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Abstract

High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or
more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as
single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from
most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility
trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding
metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote
elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be
investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural
evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the
literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most
important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on
CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process.
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1 Introduction

1.1 A new class of materials

High-entropy alloys (HEAs) represent a new class of materials
[1–3]. They usually contain more than five alloying elements
and are defined in this overview as single-phase solid solu-
tions. The possible concentrations for each element are within
5 and 35 at.%. The HEA concept is fundamentally different
from that of most conventional alloys that are used in the
manufacturing of components today.

For instance, traditional alloys resulted from metallurgical
“trial and error” and consist of one principal element to which
small quantities of alloying elements are added to improve
targeted properties. For example, Cr is added to the base ele-
ment Fe in steels or Ni-base superalloys to improve strength
and corrosion resistance. Cu is alloyed to the base element Al,
or Al is added to Ti-base lightweight materials to improve
strength. Each of these alloys offers typical properties such
as high mechanical strength and ductility, accompanied by a
high specific weight for steels [4] that are of prime importance
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for structural applications. As another example, due to their
high strength-to-weight ratio, Al- and Ti-alloys allowed the
development of the modern aircraft industry [5]. However, it
is not always possible to improve all the properties (mechan-
ical strength, ductility, specific alloy weight, creep, corrosion
resistance, and so on) with traditional alloying concepts, and a
compromise has to be found.

HEAs have the potential to overcome the mismatch be-
tween desired and currently available material properties
[1–3, 6]. In addition, the terms medium entropy alloy
(MEA) and compositionally complex alloy (CCA) can be
found in literature and will be defined in Sect. 1.4. Figure 1
shows the general strength-ductility trade-off, i.e., high-
strength alloys have usually poor ductility and vice versa.
However, several HEAs allow overcoming the strength-
ductility trade-off due to their multiple principal element com-
position. These include superior mechanical properties like
specific strength [1, 2, 9–11], mechanical performance at high
temperature [12–14], (shown in Fig. 2), or superior fracture
toughness at cryogenic temperature [15, 16]. Other alloy con-
cepts provide special properties like superparamagnetism
[17].

1.2 Debated core effects of HEAs

The multi-element character of HEAs leads to some particular
effects that were strongly debated in the literature during the
last two decades. Following Refs. [1, 2, 18], four core effects
were proposed in the early stages of HEA research:

1. High-entropy effect
2. Lattice distortion effect
3. Sluggish diffusion

4. Cocktail effect

The high (configurational) entropy effect was initially
claimed to be the dominating factor for stabilizing a solid
solution compared to other factors like atomic radii and
packing density [19] (Hume-Rothery rules). The lattice
distortion effect was assumed to be caused by various ele-
ments forming the crystal lattice with different atomic ra-
dii, which impose local displacements of the atoms com-
pared to their positions in diluted alloys. This was thought
to result in enhanced solid solution hardening compared to
conventional alloys. Systematic studies of lattice distortion
are rare (like in [20]) and may not apply to all HEA com-
positions. The sluggish diffusion effect [21, 22] assumes
that high-temperature diffusion and diffusion-controlled
phenomena such as oxidation [13], creep [20], phase trans-
formations [23], and growth of particles [24] are slower in
HEAs compared to conventional alloys since vacancies
may be surrounded by various atomic configurations.
These fluctuations induce an increase of the activation en-
ergy for diffusion and thus slow down diffusion kinetics.
Only a few diffusion experiments have been performed so
far and several studies debated the sluggish diffusion effect
[1, 18]. The cocktail effect reflects the idea that a property
of the alloy such as its hardness can exceed the weight-
averaged hardness of its pure elements. However, this ef-
fect is not a real hypothesis but rather the idea that unique
HEA properties are the result of combinations of chemical
elements that were not considered in materials science be-
fore. In the materials science community, it is widely ac-
cepted that these four core effects are not fully applicable
or simply do not explain what is observed in experiments.

Fig. 1 Mechanical properties at
room temperature of selected
HEAs (in green), metastable
MEAs (blue), and CCAs (orange)
vs. constructional and industrially
applied steel grades, Al- and Mg-
alloys, derived from and in ac-
cordance with [6–10]
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1.3 Challenges for welding processing

The major part of the studies on HEAs has been aimed at
providing a fundamental understanding of composition and
microstructure and their influences on real vs. predicted prop-
erties [25, 26–28]. Recently, the focus has become more
application-oriented to develop HEAs that have tailored prop-
erties. For that purpose, candidate systems were identified,
cast, and/or processed and their real microstructures investi-
gated [1]. This promises HEAs for industrial applications with
outstanding properties that overcome “issues” of conventional
alloys like the strength-ductility trade-off. Figure 1 shows the
mechanical properties of different steels vs. available HEAs,
MEAs, and CCAs (see definitions in Sect. 1.4). Figure 2 high-
lights the superior high-temperature mechanical properties of
selected refractory HEAs compared to conventional Ni-base
alloys.

In the context of component fabrication, welding is one of
the main manufacturing processes. The successful and reliable
use of new materials depends on their weldability and if they
can generally be joined. For that reason, fundamental testing
of weldability becomes a key challenge for HEAs in engineer-
ing applications.

The quality of a weld joint depends on the microstruc-
ture of the different welding zones, their corresponding
(mechanical) properties, and the structural integrity of the
welded joint [29, 30]. The welding process influences the
material behavior and properties regarding the differ-
ences in energy input and the maximum temperature
(e.g., melting and cooling). As a result, the structure
and properties of the welded joints are affected, e.g.,
the size/shape of the weld pool and the heat-affected
zone (HAZ), the hardness distribution—expressed by

hardening or softening, residual stresses, defects, and
weld imperfections.

To date, little attention has been paid to the weldability of
HEAs. First summarized investigations can be found in refs.
[31–34]. These studies, however, do not encompass the sys-
tematic investigation of the underlying welding metallurgy
and its influence on the desired properties. It is still unclear
whether fusion welding of HEAs causes undesired effects like
the formation of intermetallic compounds (IMCs), segregation
of specific elements at crystalline defects, and/or unexpected
deteriorations of the weld joint properties in terms of strength
and/or corrosion resistance.

The already existing information on HEAs and welding is
fragmented with either a focus on the welding process, its
influence on the weld joint properties, or the investigated
HEA material. However, these studies could only partially
consider the properties of weld joints required in applications.
A comprehensive database of HEA weldability is currently
missing. The scope of this study is, therefore, to summarize
the available studies on welding of HEAs with respect to the
HEA type, the applied welding process, and its influence on
the weld joint properties.

1.4 HEA types

As previously mentioned, HEAs are defined in this over-
view as single-phase and disordered solid solutions that
contain at least five elements in near equiatomic propor-
tions while so-called medium-entropy alloys (MEAs) con-
sist of three to four main elements. The definition of
HEAs has evolved over time as a result of intensive re-
search and abuse of language appeared in the literature,
namely, multi-phase alloys and even compositionally

Fig. 2 High-temperature yield
strength of refractory HEA and
MEA compared to conventional
creep-resistant Ni-base alloys, in
accordance with [9, 20] (note: the
NbMoTaW systemwas originally
referred to in the reference as
HEA, we used MEA due to the 4-
element system)
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complex IMCs were occasionally referred to as HEAs.
During the setup of the priority program on HEAs in
Germany by the German Research Foundation (DFG),
the international committee members have introduced
the term compositionally complex alloys (CCAs) to avoid
confusion between different terms used in the literature.
Since then, CCAs are defined as alloys that contain at
least two phases (ordered and/or disordered) and have
compositions within the same limits as HEAs (5 to 35
at.%, see Sect. 1) [11] while HEAs are single-phase and
disordered solid solutions [3, 32, 33].

In recent years, an increasing number of HEAs/CCAs
were introduced and Miracle and Senkov listed 375 dif-
ferent HEA/CCA types in their review article from 2016
[1]. They proposed a classification system for HEAs,
which is given in Table 1 (extract of the most common
families). Different designation systems can be found.
HEAs/CCAs are typically designated by their chemical
elements in alphabetical order, e.g., CoCrFeMnNi, or
following the order of the elements in the periodic table,
i.e., CrMnFeCoNi. The designation of varying composi-
tions can also be found, e.g., in AlxCoCrCuyFeNi where
the proportions of Co, Cr, Fe, and Ni are equal and
molar, while the Al and Cu concentrations vary and
are symbolized by “x” and “y.” In the following, the
alphabetical order is used to name HEAs, MEAs, and
CCAs.

From the welding processing point of view, not all
currently investigated HEAs/CCAs will be suitable for
components as they encompass very expensive metals
(like rare earth metals and precious metals). Hence, their
further application for (welded) components is at least
questionable, and it is challenging to classify possible
HEA/CCA systems in view of their weldability. We thus
sorted available studies on welding of HEAs/CCAs by
welding processes. In addition, we aim to give an over-
view of what challenges are anticipated with the current
and future weld fabrication of these novel materials.
Many HEAs/CCAs show a way more complex metallur-
gical behavior than expected, which is expressed by the
formation of secondary phases such as IMCs during
welding.

2 Welding processing, challenges,
and perspectives of welded HEA joints

For the last 5 years, a continuously increasing number of sci-
entific studies was published that contain the terms “welding”
and “high-entropy alloys” [31–34]. In these recent studies,
welding of 3d-transition-metal HEAs/CCAs was primarily in-
vestigated. The focus of HEA/CCA welding so far is on dif-
ferent welding processes including:

& Fusion welding like tungsten inert gas (TIG) welding with
low energy density (and high heat input), laser beam
welding (LB/LBW), and electron beam welding (EB/
EBW) with high energy density (but low heat input).

& Solid-phase processes such as friction stir welding (FSW).
In this case, heat generation by friction is used to generate
temperatures of approximately 80% of the liquidus
temperature.

There are further studies on welding of HEAs/CCAs by
special processes such as explosion welding [35], diffusion
welding [36], and individual examinations on refractory
HEAs [37]. These investigations will not be discussed in the
following, as this overview focuses on basic welding proper-
ties of the equiatomic CoCrFeMnNi HEA (“Cantor” alloy in
accordance with [6]) and various compositions of the
AlxCoCrCuyFeNi (with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1) HEAs/
CCAs [38–40].

2.1 General aspects of welding of HEAs

It has been reported that welding defects in the face-centered
cubic (fcc) CoCrFeMnNi HEA such as (hot) cracks or pores
can be mostly avoided by welding parameter adjustments [41,
42]. Nonetheless, it should be noted that these investigations
have only involved remelted base material (BM) or single-
layer butt joints. Neither multi-layer welds nor complex joint
geometries were investigated so far. Weldability studies,
which contain data on filler metals for welding of HEAs or
use them as filler metals, are rare. Publications on brazing/
soldering [43] or fusion welding [44] can be found but are
out of the scope of the present overview. The problem is that
the nearly equiatomic composition must be guaranteed. It
must be clarified how a certain HEA/CCA-system must be
processed (e.g., manufacturing of rods, wires, etc.). Further
effects like the possible burn-off loss of chemical elements
must be identified and compensated by the filler metal. It
can be concluded that only a rudimentary weldability could
be proven for the CoCrFeMnNi alloy.

Wu et al. [45] published a study on EB-welded
CoCrFeMnNi (see Fig. 3). Neither solidification nor liquation
cracking was reported for the weld joint, which is probably
related to the narrow solidification range (~60 °C [46]) of this

Table 1 Classification of (the most common) HEAs vs. chemical
composition [1]

HEA system Possible elements

Refractory metal Hf, Mo, Nb, Ta, W, Zr,

3d transition metal Co, Cr, Cu, Fe, Mn, Ni, Zn, Zr

Light metal Al, Be, Li, Mg, Sc, Ti

Precious metal Ag, Au, Ir, Pd, Pt, Rh, Ru
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alloy. The authors suggested that the CoCrFeMnNi alloy
shows promising weldability for fusion welding techniques.

Further studies confirmed the good weldability in terms of
defect-free welded joints as one of the main goals for weld
processing, e.g., without further preheating for a wide range of
welding processes including LBW and TIG [41, 42, 45,
47–49]. All these studies show the well-known epitaxial
(and partially excessive) grain growth from the fusion line
toward the centerline of the weld joint during dendritic solid-
ification (see Fig. 3a). This behavior is a result of the applied
heat input during welding, i.e., the welding parameters that
influence the weld pool shape. According to ref. [45], the
EB and TIG WM of the CoCrFeMnNi showed dendritic so-
lidification with dendritic cores enriched in Co, Cr, and Fe and
interdendritic regions rich in Ni and Mn (see Fig. 3b). This
elemental micro-segregation can perhaps influence the hot-
cracking behavior of the CoCrFeMnNi HEA, but this has
not been investigated so far.

At high energy densities (as provided by LBW and EBW),
the Mn content in the weld metal decreased to an average
value of ~15 at.% (see Fig. 3c), which is a result of Mn va-
porization due to its high vapor pressure (visually recogniz-
able by so-called “welding plume”) [42, 45, 50]. The conse-
quences of this Mn loss on properties like corrosion and wear
resistance cannot yet be foreseen, and it is, therefore, unclear
whether the integrity of the welded CoCrFeMnNi HEA can be
guaranteed for structural applications requiring welding.

Considering that the CoCrFeMnNi alloy is one of 375
HEA/CCA-types (in accordance with [1]), a high number of
welding experiments must be investigated to identify HEA/
CCA suitability for welding processing. This does not imply
that each of the numerous HEA/CCA-types has a unique
weldability, i.e., materials within a certain range of chemical
compositions can have similar welding properties. A targeted
approach focused on the desired material properties and its
specifications (e.g., corrosion resistance) and including addi-
tional boundary conditions (i.e., costs, material availability,
etc.) would be helpful to limit the number of alloy systems
and welding processes.

2.2 Welding influence on joint properties

2.2.1 Mechanical properties

The influence of different welding processes on the mechan-
ical properties of the CoCrFeMnNi HEA is summarized in
Fig. 4. The average values for the yield strength (Rp0.2), the
tensile strength (Rm), the elongation to fracture (ε), and the
hardness of the BM are compared to those of the WM for
different welding processes: TIG and LBW (FSW will be
discussed later), Rm and ε are reduced in the welded condition
compared to the base material while the hardness increases.
This corresponds to a decreased mechanical performance that
is mostly reflected by the reduction of the ductility and prob-
ably the toughness of the WM, i.e., decreased resistance to

Fig. 3 EB welded CoCrFeMnNi WM. a BSE micrograph showing
epitaxial grain growth. b Elemental maps from the framed area in (a). c
Mn concentration profile showing maxima in the interdendritic regions
and minima within the dendritic cores. The figures were taken from ref.
[45], reprinted by permission of InformaUKLimited, trading as Taylor &
Francis Group
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crack-growth compared to the BM. In this respect, the occur-
ring welding residual stresses vs. the used weld heat input are
important and should be investigated in future studies. The
degradation of the mechanical properties in welded joints
compared to the BM was attributed by Wu et al. [45] to a
change of grain size and elemental segregation in the WM.

2.2.2 Weld heat input effect

For the TIG process, it is not yet possible to conclude on an
influence of the welding parameters on HEA welded joints.
LBW was reported for different weld heat inputs for the
CoCrFeMnNi HEA [42, 47]. Nam et al. [42] showed results
for LBW for a 1.5 mm sheet with varying heat inputs between
0.21 and 0.35 kJ/cm (note: calculated from the laser power
3.5 kW and welding speed from 6 to 10 m/min as the authors
did not refer to the heat input). This welding parameter win-
dow led to a far too low heat input and resulted in partial and
insufficient welding penetration. In addition, a large heat input
(0.35 kJ/cm from [42]) resulted in a so-called “undercut” phe-
nomenon due to the evaporation of elements with high vapor
pressures like Mn [51]. This is similar to the burn-off loss of
filler metals. For all the heat inputs that were investigated,
shrinkage voids were found to form, and the origin was not
discussed, but it is obvious that the evaporation of Mn had an
influence.

At the current state of the art, no general influence of the
welding parameters on the mechanical properties (described
in Fig. 4) of the welded joints can be derived from the men-
tioned publications. To restore the mechanical properties in
the weld joint, depending on the alloy composition and
welding process, a post-weld heat treatment (PWHT) might
be required and is not exclusively related to precipitation-

hardened materials (like Ni-base superalloys [56]). Despite
the metallurgical changes by a PWHT, a further relaxation
of the welding residual stresses is a considerable reason for
conducting such procedure. In the case of HEAs, the number
of published studies on this aspect is limited. Currently, no
general recommendation is possible if PWHT is “mandatory/
optional.”

Nam et al. [41] showed a degradation of the mechanical
properties of LBW joints of CoCrFeMnNi HEA sheets (cold-
rolled prior to welding). The authors attributed this degrada-
tion to the recrystallization of the grains and (probably) the
“disappearance of conglomerated dislocations” through the
welding heat input in the as-welded condition. A PWHT be-
tween 800 and 1000 °C positively influenced the ductility
compared to the as-welded condition. In the annealed condi-
tion, the strength and ductility of the HEA BM and WMwere
similar for each respective PWHT-condition, although it was
accompanied by a significant loss of the tensile strength com-
pared to the initial condition (BM: cold-rolled, WM: “as-LB-
welded”).

Consequently, further research should focus on the identi-
fication of possible PWHT effects in HEAs/CCAs to optimize
the properties of weld joints. Asmentioned previously, studies
on welding of HEAs were limited to re-melted materials or
single-layer butt joints. (Filler materials not commercially
available). For that reason, there is no knowledge of the
multi-layer welding behavior of HEAs/CCAs so far.

2.2.3 Thermophysical properties vs. welding

Currently, only a limited number of studies are available for
basic thermophysical properties of HEAs/CCAs (see Table 2),
which will be important for the welding of components in

Fig. 4 Mean values and
corresponding error bars of the
yield stress at 0.2% plastic strain
(Rp0.2), the ultimate tensile stress
(Rm), elongation to fracture (ε),
and hardness (HV0.1 to HV0.5)
of the equiatomic CoCrFeMnNi
BM and WM for different
welding processes: TIG: [45, 48,
52], FSW: [47, 53, 54], LB: [41,
42, 45, 49, 50, 55]
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terms of the calculation of cooling times, weld distortion ef-
fects, or suitable weld heat input calculation for multi-layer
welding. The CoCrFeMnNi alloy has a relatively low thermal
conductivity [62], i.e., about one-third of high-alloyed austen-
itic steels [64], but it has a comparable heat capacity [35] to
that of ferritic and austenitic steels [63, 64]. Table 2 shows the
thermophysical properties of the CoCrFeMnNi HEA and two
different AlxCoCrFeNi CCAs, i.e., thermal conductivity κ,
thermal expansion coefficient α, specific heat capacity cp,
and melting temperature Ts. Due to the relatively low thermal
conductivity of HEAs/CCAs (κ < 11 W/mK; see Table 2),
welding may become problematic as heat accumulates in the
welding zone. This could result in severe overheating of the
small HAZ with a very high temperature gradient between the
weld and the base material. For instance, it is known that
brittle IMCs such as the σ phase form in the equiatomic
CoCrFeMnNi HEA [23, 24] and the equiatomic
AlCoCrFeNi CCA [62] when these alloys are subjected to
high temperatures (e.g., between 600 and 800 °C) for long
times. The precipitation of the σ phase was reported to in-
crease the hardness and embrittle HEAs and CCAs.

Based on recent phase stability and precipitation kinetics
studies [23, 24, 65], it is expected that overheating during
welding may lead to the precipitation of IMCs that strongly
affect the HAZ-properties of the CoCrFeMnNi HEA and
AlCoCrFeNi CCA. The precipitation of the σ phase may re-
duce the toughness and ductility of the HAZ. If these IMCs are
present in the HAZ after welding, a further PWHT may be
performed to dissolve these IMCs followed by rapid cooling
to freeze the high-temperature microstructure. However, fur-
ther welding studies are still needed to investigate these
possibilities.

From a general viewpoint, the weld shrinks upon cooling,
due to thermal contraction, at a much faster rate than the base
material. This leads to the formation of high tensile residual
stresses in the weld while compression residual stresses devel-
op in the base material. However, the final distribution of the
welding residual stresses may be more complex and depends
on other factors such as composition, microstructure, possible
phase transformations, thermal and mechanical properties,
weld seam geometry, and preparation of the welding edge,
i.e., the residual stress state prior to welding due to the com-
ponent processing and restraints due to external fixtures and

component stiffness, according to ref. [66]. The tensile resid-
ual stresses in the weld seam promote crack formation and
propagation and thus lead to a degradation of the component
integrity [67, 68]. Therefore, the design of new HEAs/CCAs
with optimized properties for welding should aim at increas-
ing their thermal conductivity to minimize residual stresses
and thus reduce their susceptibility to cracking.

2.3 Current challenges for welding

2.3.1 Weld imperfections by fusion welding

Our investigations and the studies reported in Refs. [42, 45,
50] showed that the formation of pores in the weld joint of the
CoCrMnFeNi HEA can be problematic. Figure 5 shows an
LB-welded sample on a 2-mm-thick disc-shaped (Ø = 16mm)
CoCrFeMnNi HEA, welded with an IPG YLR-20000 fiber
laser using a beam power of 1.2 kW, a focus spot size of 0.2
mm, and a 1 m/min welding speed (corresponding to a weld
heat input of 0.60 kJ/cm). At present and considering the
results of ref. [42, 47], it is assumed that the pores shown in
Fig. 5 might be suppressed, or their volume fraction mini-
mized, by adjusting the welding parameters as their presence
is related to the chemistry of the CoCrFeMnNi HEA.

Indeed, these pores may result from the evaporation of Mn
since LBW and EBW are high-power processes [42, 45, 50].
Keyhole instabilities during LBW/EBW can be another rea-
son for the formation of pores. In that case, the pores may be
suppressed through a suitable adjustment of the welding pa-
rameters, i.e., the weld depth to width ratio should be reduced
[69, 70].

In comparison to single-phase fcc HEAs such as
CoCrFeMnNi and AlxCoCrFeNi with x ≤ 0.3, CCAs (mainly
AlxCoCrCuyFeNi with 0.3 < x ≤ 1 and 0 ≤ y ≤ 1) are more
challenging to weld due to their complex microstructures
consisting of multiple phases. For instance, for low Al and
Cu contents (e.g., Al0.6CoCrFeNi), as-cast CCAs are poly-
crystalline with a two-phase matrix (bcc/B2: disordered and
ordered body-centered cubic phases interconnected at the nm-
scale), which contains μm-scale disordered fcc regions [71].
With increasing Al content in AlxCoCrFeNi CCAs, the vol-
ume fraction of the B2 phase increases at the expense of the
fcc phase that eventually vanishes in as-cast alloys with x >

Table 2 Thermophysical
properties at room temperature of
HEAs and CCAs [36, 57–62]
compared to conv. steels with fcc
(316L) [64] and bcc (S235) [63]
structures

Material κ in W/mK α in10-6 1/K cp in J/kg*K Ts In °C

CoCrFeMnNi/HEA 5.6 [62] 15.0 [57] 450 [36] 1289 [58]

Al0,5-CoCrFeNi/CCA 10.5 [59] 9.2 [60] – 1358 [60]

AlCoCrFeNi/CCA 11.0 [60] 9.0 [60] – 1376 [61]

316L [64]/Austenitic steel 15.0 16.0 500 1440

S235 [63]/Ferritic steel 40–60 11.0 461 1460
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0.9. In Cu-containing CCAs, Cu promotes the formation of an
additional Cu-rich and disordered fcc phase with a low solidus
temperature [72]. The formation of this phase is due to the low
bonding energies and positive enthalpies of mixing of Cu with
the other 3d-transition metals Co, Cr, Fe, Mn, and Ni [25, 47,
73].

After welding, AlxCoCrCuyFeNi CCAs show a high num-
ber of weld defects such as interdendritic hot cracking in the
HAZ and WM (solidification/liquation cracks: see Figs. 6 and
7a), quasi-cleavage fracture, and pores in theWMduring TIG,
EBW, and LBW [39, 40, 74]. Hot cracking is commonly
associated with micro-structures comprising at least two
phases with different melting temperatures or a certain solid-
ification range, like in case of Al- or Ni-alloys [56].

When the equiatomic AlCoCrCuFeNi CCA is welded in
the as-cast state, Cu-rich phases are present in the
interdendritic regions of the weld and at grain boundaries of
the HAZ (see Fig. 6 a and b), the latter remaining solid. In
connection with the thermal expansion, the welded joint
shows hot cracking in the interdendritic regions where Cu
segregated (see Fig. 6b). For that reason, the weldability of
Cu-con ta in ing CCAs l ike AlCoCrCu 0 . 5FeNi or
AlCrCuFeCoNi can be improved by decreasing the Cu con-
centration that promotes hot cracking.

To rationalize the presence of Cu segregation in the
interdendritic regions, Martin et al. performed Scheil

so l id i f i ca t ion s imula t ions and showed tha t the
AlCoCrCuFeNi CCA in the as-cast condition should ex-
hibit a dendritic microstructure with a large melting range
between 300 and 350 K [40]. The accuracy and correct-
ness of these simulations rely on thermodynamic data-
bases. Even though databases are available for HEAs/
CCAs (e.g., TCHEA4 for the 2020’s version of the
Thermo-Calc© software), several studies reported in the
literature on HEAs/CCAs (e.g., summarized in [75]) show
that thermodynamic calculations are often relatively inac-
curate. In that connection, the solidification simulations of
Martin et al. [40] could be revaluated using the (continu-
ously increasing thermodynamic) database of the 2020’s
version. However, given the increasing number of publi-
cations on phase stability (and welding) of HEAs/CCAs,
it is assumed that the implementation of these results in
Thermo-Calc© will improve the quality and accuracy of
the TCHEA databases in the near future.

Hot cracking (see Figs. 6a, b and 7a) can result in numerous
geometrical micro-defects such as notches that act as stress
concentrators for secondary overload cracking of brittle
phases. This was reported by Nahmany et al. [74] for EB-
welded AlxCoCrFeNi CCAs with different Al-contents. The
authors showed that the susceptibility to cracking was highest
for large Al-contents (e.g., with x = 0.8 wt.%, in accordance
with the original figure labeled “P2” in Fig. 8) while alloys

Fig. 5 Weld joint in the equiatomic CoCrFeMnNi HEA. a Photo from the
top. b X-ray image from the top showing pores in the weld. c Optical

microscopy: cross-section showing the weld seam geometry. dMagnified
area showing the fusion line between the base metal and the weld metal

Fig. 6 Hot cracking in the
equiatomic AlCoCrCuFeNi
HEA: light optical micrographs of
(a) the TIG weld and HAZ, (b)
detail of HAZ-cracking due to
Cu-segregation in the
interdendritic areas. The figures
were taken from ref. [40], © The
Minerals, Metals and Materials
Society and ASM International,
reprinted with permission of
Springer Nature
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with lower Al concentrations did not show any cracks (P3
alloy with x = 0.6 wt.%).

The reason is that Al stabilizes a hard and brittle-
ordered B2 intermetallic phase whose volume fraction in-
creases as the Al concentration increases [76]. For this
reason, a decrease in Al content should allow a reduction
of the susceptibility to cracking of the AlxCoCrFeNi
CCAs. Nahmany et al. [74] assumed that (hot) cracking
is additionally influenced by residual stresses resulting
from fast cooling of the weld metal. To our knowledge,
no studies focusing on the determination of residual
stresses in HEA/CCA welds have been reported so far,

but they would be crucial to qualify HEAs and CCAs
for industrial applications.

Martin et al. [40] hypothesized that the hot cracks in the
welded AlCoCrCu0.5FeNi CCA (resulting from Cu-segrega-
tion, see Fig. 7b) acted as stress concentrators that induced the
formation of further cracks. These cracks, which are charac-
terized by brittle transgranular fracture topography (see
Fig. 9a, b), may propagate through hard and brittle areas of
both the HAZ and the WM. Although the authors of refs. [40,
74] did not consider this possibility, we assume that these
cracks can be classified as cold cracks. In contrast to hot
cracks, cold cracks appear occasionally after welding has been

Fig. 7 Different types of cracks:
(a) interdendritic hot cracking in a
TIG weld of the
AlCoCrCu0.5FeNi CCA and (b)
transgranular cold cracking in the
HAZ of the equiatomic
AlCoCrCuFeNi HEA. The
figures were taken from ref. [40],
© The Minerals, Metals and
Materials Society and ASM
International, reprinted with
permission of Springer Nature

Fig. 8 Deep penetration bead-on-
plate EB-welds on
Al0.8CrFeCoNi (P2, right col-
umn) and Al0.6CrFeCoNi (P3, left
column) with different weld heat
inputs. Samples P3-2 and P3-4
(low Al content) exhibit no weld
defects whereas P2-1 and P2-3
(high Al concentration) exhibit
distinct weld defects, e.g., hot
cracks in the weld joint top region
and centerline cracking, see P2-3.
The figures were taken from ref.
[74], © Springer Science +
Business Media New York and
ASM International, reprinted with
permission of Springer Nature
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completed, i.e., way below the solidus temperature of the al-
loy. For this reason, hot and cold cracks show distinct fracture
topographies. Hot cracks in weld joints are typically charac-
terized by their interdendritic cracking pathways (see
transgranular fracture in Fig. 7a), but they can also show an
intergranular behavior with rather smooth fracture surfaces,
i.e., less deformation capability at high temperatures [77]. In
contrast, the transgranular quasi cleavage facets in Figs. 7b
and 9b suggest a certain ability for deformation, i.e., crack
propagation after welding at lower temperatures, and thus in-
dicate cold cracking. It must be emphasized that further work
is needed to confirm that the cracks observed in Figs. 7b and
9b are really cold cracks. This example demonstrates some of
the challenges that may occur during (fusion) welding pro-
cessing of HEAs.

In view of the emerging field of hydrogen generation,
transportation, and use, the fcc CoCrFeMnNi HEA and its
medium-entropy derivatives are assumed to be promising ma-
terials for storage vessel wall materials for liquid hydrogen
and high-pressure purposes. There are several reasons for this.
First, these alloys show outstanding mechanical properties at
cryogenic temperatures (tensile strength, toughness, and fa-
tigue resistance) [15, 16, 42, 52]. Second, some alloys of this
family have a significant hydrogen solubility (> 70 wt.-ppm)
[78, 79] that is comparable or even superior [80] to austenitic
stainless steels [81]. Third, it was partially proven in ref. [82]
that the fcc CoCrFeMnNi has a hydrogen-assisted cracking
(HAC) resistance that is comparable to that of 304L austenitic
stainless steels. However, from the available literature, it is
unclear whether hydrogen is involved in terms of delayed
HAC in HEA welds. This is therefore an area where further
research is required to advance the field.

2.3.2 Dissimilar welds (fusion welding)

Only a small number of welding studies are available for dis-
similar welds: (1) TIGwelding of Al0.1CoCrFeNi fcc HEAs to
conventional AISI304 [52] and (2) LBW of dissimilar mate-
rial processing (as-cast vs. rolled material) conditions of fcc
HEA CoCrFeMnNi [42]. The mechanical joint properties
were characterized by tensile tests. Intermixing of the two
alloys was found to result in an increase of the yield and

tensile strengths of the HEA-WM compared to the HEA-
BM, even though the strain to fracture was significantly re-
duced and all samples fractured in the HEA-BM. This indi-
cates that fcc HEAs have the potential for DMWs with aus-
tenitic steels as fcc HEA-types have similar thermophysical
properties compared to austenitic steels (see Table 2). The
knowledge of the thermophysical properties (like the thermal
expansion coefficient) can be useful for estimating the possi-
ble weld distortions. This is important if HEAs are used as
structural materials in terms of external restraints of the weld
joint.

As the CoCrFeMnNi HEA has outstanding mechanical
properties at cryogenic temperatures [15, 16], it is a candidate
material to replace austenitic stainless steels 304L or 316L in
safety-relevant components where superior cryogenic proper-
ties are essential. Due to its high relatively high costs, associ-
ated to the large amounts of Co and Ni, the CoCrFeMnNi
HEA will have to be joined to conventional materials to re-
duce the costs, and further investigations of the weldability of
DMWs involving HEAs are still required.

2.3.3 Solid-state friction stir welding

In current FSW-studies, single-phase HEAs are being consid-
ered, e.g., Al0.1CoCrFeNi [83–85] and CoCrFeMnNi HEAs
[47, 53, 54, 86, 87]. The quaternary CoCrFeNi MEA [88, 89]
is also of interest. The weldability as a material property is
hard to express quantitatively. According to the definition of
weldability in the ISO-recommendation [90], a material can
be welded if the technique ensures the integrity of the metal by
a corresponding technological process in such a way that the
welded parts meet the technical requirements. For this reason,
all the above-mentioned alloys have qualitatively good
weldability by FSW, for example by avoidance of further
process steps like preheating or PWHT of the weld joint.

The advantage of FSW compared to fusion welding pro-
cesses is that the process temperature is below the solidus
temperature, which decreases the susceptibility to form brittle
IMCs. For example, in Al-to-steel joints, thick layers of hard
and brittle IMCs are present after fusion welding while their
volume fraction can be significantly reduced when FSW is
used instead of fusion welding [91, 92]. Similar beneficial

Fig. 9 Topography of fracture
surface across the fusion line of
the AlCoCrFeNi TIG-welded
joint: IG intergranular cracking in
dashed line region across the fu-
sion line, TG transgranular
cracking in the HAZ and fusion
zone. The figures were taken from
ref. [40], © The Minerals, Metals
and Materials Society and ASM
International, reprinted with per-
mission of Springer Nature
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effects of FSW may be anticipated in HEAs/CCAs. The for-
mation of IMCs is a complex process and depends on the
temperature and the underlying percentage mixture of the in-
volved materials.

Despite the good weldability of HEAs and MEAs, FSW-
specific weld defects (see Fig. 10) such as tunnel defects,
contamination of the stirring zone by intermetallic particles
due to tool wear, or insufficient penetration of the welded parts
may be present. However, these defects can be avoided by
adjusting the welding parameters. Most FSW joints in HEAs
and MEAs show the formation of so-called “white band de-
fects.” These are areas of extreme local deformation and act as
barriers to the accumulation of finely dispersed tool material
particles such as WC (see Fig. 10 FSW joints show a signif-
icantly increased hardness in the area of the stirring zone [86]
with a reduced strain to fracture (see Fig. 4). Possible cold
cracks or overload cracks can originate from the FSW-
specific defects and thus reduce the ductility of the FSW-joint.

Regarding the current state of the art, the integrity of the
FSW-joint in HEAs and MEAs seems to be more influenced
by the tool material and the welding parameters than by the
material itself (see Fig. 10). This is due to the strong deforma-
tion that results from possible embedded WC particles by the
abrasive tool wear. In case of significant degradation of the
weld joint’s mechanical properties, the integrity of a compo-
nent would be reduced. Particularly in case of FSW, proper
welding parameters and adequate tools, considering both their
geometry and their material, should be determined in advance.
Thus, from today’s perspective, it is premature to draw any
conclusions from the limited amount of FSW studies on HEA/
CCA systems.

3 Summary and outlook

Only limited attention has been paid to the weldability of
HEAs/CCAs, and the current state of the art allows us to state
the following conclusions:

& Several techniques were reported to produce reliable met-
allurgical bonding using HEAs/ CCAs. Both fusion
welding (such as TIG, LBW, EBW) and solid-state pro-
cesses (like FSW) have been successfully applied.

& The equiatomic fcc and single-phase CoCrFeMnNi alloy
is currently the most studied HEA in terms of the different
welding techniques and parameters, its mechanical prop-
erties, and microstructural evolution during welding.
Since its introduction, new HEA systems such as bcc re-
fractory HEAs (e.g., HfNbTaTiZr) were discovered.
However, the welding properties of these alloys are still
relatively unknown. Generally, possible effects like grain
refinement, elemental segregations, and secondary phase
precipitation must be anticipated during welding of HEAs.
For that reason, the welding influence on possible appli-
cation properties such as corrosion resistance must be
further investigated to bring HEAs/CCAs to potential
technical uses.

& For welding techniques with high energy input, i.e., EBW
and LBW, loss of elements with low melting temperature
and high vapor pressure will become a challenge for con-
trolling the chemical composition (especially in the case of
EBW due to the necessary vacuum during welding). For
further fusion welding techniques like MIG, the develop-
ment of suitable welding filler materials will be a challenge.
The problem is that the nearly equiatomic composition
must be guaranteed. It must be clarified how a certain
HEA/CCA-system must be processed. Further effects like
the possible burn-off loss of chemical elements must be
identified and compensated by the filler metal.
Nonetheless, some HEA systems with low melting points
were already used as filler metals for soldering.

& The welding experiments are currently limited to single-
layer welding. Studies on detailed residual stress distribu-
tions during welding and weld parameter effect on weld
seam geometries and possible distortion effects are miss-
ing. This was caused by the limited amount of materials in
the past (typically within gram-range). Meanwhile, higher
amounts of these materials can be manufactured. Hence,
the number of publications on welding residual stresses
will increase considering different welding processes and
loading conditions. Such studies are essential for the
intended use of these alloys as structural materials.
Besides, guidelines for effective preheat scenarios, as well
as PWHT procedures, must be developed to ensure the
integrity of the weld seam. This is also a challenge for
dissimilar metal welds.

Fig. 10 White band and tunnel defects in a FSW joint of a cold-rolled
Co16Cr28Fe28Ni28 MEA. The figure was taken and adapted (insertion of
the white arrows and defect denotation) from ref. [86], © The Korean
Institute of Metals and Materials, reprinted with permission of Springer
Nature
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& HEAs/CCAs offer nearly limitless possibilities for tuning
properties, which make them attractive for future applica-
tions. The understanding of the material behavior, espe-
cially for the CoCrFeMnNi HEA, which has been the
focus of most studies, is already well developed in com-
parison to the understanding of processing. As a result, the
welding experience is mostly still in its early stages, and
systematic studies on the welding of HEAs/CCAs are nec-
essary to fully elucidate their application potentials.

Abbreviations CCA, Compositionally complex alloy; EB(W), Electron
beam (welding); FSW, Friction stir welding; HAZ, Heat affected zone;
HEA, High-entropy alloy; HV, Vickers hardness; IMC, Intermetallic
compound; LB(W), Laser beam (welding);MEA,Medium-entropy alloy;
PWHT, Post weld heat treatment; TIG, Tungsten inert gas; WM, Weld
metal
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