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Weldability Concept on Hardness Prediction T

Yoshiaki ARATA ¥, Kimiyuki NISHIGUCHI ", Takayoshi OHJI*** and Naoki KOHSAI

L2 3 33

The maximum hardness is adopted as an index symbolizing the weldability of steels. By newly introducing two
parameters (cooling function f(7) and alloy-element function f(E)) the fundamental equation for the maximum hardness
is given. The empirical formula is obtained which is very useful in practice and shows a good agreement with many

experimental data.

KEY WORDS: (Weldability) (Maximum Hardness) (Cooling Time) (Alloy-element) (Carbon Equivalent)

1. Introduction

The maximum hardness in the weld part of a metal is
one of the most important parameter to estimate the
occurrence of “low-temperature crack”. The value of this
parameter reflects a standardized base for the appropriate
selection of the base metal and the welding condition to
prevent the low-temperature crack. It is indeed an index
symbolizing the ‘“weldability” of a metal and will be
formulated in the following expression.

H,=F{ fr),fE)} +F,, U |

where F{f(7), f(£)} shows a function of f(r) and f(E)
which mean cooling function, alloy-element function,
respectively and F | is numerical constant relating to basic
hardness of a metal (a certain standard one).

Arata et al.l) have attempted to solve this formula
[1]. By using the carbon-equivalent C, for f(E) and the
cooling function f(rT1 "Tz) for f(r) during welding, the
maximum hardness H,, is given by ‘

H, =F{ f(r Cd *B. . 1)

T1—>T, )’

where Tp T, is the cooling time in seconds from a
temperature T, to 7, °C, and B is a numerical constant.
T, and T2 are selected to be the ones that characterize
the important natures of steels; for example T]=800°C

and 7,=500°C. Assuming the function F' in equation (1)
to be the following relation

F= _[(—_ Ceq, ...... (2)

T1->T2

where A and K are numerical constants, equation (1) is
written as follows by treating many experimental data.

[ 840 '
H,=3 7022 Ceq+58}i66’ """ ®)
800~ 500
) [Mn] | [Si] , [Ni] , [Cr] , [Mo]
where [Ceq] €]+ 24 24 T1a T16 T 60
0.8V
. _ )
Ta00s300 5 3-8 x 1072 [—”bh ]
p

(]
(500-T,) (SOO—TO)
In this equation Ib, Vb’ Vo h_and TO are beam current
[mA], beam voltage [kV], welding speed [cm/min],
penetration depth [cm] and initial temperature of the
specimen [ °C], respectively. [C], [Mn], [Si], [Ni], [Cr]
and [Mo] indicate weight percentages of each element
in steels. The standard deviation ¢ were obtained experi-
mentally to be 66 in the EB-weld part as given in the
equation for the many kinds of steels such as carbon and
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low alloy steels. The result can be illustrated in Fig. 1 and
was confirmed for many Kinds of electron beam welds of
steels under various welding conditions.2"3) Such concept
is known as Arata Electron beam weldability.z)

In this paper the generalization of this weldability is
intended to be applicable not only to EB welding but also
to other welding methods. The maximum hardness is
estimated quantitatively with a higher accuracy in the
following way: several characteristic values obtained from
welding CCT diagrams for many kinds of steels are treated
statistically, and by using these values, F function in
formula [I] is given by another form instead of equation
(2). In this case attention is paid mainly to martensite
structure region.
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Fig. 1 Comparison of the actual hardness with the calculated
hardness for EB-Welds of various steels using eq (3)

2. Formulation of the Problem

As is well known the maximum hardness of HAZ can
be estimated?) from a welding CCT diagram (rapid heat-
ing with the maximum heating temperature of 1350°C).
Fig. 2 (a) is a CCT diagram of a typical high strength steel
(HT-steel) and (b) shows the relation between the struct-
ure area percentage of constituent and the hardness
obtained from (a),*) and it is called CCTSH (Continuous
Cooling Transformation Structure Hardness) curve here-
after. In the figure 7,,,,, and 7, indicate the critical
cooling time at which quantity of martensite becomes 100
and 0%, respectively. The solid line in (b) shows the
actual hardness curve (CCTSH curve) which enables us to
suggest the hardness of HAZ in various welding conditions
using any kind of heat source. It is clear from Fig. 2 (b)
the hardness is closely connected with the quantity of
martensite in the structure. For example in the region of
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short cooling time (small 7) with 100% martensite it keeps
almost a constant value. While in a long time duration
(large 7) it decreases sharply in relation to the martensite.

The solid line in Fig. 3 shows the approximated H,-r
curve corresponding to the proposed hardness equation in
this research. A and B in the figure are the critical points
showing 100% and 0% martensite, respectively. H,
(Tyr7100) means the hardness at 7,,,,,. C corresponds to
the critical ferrite separation point.

The following assumptions are made in obtaining the
appropriate hardness curve.
(i) the hardness saturates at 7<r, ,,, with a value
H,(Tyr100 )
(i) In the region of 7>7,,,,, the hardness decreases
exponentially passing through points B (or B and C) and
shows an asymptote with 7>». Knowing the characteris-
tic values at the critical points A and B (or A, B and C)
the necessary hardness curve could thus be obtained.
Such H,—7 curve is called the ‘“‘characteristic hardness
curve” which is approximate to the CCTSH curve (actual
hardness curve). The hardness equation (characteristic
hardness curve) estimated from such A and B-characteris-
tic values is called as Empirical Formula a and the one
from A, B and C-characteristic values as Empirical
Formula 8. (As for the practical form of the equations,
refer to eqs. (16)~(18).)
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(a): welding CCT (continuous cooling transformation)
diagram
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Fig. 2 Relation between welding CCT diagram and hardness curve
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Fig. 3 Relation between A, B, C-characteristic each point, cool-
ing time and hardness (This relation is called characteris-
tic hardness curve which is compared with CCTSH actual
curve)

3. Numerical Treatment of the Characteristic Values and
the Empirical Formula

3.1 Numerical treatment of the characteristic values

Fach characteristic value can be analyzed regressively
and in the regression it is assumed that the value depends
only on the alloy-elements and each element is a linear
independent operator for every characteristic values. A
lot of welding CCT diagrams which were obtained by
Inagaki et al.3"11) for about 70 kinds of steels in Table 1

Table 1 Chemical composition range of CCT diagram used.

gcr::\?c:i(:ign Range (%)
C 0.07 ~ 0.53
Mn 0 ~ 1.50
Si 0 ~ 0.60
Ni 0 ~ 3.50
Cr 0 ~ 1.50
Mo 0O ~ 0.60
v 0 ~ 0.15
B 0O ~ 0.01

(45)

~ were adopted for such treatment. In the practical analysis
the materials are classified into the conventional welding
steels (Si-Mn type steels) and the HT-steels. For the
former materials the alloy-elements except C, Si, Mn are
included only below 0.1%.
a) Bach characteristic value for the conventional welding

steels.

A-characteristic value: (it is defined as the one at the
critical point A)

H (T ,00)=835[C1 +287, ... 4
log Tyr100 = 2- 55(IC] + [Mn]
——6[81'])—0.92. ...... (5)
B-characteristic value: (defined at B)
H ( o) = 273(IC) + — 3 [Mn]
—%[Si])+ 133, ... (6)
1
log Ty = —0. 37([C] — 1 —[Mn]
1
W[Sl])'f 1.02.  ...... (7)
C-characteristic value: (defined at C)
H, (1) =—277([C] ~ L[Mn]
1
~ 57 [Si])+339, ... ®)
_ 1
log 7, = 5.77([C] + —1—-7-—[Mn] +
| N
+ W[Sl])— 088. ... ©)
b) The characteristic value for HT-steels.
A-characteristic value:
H (71000 =835[C +287, ... (10)

108 Tyy109 = 59(IC) + 5 V] + 1—14-[81'] + =[]

10 455 o] - 5-1]
1
+E[B])—113 ....... (1D
B-characteristic value:
Hy(7370) = S00([C] — b [Mn] — - [S1]

45
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C-characteristic value:

2 Vil + 5 [C1] + s [Mo)
, 1 H () = 288([C] + 6 [Mn] — 17 [si]
"“'T‘[V] +—m[3])+ 153 ... (12) 1 1
+ == [Ni] +——=
1 1 S5 Vi) + (0] — o]
log Ty = —0.20 ([C] — ——=-[Mn] — ——=[Si] X
43 0.40 _ B +
: 75 oz BN 94, . (9
— ——[Ni] + [Cr] — [Mo]
0.58 [ 0. 45 0 49 - + 1 1.
log 7, = 6.18([C] 17 [Mn] + 35 [Si]
+ 3357 1V] ~ gz BN+ 160-.(13) S il + =[] 45 [Mo]
+¥[V]+ 014 —=——[B])— 093 . 15
: 20 tog Tr=5.77[Ceqluz- 0.88 P
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Fig. 4 Characteristic values for conventiond welding steels (Si-

Mn type steel)

In the above equations H(1,;,,) can be treated from
the regression equation including only the term of carbon
content, because 100% martensite structure hardness
depends only on carbon content.11)

Figure 4(a)~(f) and Fig. 5(a)~(f) show the results of
egs. (4)~(15). o-values in the figures are the standard
deviations obtained by using each regression equation.
The solid line shows the regression equation and the dotted

46

one corresponds to o-value. For example in Fig. 4(a),
o-value of H, (177 9¢) in eq. (4) is estimated to be about +
26 using 10Kg-Vickers hardness. [Ceq] w1~ [Ceql yy5 are
for some characteristic values of Si-Mn type steels. Indeed
not all characteristic values are treated quite well as shown
in the figures, but we can satisfactorily draw the hardness
curve for any kind of steels using above equations.
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Fig. 6 Comparison between formula @ (dashed line), formula {3
(solid line) and actual hardness (CCTSH; circles), using
conventional welding steels
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Fig. 7 Same examples as Fig. 6 using HT-steels
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Fig. 8 Summarized result on usability of formula a
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(b): High strength steel

48



Weldability Concept on Hardness Prediction (49)

500 -

Hv
%
0.

o 9 s
400 /0’3,8’@,’
/go o,
o 06/ A 9'00
70 ud
0, /
300 | ®8eh o

Experimental hardness

0 200 300 400 500

Calculated hardness Hv
(a)

500 |-

Hv

Experimental hardness

500

Calculated hardness Hv
(b)

Fig. 9 Summarized result on usability of formula 8
(a): Conventional steel (Si-Mn type)

(b): High strength steel

3.2 Empirical formula of the maximum hardness

In this section the characteristic hardness curves as
shown in Fig. 3 are obtained by using egs. (4)~(15) and
compared with the actual ones.
The adopted formulas are as follows:
Empirical formula a

. - b
T>TM100’ Hv——;m'l' 150 (160), .. (16)
T<Ty00t H,=835[C) 4287, ... (17)

Numerical constant 150 (160 in HT steels) in eq. (16)

500

Hv

400

300

Experimental hardness

0 200 300 400 500

Calculated hardness Hy
(a)

shows an asymptotic one for r+». When a steel is given,
critical points A and B are calculated by using its chemical
compositions and the characteristic values are substituted
into eq. (16). Thus a, b are decided and the empirical
equation is obtained.
Empirical formula g

1

"> Tu100° Hy= g rrgr 160 (G17inHT)
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Fig. 10 Check of accuracy of formula @ and § for conventional

steels
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to the case of eq. (16). For 7<r,,, . €q. (17) is used.

Figure 6 and 7 show typical examples of comparison of
the characteristic hardness obtained from the above
method and the measured one by using welding CCT
diagram (CCTSH). The standard deviations Og> Og are
obtained by rearranging the measured hardness (circles in
the figure) with the formulas a and B, respectively.
Clearly the empirical formulas proposed in this paper
satisfactorily reflect the actual hardness changes. In Figs.
8 and 9 are summarized calculated results by using both
formulas. For any kind of steels the experimental and the
calculated hardnesses agree quite well. We may say there
is little difference between the formula a and § judging
from values of the standard deviation.
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4. Accuracy of Empirical Formulas

First of all the hardness of HAZ is discussed. All of the
adopted specimens are heated at 1350°C in the maximum
temperature. Figure 10 shows the comparison of the
calculated hardness with the measured ones by Yamamoto
et al.12) for 7 kinds of conventional welding steels. In the
figure (a) corresponds to the formula a and (b) to 8.
There is a larger error in (a). Figure 11 is the hardness
curve for HT-steels obtained from the formula §. The
experimental data shown for comparison were reproduced
for 50 kinds of steels from welding CCT diagrams made at
each steel maker (A~D Co.). Each analyzed result is
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Fig. 11 Check of accuracy of formula 3 for 50 kinds of HT-steels
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drawn with (a)~(d). In Table 2 the accuracy of the
formula a and 8 for HT-steel are tabulated by the standard
deviations g, and o,. (See also Fig. 8(b) and Fig. 9(b),
o-values in K of Table 2 were obtained from these
figures.) ‘

Table 2 Standard deviation using formula @ and {3 for 50 kinds
of HT-steels.

K A B C D
Oy 20.6 31.5 48.3 51.3 43.5
O 19.4 13.8 33.7 20.8 25.6

From these results it can be concluded the hardness
curve of CCT diagrams (CCTSH) can be estimated with a
high accuracy by using the formula 8.
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Next, the actual hardness at HAZ are tested by
Bessho’s data.}3) In his data of the maximum hardness,
the welding conditions for 100 kinds of steels (Y-groove
inner welding using /mm¢ low hydrogen electrode) are as
follows: welding current = 170A; arc voltage = 25;
welding speed = 50mm/min. The measured cooling time 7
is 4~6 sec. These conditions are typically used in the
traditional method for estimating the hardness equation.
The traditional method with only one parameter Ceq is
compared with our result in which chemical composition
and cooling time are included. Figures 12 (2) and (b)
show the examples of the traditional hardness curve by
Dearden et al.14) and Kihara et al.,!3) respectively. They
don’t give a good result for estimation. While in Fig.
12(c) and (d) our results are shown, where the empirical
formulas a and f give by far the more accurate results for
wide welding conditions. Comparing (c¢) and (d) the
formula a shows a better agreement than § in contrast to
the case of Fig. 10 or Table 2, whose reasons are not
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Fig. 12 Comparison between traditional equations and formulas
a, § under conventional arc welding condition
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clarified.

The result in Fig. 13 is shown only for reference. The
empirical formula (the solid line) gives a considerably
good estimation to the experimental hardness!) of EB-

welding part.
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Fig. 13 Comparison between formula a (solid line) and experi-

mental value (circle)

5. Conclusion

Data in CCT diagrams of steels were treated statistical-
ly and the estimation of the hardness in the weld part of
many kinds of steels were performed. A new index in the
evaluation of weldability of steels were obtained by this

method.
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