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Abstract 

 
   Electron beam welding (EBW) is a fusion joining process that produces a weld by impinging a beam of high energy electron to 
the weld joint. EBW has been used widely due to its advantages like narrow weld zone and heat affected zone, low distortion 
and contamination etc. The present work is focused on EBW of 316L(N) austenitic stainless steel varying the welding 
parameters such as beam power and welding speed. This study is carried out by analyzing the mechanical and metallurgical 
properties of the welded material. The mechanical properties have been evaluated using tensile, impact, hardness and bend test 
in accordance with the ASTM standards. The metallurgical characteristics are further investigated through optical microscopy. 
The mechanical properties of the weld material are better than the parent material. The variations of the mechanical properties 
were related with the variations in the cooling rate of the weld metal. The change in the cooling rate has influenced the grain size 
which has in turn influenced the mechanical properties. The metallurgical factors such as the presence of the ferrite and its 
percentage were also considered to substantiate the variation in the characteristics of the weld metal.  
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1. Introduction 
 
   Due to an increasing demand for high-speed and low distortion welding, electron beam welding (EBW) has become useful in the 
fabrication of engineering parts with low-distortion joints, although its application to large assemblies is often restricted by the 
need to use a vacuum environment. An outstanding feature of EBW is its ability to make exceedingly narrow, deep holes. EBW is 
a high energy welding process which irradiates the work piece material it melts and fusion of the material occurs but the 
vaporization of the material is less. This results in a deep and narrow keyhole formation. The greatest advantage of this technique 
is to get welds with a very high aspect ratio. The welds are deep, narrow, defect-free and joining rates are also found to be very 
high. The characteristics of the fusion zone depend upon a large number of parameters like thermal properties of materials. The 
mechanical and metallurgical properties of the weld is highly influenced by beam characteristics, such as beam power, welding 
speed, focal point location, focal spot size, etc. The ferrite percentage has a significant effect on deciding the characteristics of the 
weld. The cooling rate can affect the ferrite percentage. The study has been carried out to investigate the variation of the properties 
with the change in cooling rate. 
   Eagar et al. (1989) has conducted study on Fe-Ni-Cr alloy, to find the variation in ferrite number. The solidification time and 
cooling rate significantly altered the ferrite number of different samples. The microstructures of the weld and fusion zone were 
affected by the composition of the base metal and welding parameters. David et al. (1990) conducted a study on low Cr-Ni ratio 
alloy to find influence of welding parameters on the microstructure by evaluating the weld microstructure and dendrite structures. 
Yilbas et al. (1998) conducted a study to investigate the mechanical and metallurgical properties of electron beam welded 
austenitic 321 stainless steel. Analysis of the first and second law of thermodynamics of the welding process was carried out. It 
was found that the heat-affected zone increased as the work piece thickness increased and micro cracks were present at the fusion 
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zone. Jankowski et al. (2004) conducted a study of microhardness which is influenced by the grain size. Tjong et al. (1995) 
investigated the characteristics of the 316L weld. AISI 316L stainless steel was welded by the electron beam (EB) and laser 
techniques. Microstructural characteristics, hardness profile, creep rupture properties and creep damage of the welds were 
investigated. Fully austenitic microstructure was obtained in the two welds. The solidification structure of the welds consisted of 
the cellular and equated dendrites. Dey et al. (2009) have made bead-on-plate welds on austenitic stainless steel plates using an 
electron beam welding machine. Experimental data were collected as per central composite design and regression analysis was 
conducted to establish input–output relationships of the process. An attempt was made to minimize the weldment area, after 
satisfying the condition of maximum bead penetration. And the optimization was done using genetic algorithm.  Kohyama et al. 
(1994) conducted a study on microstructure of electron beam welded and TIG welded 316 stainless steel to study the variation in 
microstructure due to dual ion radiation. Byun et al. (2003) has investigated on the effects of irradiation, test temperature, and 
strain on the deformation microstructures of a 316LN stainless steel have been investigated using a disk-bend method and 
transmission electron microscopy. Deformation microstructure changed progressively from a dislocation network dominant to a 
large stacking fault/twin band dominant microstructure with increasing radiation dose and with decreasing test temperature. Also, 
an increased strain level enhanced the propensity of deformation twinning. Arivazhagan et al. (2011) carried out investigations to 
study the microstructure and mechanical properties of AISI 304 stainless steel and AISI 4140 low alloy steel joints by Gas 
Tungsten Arc Welding, Electron Beam Welding and Friction Welding. For each of the weldments, detailed analysis was conducted 
on the phase composition, microstructure characteristics and mechanical properties. From the literature survey, it is observed that 
the process parameters like gun voltage, beam current, and welding speed affect the weld quality (Stoenescu et al. 2007 ; Molak et 
al. 2009 ; Reddy and Rao 2009; Kumar et al. 2010 ; Hegeman et al. 2011).  In the present study the electron beam welding of 
316L(N) austenitic stainless steel was done and mechanical and metallurgical testing were carried out to understand the variation 
in the properties of the weld.  
    
2. Experimental procedure 
 
   The welding was done using the 60kV, 8kW welder of Techmeta, France. The machine was incorporated to do small scale 
welding. The system has electron gun, vacuum chamber and work piece manipulator. The vacuum pressure was maintained at 10-4 
bar. Auto focusing system enabled the work to get maximum power on the work piece. Different energy levels were obtained by 
varying the gun voltage and beam current. Some trails were done to fix the welding speed at which the full penetration can be 
obtained in single pass. 316L(N) austenitic stainless steel was used for the experiment. 316L (N) is designed to overcome the 
pitting corrosion, sensitization etc. The elemental composition is shown in Table 1. The material was cut into a dimension of 105 
X 300mm with a thickness of 8mm. It was welded by keeping zero gap and the material preparation were done by removing 1 
micron from the edge and surface. Butt weld joint was made between the plates. Table 2 gives the welding parameters that have 
been used for the welding. 

Table 1 Chemical composition of 316L(N) 
Element (wt%)  C  Ni  Cr  Mn  P  S  Si  Mo  N  Ti  Nb  Cu  Fe  

316L(N)  0.024  10.07  16.89  1.51 0.026 0.0016 0.42  2.16  0.0597  0.02  0.02 0.35 Bal  
  

Table 2 Welding parameters for each specimen 

Specimen.No Process Parameters  
Gun voltage kV Beam current   mA Travel speed m/min Energy kW 

1 60 50 0.5 3 
2 60 60 1 3.6 
3 60 70 1.5 4.2 

 
1 2 3 

 
60kV,50mA,0.5m/min 60kV,60mA,1.0m/min 60kV,70mA,1.5m/min 

Figure 1 Welded specimens 
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The Figure 1 shows the welded specimens. The specimens for testing were obtained from the welded plate and micro 
structural examinations were carried out at various cross sections of the weld. The specimens were mounted later flatted and then 
polished using SiC abrasive paper with grit ranges from 180 to 1200. Then the samples were lightly polished using 1μm alumina 
slurry. Samples were then washed, cleaned by acetone and then dried, followed by electrolytic etching in 10% oxalic acid at 9V for 
30s (ASTM E3-11). Optical examination is performed using optical microscopy.  Ferrite percentages were found using ferrite 
scope.  The tensile testing is done on universal testing machine at room temperature (ASTM E8). Microhardness measurements 
were taken towards the longitudinal direction of the weld with a load of 1kgf for 20 seconds as per ASTM standards (ASTM E384-
09). The face bend testing of the material was conducted to know the development of the cracks and fissures which will help to 
know the ductile nature of the weld material (ASTM E190-92). The specimens for Charpy test were taken as perpendicular to weld 
direction (ASTM E23). The Charpy impact test was conducted to get the toughness of the weld and it was conducted at -100 °C 
and -196 °C temperatures.  
 
3. Results and discussion  
 
3.1 Cooling Rate 

Cooling Rate        ∂T/∂t=-2πkV(T-T0)2/Q      (Rosenthal, 1941)                           (1)                     
where k – Thermal conductivity in W/(m*K) ,T- Initial Temperature in K, To- Final temperature in K, V- welding speed  and Q- 
energy input in W.   
The cooling rate was calculated using Eq. (1) and the values are tabulated in Table 3. 

 
Table 3 Cooling rate for each specimen 
Sl No. Q/V ratio Cooling Rate(K/s) 

1 6 356.9 
2 3.6 594.89 
3 2.8 764.86 

 
3.2 Microhardness  

Micro hardness values were measured and plotted in Figure 2 (ASTM E384-09). Figure 2 shows the variation of the hardness 
of the specimen at different zone like weld zone, heat affected zone (HAZ) and parent material. The hardness value of the HAZ is 
greater than the weld zone and parent material, because of the grains in the HAZ is finer than the weld zone and parent material. It 
shows that, as the energy input to welding speed ratio increases the hardness value of the weld zone is decreasing. The variation 
implies that as the ratio increases the grain size of the weld zone is increasing.  Figure 3 shows the variation of hardness of weld 
zone against the ratio of energy input to the welding speed. The Q/V ratio and cooling rate is varying inversely. The lower cooling 
rate infers that the grains will get enough time to grow and form coarser grain and vice versa (Jankowski et al. 2004). 
 

 
Figure 2 Hardness Value at different point from weld line 
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Figure 3 Microhardness Value as a function of Q/V Ratio 

 

3.3 Transverse Tensile Test 

The Figure 4 shows the schematic of the specimen used for tensile test (ASTM E8). The transverse tensile test results are 
tabulated in Table 4. The tensile tests were satisfactory since the specimen has been failed in the parent material. In nearly all cases 
the weld material is harder and showing better properties than the parent material. The cooling rate had significant effect on the 
tensile property of the weld.  The failure in the parent material infers that the grain size is finer at the fused region (Hegeman et al. 
2011).   

 

 
Figure 4 Schematic of specimen for tensile test (ASTM E8) 

 
Table 4 Transverse tensile test results 

Specimen No. 1 2 3 
Ultimate tensile 
strength (MPa) 593.15 601.29 591.52 

Base Material 
Strength (MPa) 560 

 

3.4 Face Bend Test 

The Figure 5 shows the schematic of the specimen used for bend test (ASTM E190-92). From the face bend test results, the 
specimens did not fail even for bending at 180º at a bend radius of 16mm. The bend specimen microstructure was observed 
through the optical microscope, and no crack or fissures were observed in the weld.  
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Figure 5 Schematic of face bend test 

3.5 Ferrite Percentage 

   Table 5 gives the ferrite percentage obtained by using ferrite scope as tabulated. Figure 6 shows the variation of the ferrite 
percentage with Q/V ratio. Since no hot cracking was found on the weld it was clear the ferrite percent will be less than 8. When 
the ratio of the heat input to the welding speed increases the cooling rate decreases, it justified by the equation 1. When the cooling 
rate is high, the transformation time for the formation of the ferrite will be very low, this shows the lower Q/V ratio the ferrite 
percentage will be less (Eagar et al. 1989).  

 
Table 5 Ferrite percentage 

Sl.No Ferrite percentage Average 
1 4.6 4.7 4.9 4.3 4.4 4.6 4.6 
2 3.3 3.2 3.6 3.4 3.1 3.7 3.4 
3 2.8 3.0 2.6 3.1 2.7 2.3 2.8 

 

 
Figure 6 Ferrite percentages Vs. Q / V ratio 

3.6 Impact Test  

   The Figure 7 shows the schematic of the specimen used for impact test (ASTM E23). The results of Charpy V- impact test are 
plotted in Figure 8. It shows that when Q/V ratio increases the energy absorbed by the material is reducing. The increase in the 
energy absorption implies that the ferrite content of the weld metal is variable. When the temperature is reduced the toughness of 
the material is reduced. The comparison of variation impact test results and the hardness test shows that both the values are 
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inversely proportional to the Q/V ratio. The base material has a toughness value of about 100J at -1960C and around 133J at -
1000C.  

 
Figure 7 Schematic of the specimen prepared for the Charpy V Impact test (ASTM E23) 

 

Figure 8 Impact test results Vs. Q / V ratio 
 
3.7 Microstructure 
   The microstructure of the weld zone, parent material and fusion zone of the specimens are shown in Figures 9-11. Microstructure 
evaluation shows austenite matrix and dendrite ferrite. The dark lines seen in the microstructure are the grain boundaries. The 
spots seen are the inclusions and the carbides. As the energy input increases, the cooling time taken will be high, and in the 
microstructure it is nearly visible that there is variation in the grain size which is due to the variation in the grain growth time. By a 
rough evaluation of the area it is clear that the secondary phase formation has been varying according to change in the cooling rate 
which is related to the Q/V ratio. When the energy increases the grain size also increases. The energy input is increased the amount 
of secondary phase also varies (increase). When the cooling rate is increased the formation of secondary phase was decreased. The 
dendritic structures were visible in the microstructure and it is observed that the fusion zone has epitaxial grain growth.  

 

a) Base Material b)Weld Zone c)Fusion Line 
Figure 9 Microstructure of Specimen 1 

 
a) Base Material b)Weld Zone c)Fusion Line 

Figure 10 Microstructure of Specimen 2 
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a) Base Material b)Weld Zone c)Fusion Line 

Figure 11 Microstructure of Specimen 3 
 
4. Conclusion 
 
   The characteristics of weld metal of 316L (N) welded by electron beam welding have been investigated at different beam power 
varying from 3kW to 4.2 kW. It is evident that the hardness of the material decreases with increases in Q/V ratio.  This is due to 
variation the cooling rate. The toughness of the material decreased when Q/V ratio is increased, which is due to the variation in the 
grain size which is influenced by cooling rate. The toughness of the material gets reduced with the reduction in temperature. The 
face bend results showed that weld material is ductile and high energy welding process does not affect the ductility of the material. 
The tensile test shows welds were better than the parent material. The ferrite percentage is influenced by the cooling rate. The 
formation of ferrite depends on the phase transformation time and it has been evidently seen on the results. The microstructure 
shows the presence of the dendrite ferrite content in the weld metal.  It is observed that the fusion zone has epitaxial grain growth. 
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