show. [] 

Under the correspondence P '  ~ p ' ,  we clearly have 

pI q_ p ,  ~_~ p, + p, ,  

~.P' ~-~ ~.p' for ;. __ O. 

A general weight y E ~-~1 (P) is the difference of positive weights, since y + )~p > 0 for 

a suitably large )~. Thus y corresponds to a formal difference of polytopes in/C (P);  more 

specifically, since/C(P) is a semigroup with cancellation under Minkowski addition, we 

can identify y with an element of 79r (P),  namely the group modulo translation which 

/C(P) engenders. We recall the definition of this group (compare [11]): it has generators 

(P, Q), with P, Q E/C(P),  which satisfy the relations 

(P,  Q) := (P ' ,  Q') r P q- Q' = P '  q- Q h- t, 



378 P. McMullen 

for some t ~ I~, d, with addition defined by 

(P ,  Q) + ( P ' ,  Q')  : =  (P + P', Q + Q'). 

Summarizing, we have: 

L e m m a  8.2. I f  P is any polytope, then f21(P) ------- 79r(P). 

For the remainder of  this section, P will be a simple d-polytope with n facets. We 

can express P in the form 

P = {x e IE d I (x, uj) < :rrj ( j  = 1 . . . . .  n)}, 

where uj : =  UFj,e is the unit outer normal vector to P at its facet Fj for j = 1 . . . . .  n. 

In this context, we think of  U : =  (ul . . . . .  Un) as a fixed set of  normal vectors, and, as 

in Section 2, zrj : =  rl(P, uj) is the (variable) support parameter o f  P corresponding to 

uj, for each j .  The vector p :=  (zrl . . . . .  zr,) E IE n of  these support parameters is called 

the support vector of  P .  In the previous discussion we did not distinguish between a 

polytope P and one of  its translates P -4- t with t E lg d. This implies that we should 

identify the corresponding support vectors p of  P and (~rl + (t, Ul) . . . . .  ~rn + (t, u , ) )  

of  P + t, so that we must regard a support vector as lying in I~,"/T, where 

T : =  {((t, ul)  . . . . .  (t, u,}) I t E lEn}. 

Note that an element of  T can be regarded as the support vector of  a singleton point in 

the closure c l /C(P)  of  the strong isomorphism c lass /C(P)  of  P .  An arbitrary element 

of ]g" /T  is called a generalized support vector; for convenience, we continue to write a 

generalized support vector as an element of  IE n. 

From the discussion in Section 2, the support vectors of  polytopes in /C(P)  obviously 

behave as expected under Minkowski addition and non-negative scalar multiplication. 

Only certain generalized support vectors (even among those which are positive) corre- 

spond to polytopes in K;(P). However, s ince /C(P)  consists of  simple polytopes, any 

small enough perturbation of  an actual support vector o f  a polytope in /C(P)  yields the 

support vector o f  another. There follows at once: 

L e m m a  8.3. If  P is a simple d-polytope, then 79r ( P ) -~ En / T. 

Combining Lemmas 8.2 and 8.3, we deduce: 

Theo rem 8.4. If P is a simple d-potytope with n facets, then the weight space f21(P) 

is naturally isomorphic to En/ T, with T the subspace of support vectors of points in 

cl /C(P).  

We end the section with a remark about restrictions. 

L e m m a  8.5. l f  P is a simple polytope and F is a face of P, then f21(F) = f21(P)lv.  
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Proof. Since P is simple, any sufficiently small perturbation of the support parameters 

of F will be induced by a suitable perturbation of those of P. The result follows at 

once. [] 

9. An Alternative Formula 

We are now in a position to discuss an alternative formulation of multiplication of a 

weight in f2 (P) by an element of f21 (P) when P is simple. (In view of the remarks 

at the end of Section 3, this is not a serious restriction.) We follow the conventions of 

Section 8 throughout. We begin with a special case. 

Theorem 9.1. I f  y ~ f21( P) and a ~ ~2d-I(P), then 

ya = ~ rlja(Fj), 
j = l  

where y = (01 . . . . .  On), regarded as a generalized support vector. 

This expression generalizes one familiar in the theory ofrnixed volumes of polytopes (for 

instance, see Lemma 5.1.4 of [ 15]), wherefore we call it the asymmetric mixed volume 

calculation. 

Proof. First note that the sum is well defined, since two choices for the generalized 

support vector differ by a vector of the form ((t, Ul) . . . . .  (t, un)), and since 

n 

E ( t ,  uj)a(Fj) = 0, 
j = l  

from the Minkowski relations for g2a-1 (P).  We must therefore show that this expression 

is the same as that obtained when we use the original definition of the product. 

It is enough to prove the theorem for a support vector of the form ek := (~kl . . . . .  3kn), 

with 8kj the usual Kronecker delta function; we then extend by linearity. Regarded as a 

weight, if E is an edge of P which does not meet the facet Fk, then ek (E) = 0. The value 

that ek takes on an edge E _c Fk will not concern us, as we shall soon see. The remaining 

edges E are those which meet Fk in a single vertex; the value ek(E) is the length of the 

intercept of a line in the direction of E with a slab between two hyperplanes with normal 

Uk at unit distance apart. (The reader may find the following picture helpful. Replace P 

by a sufficiently large scalar multiple, so that ek = p '  - p for some P '  6 / C ( P )  also; we 

adopt the conventions used above. Then ek(E) = p ' (E)  -- p(E) ;  of course, p(E)  and 

p'(E) are just the edge-lengths of E and the corresponding edge E '  of P ' . )  

We now calculate the product ya, by means of a suitably chosen induced subdivision 

~D(v) of P + P. We take the general vector v to be a small perturbation of uk. Then v 

will have the following properties. I~ t  

:= U N(w,  P), C 
w~vert Fk 
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the union of  the normal cones to the vertices w of  P in Fk; then C C int C - v. Further, 

the half-line 

R : =  N(Fk, P)  -- v = pos{uk} -- v 

will intersect precisely one normal cone N(E,  P) to an edge E of  P which meets Fk in 

a single vertex; it will meet no normal cone to an edge of  Fk itself (because R is parallel 

to such a cone), and we do not care about any other edges. 

The usual calculation employing 79(0) is now straightforward. In ~D(v), only one term 

contributes to the product, namely E + Fk arising from N(E ,  P) N (N(Fk, P) - v), for 

this particular edge E above. This contribution is 1 �9 a(Fk) = a(F~), as required. []  

The general asymmetric mixed volume calculation works in a similar way. Recall 

that weight calculations on a face of  a polytope are performed intrinsically. Thus, if  

y ~ ~21(P) and a ~ ff2r(P ) with 0 < r < d -- 2, then we evaluate a term (ya)(F)  in 

the product ya, when F is a (r + 1)-face of  P ,  within the face F.  For our alternative 

procedure, we must then regard y as a support vector in F ;  that is, for these purposes, y 

then becomes the generalized support vector induced in F (compare Lemma 8.5). 

10. Separation Properties 

In this section we conclude our discussion of  the basic properties o f  the weight algebra 

f2. We begin with an important separation property of  the spaces f2r. 

Theorem 10.1. I f  r = 0 . . . . .  d, then ~2d-r separates ~'~r. 

Proof. What the theorem means is that if a e f2r satisfies a ~ 0, then b e f2d-r exists 

such that ab ~ O. We prove it using Theorem 9.1. We may assume from Theorem 6.4 that 

a ~ f2r (P),  for some simple d-polytope P.  We first consider the special case r = d - 1. 

I f  a e f2d-1 (P)  is non-zero, then, with the notation of  Section 9, we have a(Fk) ~: 0 

for some k = 1 . . . . .  n. With ek ~ f21(P) as in the proof  of  Theorem 9.1, we have 

eka = a(Fk) ~ O, as we wanted. 

For smaller r, we use induction on d. As before, we can regard a e ~"~r as a e g2r (P )  

for some simple d-polytope P.  I f a  ~ 0, then we may choose some F e .~+1 ( p )  such 

that alF ~ O. Since P is simple, by Lemma 8.5 we have f21 (F)  = f21 (P)IF.  Hence, by 

the first part, an element e ~ ~ h ( P )  c_ ~21 exists such that (ea)lF = ell:alF ~ O. Thus 

ea ~ O, which is the inductive step, and the theorem follows at once. []  

On inspection of  the proof  of  Theorem 10.1, we see that we have actually proved 

a little more, namely that when P is  a simple d-polytope, then f2r(P)  is separated by 

f2~ (p)d-r,  where the latter (following the usual convention) is the subspace o f  f2d-r 

generated by the (d - r)-fold products of elements of  f21 (P) .  Now the dimension of  a 

space cannot exceed that o f  one which separates it. Hence, interchanging r and d - r 

and using Theorem 10.1 twice (the latter time in this stronger form), a dimension count 

yields 

d i m ~ r ( P )  _< dim~2d_r(P) < dim~21(P) r < d i m ~ r ( P ) .  
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All the dimensions must therefore be equal; we thus deduce that ~ (P)  = f21 (P)~, and 

hence: 

Theorem 10.2. I f  P is a simple polytope, then ~2 (P) is generated as an algebra by 

f21 ( P ). Hence f2 is similarly generated by f21. 

Observe that Theorem 10.2 does not hold in general for a non-simple polytope 

P.  Indeed, if d > 3, and P is a simplicial d-polytope with n > d + 2 facets, then 

dim ~'21 (P)  = 1, but dim f2d-l (P)  = n -- d > 2. 

Another useful consequence of  the argument is: 

Theorem 10.3. Let P be a simple d-polytope. Then d imf2r (P)  = dimf2d_~(P) for  

each r = 0 . . . . .  d. 

We can now also generalize Lemma 8.5. That lemma, and Theorem 10.2, imply: 

Theorem 10.4. l f  P is a simple polytope and F ~ fir(P), then f2(F)  = f2(P)IF .  

11. Volumes of Faces 

We now consider the relationship between the r-volumes of  the r-faces o f  a fixed poly- 

tope, when they are regarded as elements of  f2. In particular, we establish that, in a sense, 

we have actually been talking about volumes and mixed volumes all along. 

If  P is a polytope in I~/, and if r = 0 . . . . .  d, then P induces an element pr 

~ ( P )  ~ ~r  by p~(F) : =  v o L ( F )  for each r-face F of  P ;  we call this element the 
d 

r-class of P.  We write [P]  : =  )--~r=0 Pr, which we call the (total) class of  P .  (The 

terminology is intended to be reminiscent of  that of  [1113 

Theorem 11.1. Let P be a polytope, and for each r ---- 0 . . . . .  d let Pr be its r-class. 

Then Pr = (1/r[)prl �9 

Proof. Let P and Q be any polytopes in E d. From the definition of  the product and the 

way that it is related to volume, for any k and any X, # > 0, the k-class of  ~.P § # Q is 

E )~r lzS prqs , 

r+s=k 

where qs E f2s is the s-class of  Q. Note that r-volume is positive homogeneous of  degree 

r. When P = Q, the k-class of  XP 4 - / z P  = (~. + / z ) P  is (X + tz)kpk, and so taking 

k = r + s, comparing coefficients of  Xr# ~, and clearing fractions shows that 

r! pr �9 s! Ps = (r -t- s)!  Pr+s 

for all r, s > 0. An easy induction argument (with s = 1) leads to the result. []  

As an aside, note the case r = 1 and s = d -  1 of  the above relation. If, as in Section 8, 

we identify the 1-class p :=  P l ~  F21(P) of  the not necessarily simple d-polytope P 
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with its support vector (:rl . . . . .  Jrn), and write otj :=  vola_l (Fj) for j = 1 . . . . .  n, then 

from Pa = (1./d)plpa-1 we recover the familiar formula 

l n 

vol (p) = 

j = l  

Using the notation p : =  Pl,  we see that we can express Theorem 11.1 in two sugges- 

tive ways. 

Coro l la ry  11.2. Let P be a (non-empty) polytope in E a. I f  p E f21 is the 1-class of  P, 

then: 

(a) [P]  = exp p;  

(b) p = log[P] .  

It is often convenient (compare p. 94 of  [11]) to abbreviate log[P]  to log P.  

Theorems 10.2 and 11,1 together now have an important implication. The definition of  

the product of  two weights generalizes the calculation of mixed volumes. Further, a mixed 

volume is a rational linear combination o f  volumes, and hence (replacing polytopes by 

suitable dilatates) an integer linear combination of  such volumes. More specifically, f2r = 

f2~ is generated by elements pl . . . . .  Pr, with Pl . . . . .  pr 6 f21. Using the polarization 

formula 

] ~ ~ (--i)r-S(pj(l)+'''+Pj(s)) r, 
P l  " " " P r  = -~. s=l  l < j ( 1 ) < . . . < j ( s ) < r  

we deduce: 

L e m m a  11.3. For each r = 0 . . . . .  d, the rth weight space f2r is generated by the 

elements pr, with p E ~21. Similarly, if  P is a simple polytope, then f2r ( P) is generated 

by the elements pr, with p E ~21 (P).  

Theorem 10.2, or its refined form Lemma 11.3, can now be interpreted as saying: 

Theorem 11.4. A weight a ~ f2 is a linear combination of  volumes of  faces of  poly- 

topes. 

We end the section with a remark. In the proof  of  Theorem 5.1 we used tight coherent 

subdivisions of  a polytope P ----- Q~o induced by a linear mapping ~0. However, it is now 

apparent that we do not need the subdivisions to be coherent, as long as they arise from 

projections of  faces of  Q under 9- The reason is that any subdivision will give the correct 

answer for the projected weight if the original was ordinary volume (the projection will 

also be volume); the general case follows from Theorem 11.4. 
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12. The Polytope Algebra 

We end the discussion of the weight algebra f2 by considering the connexion between it 

and the polytope algebra li  of [1 1]. Recall the basic definitions. Thepoly tope  algebra li  

as an abelian group has a generator [P] for each P E 79, with [0] := 0. These generators 

satisfy the relations (V) [P U Q] + [P tq Q] = [P] + [Q] whenever P, Q E 79 are such 
that P U Q E 79 also (the valuation property), and (T) [P + t] = [P] whenever P E 79 

and t E E d (translation invariance). Further, rI admits a (commutative) multiplication 
(M) [P]- [Q] := [P + Q] for P, Q E 79 (induced by Minkowski addition), and extended 

by linearity. Finally, the dilatation operator A acts on li  by (D) A 0 0 [ P ]  := [XP] for 

P E 79andX E R. 
The main structure theorem for FI is Theorem 1 of [I 1]. 

Theorem 12.1, FI is almost a graded algebra over ~,, in the following sense: 

d 
(a) There is a direct sum decomposition FI = ~ r = 0  l i r ,  with FI0 ~ Z, the integers, 

and Fir a real vector space for  r = 1 . . . . .  d (with lid ~- R).  

(b) Fir " Fis = H r + s f o r r ,  s > 0 (with l ik  : =  { O } f o r k  > d). 
d 

(c) (ka)b  = X(ab) = a(Xb) for  a, b E Z1 := ~ r = l  Fir and X E ]~. 

(d) A(X)a = Xr a f o r  a E lir and X >_ O. 

An easier proof than that in [ 11 ], establishing a more general result, is to be found 

in [14]. (Note that, in [l 1], we used the notation ~r instead of Fir.) It is natural at this 

point to make FI into a full algebra; we replace I70 by R | ri0 ~ R. 
The connexion between the polytope and weight algebras is provided by Theorem 2 

of [11] and by [13]. 

Theorem 12.2. The mapping P w-~ EF vol(F) | (N(F,  P)) induces an algebra iso- 

morphism between H and ~2. 

The sum here extends over all faces F of P, and the volume and class of normal cone are 

taken intrinsically (we employ the conventions of Section 3). Naturally, this identifies 

the classes [P] of P E 7 9 as defined here and in Section 11, and explains why we have 

employed the same notation for them. 
Actually, all that was shown in [11] and [13] was that we have a vector space iso- 

morphism, and as we remarked in Section 1, strictly speaking the argument of [13] is 

incomplete (we have repaired the omissions here). However, the fact that multiplication 

is preserved as well is a direct consequence of the weaker isomorphism, because in FI 

multiplication also reduces to the mixed volume calculations. 
In the cited papers, everything was done over an arbitrary ordered field. We pointed 

out in Section 1 that the same can be done for the weight algebra; the above isomorphism 

then carries over. 
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13. On the g-Theorem 

As we said in Section 1, the weight algebra g2 provides an easier approach to the necessity 

part of the g-theorem than that employed in [12] using the polytope algebra I'I. Of course, 

in view of Section 12, we know that f2 ~ rI, or, more specifically for these purposes, that 

f2(P) ~ FI(P) for each simple polytope P. In any event, again as we said in Section 1, 
in [12] we largely used weights in the proof. 

We do not repeat large parts of [ 12] here, with just the appropriate changes of language. 
Thus this section must be read in conjunction with [ 12]; except in one instance, we merely 

provide signposts to the amendments. 

First, there are some general remarks. Each occurrence in [12] of I1 (also in various 

qualified forms such as I1 (P))  should be replaced by f2; similarly, the weight space U,~ 

should become f2r (we have written Fir instead of ~"~r in Section 12). There is also a 

technical difference between our usage of /C(P)  in the two papers; in effect, in [12], we 
have factored out translations already, whereas here we have not. 

Next, we may skip over much of the first few sections of [ 12]. We can discard Section 2 

of [12] completely. All of Section 3 of [12] is also redundant, since in Section 8 we have 

avoided the use of the theory of representations of polytopes in establishing what results 
are needed. While flips (see below) were first formulated in terms of representations, 

more directly geometrical descriptions were given later in the section. Nevertheless, the 

reader may find comparison of the alternative approaches helpful; bear in mind that 

p = log P should then be thought of as the 1-weight of a polytope P, determined by its 
edge-lengths (its identification as a support vector remains). All we need from Section 4 

of [12] is that hr(P)  is the number of vertices of type r of a simple d-polytope P; the 

dimension dim f2r (P) = h~ (P) of the weight space is found in Section 6 of [12], and the 

fact that h~ (P) = hd-~ (P)  follows from Theorem 10.3 of this paper. Similarly, Section 5 

of [12] is also covered here, and so may be ignored (the lacuna mentioned in Section 1 
as the starting point of this paper could have occurred in the proof of Lemma 5.3). 

Before we proceed further, it is appropriate to reproduce the two main results, Theo- 

rems 7.3 and 8.2, from [12], in the language of this paper. The first gives the Lefschetz 

decomposition, which leads directly to the necessity part of the g-theorem. The second 

contains the Hodge-Riemann-Minkowski inequalities, which yield an inductive proof 
of the first theorem. 

Theorem 13.1. Let P beasimpled-polytope, andlet p := log P. Then pd-2~f2~(P) = 
1 f2d_r(P) forO < r < id .  

With this notation, the rth primitive space  ~2r(P ) of f2(P) is defined by 

(2r(P) := {x E f2r(P) I P d-2r+lx = 0}. 

Theorem 13.2. I f  P is a simple d-polytope, then for O < r < �89 the quadratic forrn 

( -  1)r pd-2r x2 is positive definite on (2~ ( P ). 

As we have clearly stated, we have no intention of reproducing the details of the 

proofs here. However, there is one place, namely in the proof of the core result [ 12, 
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Lemma 11.7], where we went a little too quickly. We must set the background. We have 

two simple d-polytopes P and Q, which are related by means ofaflip,  which corresponds 

combinatorially in the dual context to a bistellar operation. We could assume that the 

(unit) outer normal vectors ul . . . . .  u~ to the facets of  the two polytopes coincide (with 

a minor exception which will emerge in the description), and are in linearly general 

position. We perform an m-flip to get from P to Q, with 1 < m < �89 + 1), if  the 

following properties hold: 

�9 There is a one-to-one correspondence Fj ~ Gj ( j  = 1 . . . . .  n) between the facets 

F/ of  P and Gj of  Q with normal vector u j,  except that, if  m = 1, then F1 is 

missing. 

�9 F : =  Fm+l n . . .  tq Fd+l is an (m -- 1)-face of  P bounded (in its affine hull) by 

F1 . . . . .  Fro. 

�9 G := G1 A . . .  N Gm is a (d -- m)-face of  Q, bounded by Gm+l . . . . .  Gd+l. 

�9 I f J _ C { 1  . . . . .  n } w i t h J  ~ {1 . . . . .  d + l } , t h e n A { F j  I J ~ J} is a face o f  P if  

and only if A { G j  [ j E J} is a face of  Q. 

The faces F of  P and G of  Q are called their special faces. 

Actually, as was shown in [12], we can take Ul . . . . .  Ud+I to be the normal vectors 

(not all outer) to the facets of  a regular d-simplex S. In fact, S is bounded by the facet 

hyperplanes Hj :=  af fGj  of  Q for j = 1 . . . . .  d + 1; the outer facet normals to 

are -U l  . . . . .  -Um, U,n+l . . . . .  ua+l. (We thus think of  S as sharing the (d - m)-face G 

with Q.) Each face of  S is parallel to a unique face of  P which meets F or o f  Q which 

meets G (possibly both), and conversely; faces o f  S also correspond to parallel faces of  

P + Q, but not uniquely to faces of  F + G. This face of  P or Q (in fact, here we only 

need the latter) is of  kind k if the corresponding face of  S has k vertices outside G. The 

intersection of  facets Gj of  Q, with the j running over a subset of  { 1 . . . . .  d + 1 }, is of  

kind k when exactly k of  {1 . . . . .  m} are missing from the subset. 

The weight algebras f2 (P)  and f2 (Q) are, o f  course, subalgebras of  f2 (P  + Q). When 

m = 1, we have P ~ Q; we can think of  Q as obtained from P by slicing off a new 

facet G1. In this case, P + Q ~ Q, and f2(P  + Q) = ~2(Q). When m > 1, it is not 

hard to see that P + Q is also a simple polytope; it has one new facet F + G (the direct 

sum of the (m -- 1)-simplex F and (d - m)-simplex G), whose unit outer normal vector 

we designate by u0. (When m = 1, we can make the identification u0 : =  ul .)  

The difference between the weight spaces f2r (P )  and ~"~r (Q) is carried on the r-faces 

of  S, or, more exactly, on the corresponding parallel r-faces o f  P + Q which meet  F q- G. 

We are only interested here in the case r > m. Then the essentially unique positive r-  

weight gr E f2r (S) transfers to f2r (Q). Its value on an r-face of  Q of  kind k which meets 

G is numerically the same as that on the parallel r-face of  S, with a sign change ( -1 )k .  

We then have: 

L e m m a  13.3. There is an element s : =  Sr E ~2r ( P + Q ), such that, if  l < r < d - m, 

then,for each y E f2r(Q), there is a unique x E ~ r ( P )  and), E R,  such that y = x + k s .  

By the way, this corrects a mistake in the statement of  Theorem 11.2 of  [ 12], where 

the restriction on r is missing; the omission is obvious, on comparing this theorem with 
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Theorem 11.3. Here, we wish to concentrate on the case r > m, when g2r(P ) is a 

subspace of  f2, (Q) o f  codimension 1. 

The problem in the proof  of  Lemma 11.7 is that crucial details were skated over. 

Slightly modified, Lemma 11.7 states: 

L e m m a  13.4. I f  q : =  log Q ands  : =  Sr withm < r <. �89 then (--1)mqa-2rs2 > O. 

1 . Proof In [12] the range of  r was extended to r > 2m, this is more general than we 

need (or is proved). The induction argument, reducing the proof to the case d = 2r, is 

perfectly correct. (This is the paragraph in Section 11 of  [12] immediately preceding the 

statement of  the lemma.) We prove Lemma 13.4 when d = 2r by specifying a subdivision 

of  Q + Q, which shows that only one pair (G',  G") of  faces of  Q can contribute to the 

product s 2 via a sum G' + G". Of course, only faces of  Q which meet the special face 

G will be involved here. 

By the assumptions made above, the normal vectors uj to the facets Gj of  Q (with 

j = 1 . . . . .  d + 1) are such that (up to a positive scaling of  u0) 

m d+ l  

UO :~ E Uj ~ E Uj. 
j = l  j = m + l  

(Actually, even if  we do not apply a linear mapping to make S a regular simplex, we 

may always scale the normal vectors uj so that this relationship holds.) We choose the 

vector v which gives the subdivision ~D(v) of  Q + Q to satisfy 

d+l  

j=0  

with ~0 > 0, 0 = L1 < .--  < kin, and Lm+l > --- > ka+l = 0. We think of  taking 

v near u0, so that we may choose ~.0 = 1 and all other ~j small. With a sufficiently 

random choice of  the )~j, this will also ensure that v leads to a tight subdivision D(v).  

The r-weight s is supported by those r-faces of  Q whose normal cone is spanned by r 

of  the vectors u 1, �9 �9 �9 ua+l. 

If  the vector uk is the one excluded from an expression 

relint pos U '  n (relint pos U" - v) # 0, 

with U' NU" = 0 and U'tA U" = {ul . . . . .  uk-1, Uk+l . . . . .  Ud+I }, then we may eliminate 

Uk from the expression for v. If  it were possible to have k ~ {1 . . . . .  m}, then 

)~ouo = --)~k uj + (~0 + )~k) uj 
~kj=m+l 

would follow. We would then have 

m d+l  

j = l  j = m + l  
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or, rearranging the sums, 

k-1 m d+l  

~-~(~'k -- ~.j)Uj ~- ~ (~.j -- ~.k)Uj -~- ~ (Z O "~ •k "~ ~,j)Uj -- 1). 

j=S j=k+S j = m + l  

The coefficients of  the uj on each side are positive, and the expression for v is unique 

(every d vectors from {us . . . . .  ud+s} form a bas~s of  Ed), so that we conclude that we 

had to have U'  = {us . . . . .  Uk-l} and U" = {uk+s . . . . .  Ud+l}. Since k < m, this clearly 

would not allow U '  to have r > m elements. 

We must therefore have k e {m + 1 . . . . .  d + 1}, when the r61es of  the two sums are 

interchanged. That is, we now have (after similar calculations) 

m d+S 

v = + z j  + zk )uj  + (z j  - z k ) u s ,  
j = l  j = m + l  

yielding 

d+S m k-1 

j = k + l  j = l  j = m + l  

so that U '  = {u~+s . . . . .  Ud+l} and U" = { u  I . . . . .  Uk_l}. S i n c e  w e  w i s h  U '  and U" to 

conta in  r vectors  each,  w e  are f o r c e d  to have k ----- r q- 1. 

We c o n c l u d e  that 

G' = Gr+2 N �9 �9 �9 A Gd+s, 

G" = Gs f l . . .  tq Gr.  

Moreover, G' fq G" is the unique vertex of  the special face G which does not lie in 

the facet Gr+s. Since G" _ G, we see that G" is of  kind 0 and G '  is thus of  kind m 

(alternatively, {u s . . . . .  Um} _C U", so that U '  is missing of  all of  {u i . . . . .  Um })- It follows 

that the only contribution to s 2 comes from G'  + G", and so has sign ( - 1 )  m, which is 

the assertion of  the lemma. []  
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