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Abstract  A well balanced adaptive scheme is proposed for the numerical solution of the coupled non-linear shallow water 

equations and depth-averaged advection-diffusion pollutant transport equation. The scheme uses the Roe approximate 

Riemann solver with upwind discretization for advection terms and the Vazquez scheme for source terms. It is designed to 

handle non-uniform bed topography on triangular unstructured meshes, while satisfying the conservation property. Dynamic 

mesh adaptation criteria are based on the local pollutant concentration gradients. The model is validated for steady flow over 

irregular bed topography, recirculation due to a sidewall expansion in a frictionless channel, and pollution advection in a 

flat-bottomed channel. An idealized application to the simulation of pollutant dispersion in the Bay of Tangier, Morocco is 

presented, which demonstrates the capability of the dynamically adaptive grid model to represent water quality scenarios in a 

bay of non-uniform bed topography and complicated shoreline. 
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1. Introduction 

Pollution of the Strait of Gibraltar has increased 

significantly in recent decades as a by-product of the growth 

of maritime transportation activities. Pollution is particularly 

hazardous to ecologically sensitive coastal regions, such as 

the Bay of Tangier located on the southern coast of the Strait 

of Gibraltar. The environment of the Bay of Tangier is 

subjected to human impacts from nearby urban development, 

industry, agriculture, fisheries, and ports (including the 

newly operational Tangier Mediterranean Port). These 

activities release toxic effluent that is causing ecological 

damage to the bay. 

Predictions of the risk posed to the water quality of the 

Bay of Tangier due to pollution from different sources could 

play an essential part in establishing guidelines for 

environmental remediation and protection. In particular, 

numerical models of flow hydrodynamics could aid decision 

makers in establishing effective countermeasures in order to 

reduce the pollutant discharges from particular sources. The 

numerical model presented herein solves the bay hydrodyna

mics in conjunction with passive species transport, enabling  
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the user to estimate pollutant transport, concentration 

distribution, and basin residence time.  

The hydrodynamic module solves the two-dimensional 

depth-averaged shallow water equations and hence is used to 

investigate the forcing mechanism responsible for 

circulation patterns in the Bay of Tangier. Pollutant transport 

is modelled by means of an advection-diffusion equation for 

the depth-averaged concentration of substances 

contaminating the seawater. Herein, the resulting system of 

equations is formulated so that it constitutes a hyperbolic 

system of non-linear conservation laws with source terms.  

In recent years, there has been increasing interest in the 

design of numerical schemes based on non-linear 

conservation laws. A particular challenge is to obtain 

high-order accurate solutions in space and time for flows 

over complicated bed topography. Various finite volume 

schemes developed for general systems of hyperbolic 

conservation laws have been applied to the non-linear 

shallow-water equations (NLSWEs), utilising upwind 

methods based on approximate Riemann solvers. Such 

solvers include Roe’s method[1], monotonic upstream 

schemes for conservation laws (MUSCL) in curvilinear 

coordinate systems[2][3], essentially non-oscillatory (ENO) 

schemes[5][6], the weighted essentially non-oscillatory 

method[6], and the Harten, Lax and van Leer (HLL) solver 

[7]. Most of these methods are capable of capturing 

shock-like behaviour to a high degree of accuracy and 
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perform particularly well for steep-fronted flows like 

discontinuous, transcritical flows over flat bed topography. 

However, for spatially varying bed topography, special 

treatment is required in order to discretise the component of 

the source term stemming from the bed gradient so that it 

properly balances the relevant flux gradient term and ensures 

that water at rest remains so. In a well-balanced solver, the 

discrete source terms balance the discrete flux terms. For 

example, Bermudez and Vazquez[8] proposed an upwind 

method for the non-linear shallow water equations with bed 

slope source terms, which was applied by Vazquez- 

Cendon[9] to a range of shallow water flow problems. 

LeVeque[4] proposed a Riemann solver that balanced the 

source terms and flux gradients in each cell of a regular 

computational mesh. However, the extension of this scheme 

for unstructured meshes is not trivial. Hubbard and 

Garcia-Navarro[3] proposed a further numerical treatment, 

in which the upwind method of Bermudez and Vazquez is 

used for source terms.  Numerical methods based on surface 

gradient techniques have also been applied to shallow water 

equations by Zhou et al.[24]. 

The present paper describes a high-resolution finite 

volume shock-capturing scheme for the solution of the 

non-homogenous hyperbolic system of equations that 

represent shallow flow pollutant transport processes. The 

computational mesh is unstructured, triangular, and 

dynamically adaptive. The Roe’s approximate Riemann 

solver is used for advective fluxes. Time integration is 

performed by means of a Runge-Kutta algorithm. The 

method is of high resolution and aimed at representing 2DH 

domains with complicated boundary and bed geometry, such 

as the Bay of Tangier.  

The paper is organized as follows. Section 2 briefly 

outlines the governing equations. Section 3 deals with the 

construction of an efficient well-balanced high-order finite 

volume scheme on unstructured meshes. Section 4 describes 

a dynamical adaptive procedure based on multi-level 

refinements and unrefinements by monotiring the pollutant 

concentration in the computational domain. Section 5 

provides details of the model validation. Section 6 presents 

the demonstration study of hypothetical pollutant dispersion 

in the Bay of Tangier. Conclusions are summarised in 

Section 7. 

2. Governing Equations 

In conservation form, the two-dimensional non-linear 

shallow water equations are given by Equations (1) to (3) 

below[25-26]. The depth-averaged continuity equation is 
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where h is the total depth from the sea bed to the free surface, 

u and v are the depth-averaged velocity components in the 

Cartesian x and y directions, Zb is the bed elevation above a 

fixed horizontal datum, g the acceleration due to gravity, and 

Sfx and Sfy are the bed shear stress components, defined as 
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where nM is the Manning’s coefficient. Assuming the water 

pollutant mixture is fully mixed in the vertical direction, the 

depth-averaged pollution dispersion equation may be written 

in advection-diffusion form for a passive contaminant as, 
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where C is pollutant concentration, and Dx and Dy are 

pollutant diffusion coefficients in the x and y directions. 

Using matrix-vector notation, the coupled pollutant transport 

system can be written  
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where W is the vector of dependent variables, F1, F2 are the 

inviscid flux vectors, 1F , 2F the diffusive flux vectors, S is 

the vector of source terms describing the bed variations, Sf 

describes the friction terms, and the subscripts x, y, and t 

denote partial differentiation. In full, the vectors are 

2

2

2

2
1 2 2

2

, , ,
gh

gh

hu hvh

huvhu hu

hv hvhuv

hC huC hvC

             + = = =     +             

W F F  

1 2

00

00
, ,

00

( )( ) CC
yx y yx x

hDhD ∂ ∂∂ ∂
∂ ∂∂ ∂

  
  
  = =   
        

F F    (7) 

and 



12 E. M. Chaabelasri et al.:  Well Balanced Adaptive Simulation of Pollutant Transport   

by Shallow Water Flows: Application to the Bay of Tangier 

 

0

0

b

b

Z

x

Z

y

gh

gh

∂
∂

∂
∂

 
 

− 
=  

 −
  
 

S , 

0

0

fx

f
fy

ghS

ghS

 
 − =  −
 
 
 

S  

3. Numerical Model 

The flow domain is partitioned into a set of triangular cells 

or finite volumes, 
2

iV ⊂ ℜ . Let ijΓ  be the common edge 

of two neighbouring cells iV  and jV , with ijΓ  its 

length, ( )N i  is the set of neighbouring triangles of cell iV , 

and ( , )ij x yn n=n


 is the unit vector normal to the edge 

ijΓ  and points toward the cell jV  (see Fig. 1). A 

cell-centred finite volume method is then formulated where 

all dependent variables are represented as piecewise constant 

in the cell as follows, 

1

i

i
i V
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Figure 1.  Cell-centred control volume 

 

For the triangular elements used here, the integral around the element is written as the sum of the contributions from each 

edge, such that 
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where ( , , )n
i i i nx x t=W W is the vector of conserved variables evaluated at time level nt n t= ∆ , n is the number of time 

steps, t∆  is the time step, and iV is the area of cell iV . To evaluate the state
n
iW , an approximation is required of the 

convective and diffusive flux terms at each edge of the cell. The integral along the i–j edge of a control volume of the normal 

flux 1 2( , )n
x yn n= +F W n F F


 can be written, 
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                         (9) 

where Φ  is the numerical flux vector and ijL  is the edge length of ijΓ . Herein, the following upwind scheme based on 

Roe’s approximate Riemann solver is employed to determine Φ  on the control volume surfaces. At each cell edge[10],  
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i j ij i ij j ij ij j i= + − −Φ W W n F W n F W n A W n W W

           (10) 

in which 

( , ) ( , ) ( , ) ( , )ij ij ij ij=A W n R W n Λ W n L W n
                         (11) 

where ( , )ijA W n
  is the flux Jacobian evaluated using Roe’s average state, R and L are the right and left eigenvector 

matrices of A, and Λ is a diagonal matrix of the absolute values of the eigenvector of A. For the system given by Equation 

(6), the flux Jacobian is given by, 
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which has real eigenvalues given by  
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c  here is the wave celerity, and u , v , h and C are 

the Roe average values defined as[10],[11]:  
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A four point finite volume interpolation is used to evaluate 

the diffusion flux through an inner edge ijΓ , so one has 

d d
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where ij ( , ) ( , )i ij j ijd d x Γ d x Γ= + , and ix  is the 

intersection of the orthogonal bisectors of the edges of the 

triangle iV  and ( , )i ijd x Γ  is the distance between ix  

and the edge ijΓ .  

The slope variation’s source terms are balanced by means 

of a two-dimensional implementation of the upwind scheme 

proposed by Vazquez et al.[9][12] for treating the non 

homogeneous part of Saint-Venant equations, and which 

satisfies the exact conservation C-property. Integration of the 

source term on the control volume Vi is written, 
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Following Bermudez[13], this approximation is upwinded 

and the source term 
n

S replaced by a numerical source 

vector 
nψ , such that 
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At each cell interface ijΓ , the contribution of the source 

term at the point ijX  is defined as the projection of the 

source term vector in the basis of eigenvectors of the 

Jacobian matrix. Thus the source term function is, 
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where I is the identity matrix, and 

( , , , , )n
i j i j ijS X X W W n

 
 represents an approximation 

of the source term on the cell interface ijΓ . Its choice is 

crucial to obtain accurate results. Using states Wi and Wj, the 

approximation 
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To obtain higher-order spatial accuracy, the fluxes at each 

edge are calculated using a piecewise linear function of the 

state variable W inside the control volume. For the 

cell-centred mesh, the MUSCL (Monotonic Upstream 

Centred Scheme for Conserved Laws) approach is adopted, 

whereby the left and right values of the states variable are 

evaluated from 

1
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in which  is the vector distance between the barycentre coordinates of cells  and . The gradient components 

 et of the state variables are calculated by minimizing the quadratic function[11]:  

 

The MUSCL approach gives a second-order spatial approximation. However, numerical oscillations can occur when 

evaluating the normal gradients of the state variables, and so a slope limiter is usually applied. Here we consider two 

candidate limiters: (1) the Van Albada limiter, 
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where 0 1ε< ≤  ; and (2) the Minmod limiter, with general form, 
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For the purpose of time integration, Equation (6) is expressed as 

( )
t

φ∂
=

∂
W

W                                        (22) 

where φ  is an operator that includes the transport, diffusion and source terms of the system.  

For explicit time integration, TVD Runge–Kutta methods[14] or other ODE solvers can be applied to (22) to achieve a 

suitable order of accuracy in time. For the present work the second-order Runge–Kutta method has been adopted, given by,  

1 ( )
2

n n t φ+ ∆
= +W W W                                  (23) 

in which 

( )n ntφ= + ∆W W W  

To ensure stability of the present explicit scheme, the time step is set according to the Courant-Friedrichs-Lewy (CFL) 

criterion[14], giving: 
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where CFL  is the Courant number ( 0 1CFL< ≤ ).  

The boundary conditions are as follows: At a slip wall boundary, the velocity is projected tangentially onto the wall and 

there is no flux through the solid boundary. At a non-slip wall boundary, 0nu =  and 0nv = . Open boundary conditions 

are set by the outgoing Riemann invariants for sub-critical inflow and outflow. 

4. Dynamically Adaptive Triangular Mesh 

The mesh generation is based on the Delaunay triangulation[28], which uses a curvature-dependent generation strategy 

designed to produce smaller elements in regions of high curvature in the spatial domain. To improve computational 

performance, an optimal mesh is used in regions of high gradient in the physical variables (e.g. at a flow discontinuity). An 
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adaptive procedure based on multilevel coarsening and refinement is implemented, aimed at constructing an adaptive mesh 

that dynamically follows the unsteady solution of the physical problem. Initially, a coarse mesh covers the computational 

domain. From then on, using the solution as it evolves, we establish a criterion function that identifies volumes that should be 

refined. The adaption criterion is based on the normalized concentration of the pollutant or water level, 

( ) ( )
Crit( ) /

max ( ) max ( )
h h

i i
i

K K

C h

C K h K

τ τ
τ

∈Ω ∈Ω

=                            (25) 

where hΩ is the triangulation of the domain, ( )iC τ and ( )ih τ are the pollutant concentration and the water depth at cell iτ . 

A list (L) is then established of triangles that must either be refined or coarsened based on the value of the adaptation criterion. 

An array of integers is used to define, for each triangle of the coarse mesh, the level, m, of required adaptation. For example, 

during refinement a hierarchical multi-level of triangles is created (see Figure 2). For more details about the algorithm, we 

refer the reader to references[15][16][17]. 

 

Figure 2.  Example of two levels of triangular mesh refinement 

5. Model Validation 

The numerical scheme has been validated against several 

benchmark tests, including 1D steady open channel flow 

over irregular bed topography, recirculation promoted by a 

side wall expansion in a frictionless canal, and pollutant 

advection in a flat-bottomed channel. Details on these test 

cases can be found also in[18]. In all cases, g = 9.81 m/s2. 

5.1. Validation Test 1: Steady Flow over Irregular Bed 

Topography 

Table 1.  Validation Test 1: bed elevation Zb at point x for Goutal’s case of 
steady flow over an irregular bed (unit: m) 

x 0 50 100 150 250 300 350 

Zb 0 0 2.5 5 5 3 5 

x 400 425 435 450 475 500 505 

Zb 5 7.5 8 9 9 9.1 9 

x 530 550 565 575 600 650 700 

Zb 9 6 5.5 5.5 5 4 3 

x 750 800 820 900 950 1000 1500 

Zb 3 2.3 2 1.2 0.4 0 0 

For finite volume solvers of the non-linear shallow water 

equations that do not balance the flux gradient and source 

terms, spurious results are obtained in cases involving 

non-uniform bed topography. To validate the present 

numerical model for a severe case of spatially varying bed 

terrain, the model is applied to the benchmark problem 

devised by Goutal[19] of steady flow over the bed 

topography listed in Table 1 and illustrated in Figure 3. The 

bed slope is discontinuous, so this test problem provides an 

excellent indication as to how well a solver copes with the 

bed source term discretisation, and is particularly useful for 

testing schemes before practical application to natural 

watercourses. The same test case has also been used by 

Vazquez-Cendon[9] and Tseng[21], among others.  

The rectangular channel is 1500 m long and 40 m wide. 

The triangular mesh generated herein consists of 1619 

elements and 1000 nodes. The initial conditions are that the 

free surface elevation is prescribed to be 15 m above the Zb = 

0 m datum level, and the discharge per unit breadth is q = 

0.75 m2/s throughout the channel. For all time t > 0, the 

boundary conditions are q = 0.75 m2/s at the upstream open 

boundary and h = 15 m at the downstream open boundary. 

Bottom friction is neglected so that the test focused on 

checking the treatment of the source terms related to bed 

slopes.  

 

Figure 3.  Validation Test 1: Bed topography of Goutal.’s[19] channel 

Figures 4, 5 and 6 present the numerically predicted and 

analytical[19] free surface elevation, velocity and discharge 

profiles along the channel. These results were obtained by 

choosing a CFL = 0.85. An inset showing a close-up view is 

included in each figure. In general, satisfactory agreement is 

achieved between the numerical predictions and analytical 

solutions. Moreover, a qualitative comparison with the 

results of Le Dissez et al.[20], who used an implicit finite 

volume method, indicates that the relative errors in the 

present model are very low. 
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Figure 4.  Validation Test 1: Comparison of numerical free surface eleva-tion profile with corresponding analytical solution at steady state 

 

Figure 5.  Validation Test 1: Comparison of numerical velocity profile with corresponding analytical solution at steady state 

 

Figure 6.  Validation Test 1: Comparison of numerical discharge profile with corresponding analytical solution at steady state 
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5.2. Validation Test 2: Recirculation due to Sidewall 

Expansion in Frictionless Channel  

Two-dimensional laminar flow past a sudden expansion in 

a sidewall is next considered, in order to test the ability of the 

numerical model to reproduce the recirculation zone that 

develops behind a step due to flow separation at a step. The 

results will be compared against data obtained by Denham 

and Patrick[27] who carried out an experimental and 

numerical study of recirculation in a water channel 

containing a sidewall expansion. The channel width was 2 m 

before and 3 m after the expansion. The dimension of the 

sidewall expansion was therefore, b = 1 m. The mean inflow 

velocity is U1 = 0.5 m/s, the flow depth at the downstream 

outlet is 1 m, and the eddy viscosity ν = 0.00685 m2/s 

corresponding to a step Reynolds number Re=bU1/ν = 72. 

The bottom friction is set to zero, and a no-slip boundary 

condition is imposed on the side walls. The numerical 

experiments are performed on a quasi-structured triangular 

mesh of 2048 cells with 1105 nodes (see figure 7).  

 

Figure 7.  Validation Test 2: Triangular mesh for side-wall expansion 

channel 

 

Figure 8.  Validation Test 2: Stream lines and recirculation region down 

stream of side-wall expansion 

   

   

Figure 9.  Validation Test 2: Transverse profiles of streamwise depth-averaged velocity component at different sections along the channel containing a 

side-wall expansion: (a) x/b =2 , (b) x/b = 2.8, (c) x/b =4 , and (d) x/b =8 
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Figure 9 presents transverse profiles of streamwise 

depth-averaged velocity component at different sections 

along the channel containing a side-wall expansion. The 

predicted steady-state velocity profiles at intervals along the 

channel past the expansion are in very close agreement with 

Denham and Patrick’s experimental results, as can be seen in 

Figure 8. This recirculation zone is correctly modeled. We 

note, that to generate the recirculation zones, we need to do 

an iterative calculation finer to ensure stability and this 

through a variety of CFL = 0.6.  

5.3. Validation Test 3: Pollutant Advection in a 

Flat-bottomed Channel 

For a coarse mesh, the Roe approximate scheme can be 

numerically dissipative, and this can have a serious negative 

impact on the accurate prediction of fronts when the 

simulation time is long. This test examines how well the 

present adaptive scheme manages to reproduce pure 

convection of a pollutant by considering the choice of limiter 

and mesh adaptation criterion. 

The initial conditions throughout the channel are as 

follows: water depth 0 ( ,0)h x = 1m, depth-averaged 

velocity 0 ( ,0)u x  = 0.05 m/s, and discharge per unit 

breadth q0 = 0.05 m2/s. The channel is frictionless, with a flat 

horizontal bed. Figure 10 shows the initial pollution 

concentration profile, given by a Gaussian pulse centred at x1 

= 0.25 m. 

2
1

1

( )
( ,0) exp

x x
C x C

a

 −
= −  

 
       (26) 

 

Figure 10.  Validation Test 3: Initial pollutant concentration profile along 

flat-bottomed channel 

where C1 = 10 and a = 0.01. As time progresses, the pollutant 

concentration propagates as a wave of constant profile that 

moves along the channel to the right at constant speed u = 0.5 

m/s. In the numerical tests, we consider the propagation of 

this wave over several different meshes and using the Van 

Albada and Minmod limiters. The simulation results are 

grouped under three scenarios depending on the type of mesh 

used (see Figure 11): 

I- Coarse fixed mesh (279 elements, 180 nodes) without 

adaptation (Figure 11a). 

II- Coarse mesh with adaptation (Figure 11b). 

III- Fine fixed mesh (2174 elements, 1198 nodes) without 

adaptation (Figure 11c). 

Open boundary conditions are applied at the inlet and 

outlet of the channel. The lateral walls are slip. The CFL 

value used here is 0.9. 

Figures 12, 13, and 14 present comparisons of the 

numerical predictions with the analytical solution of the 

evolving concentration profile along the channel for the 

different limiters on a coarse fixed mesh, an adapted initially 

coarse mesh, and a refined fixed mesh.  From Figure 12, it 

can be seen that the numerical prediction obtained using the 

Van Albada limiter is significantly less diffusive (and hence 

more accurate) than that using the Minmod one. The 

diffusive effect increases progressively with simulation time, 

with the amplitude of the initial concentration hump 

reducing by ~27 % for the Van Albada limiter and ~ 60 % for 

the Minmod limiter at time t = 25 s. Small non-physical 

oscillations can be discerned immediately in front and 

behind the evolved concentration hump obtained using the 

Van Albada limiter on the coarse fixed mesh (see the 

close-up inset of Figure 12). These drawbacks are much less 

evident in the results obtained on the fine fixed mesh using 

the Van Albada limiter. Figure 14 shows that the amplitude 

of the concentration profile computed on the fine fixed mesh 

is better maintained and non-physical oscillations are almost 

eliminated. However, the CPU time (Table 2) required on the 

fine fixed mesh is 12 times longer than on the fixed coarse 

mesh for the Van Albada limiter. Figure 13 shows the results 

obtained on an adaptive mesh, commencing from a coarse 

mesh and refining according to formula (25). In this case, the 

numerical predictions obtained by the Roe scheme coupled 

with the Van Albada limiter are much improved over those 

on the fixed coarse mesh, with the concentration wave 

amplitude remaining within 5% of the analytical solution. 

Numerical dissipation is greatly reduced, and the CPU 

simulation time is more than 2 times faster than on the fine 

fixed mesh (Table 2). 

 

 

 

Figure 11.  Validation Test 3: Meshes: (a) coarse, (b) adaptive at t = 12.27s 

and (c) refined 
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Figure 12.  Validation Test 3: (a) pollutant concentration profile obtained using different limiters on the coarse mesh, (b) close-up view of profile near x = 

0.5 m. (stars = Van Albada limiter, circles = Minmod limiter, solid line = exact solution.) 

 

Figure 13.  Validation Test 3: (a) pollutant concentration profile obtained using different limiters on the adapted coarse mesh, (b) close-up view of profile 

near x = 0.5 m. (stars = Van Albada limiter, circles = Minmod limiter, solid line = exact solution.) 

Table 2.  Validation Test 3: pollutant advection in a flat-bottomed channel: performance of Roe scheme for different meshes 

Coarse meshes without adaptation 

 # elements # points C(max) C(min) 
CPU 

time (s) 

Exact -- -- 10 0 -- 

12.08s 
Minmod 

 

279 

 

180 

5.083 0.000 41.3 

Van Albada 7.893 -0.341 28.90 

25s 
Minmod 4.038 0.000 86.92 

Van Albada 7.298 -0.599 60.06 

Coarse meshes with adaptation 

 
# 

elements 
# points C(max) C(min) 

CPU 

time (s) 

Exact -- -- 10 0 -- 

12.27s 
Minmod 1095 608 8.238 0.000 354.75 

Van Albada 1035 577 9.621 -0.013 228.23 

25s 

Minmod 1063 593 7.295 0.000 720.54 

Van Albada 1053 586 9.505 -0.011 450.01 

Van Albada 2174 1198 9.6469 -0058 730.50 
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Figure 14.  Validation Test 3: pollutant concentration profile obtained 

using different limiters on the fine fixed mesh. (stars = Van Albada limiter, 

circles = Minmod limiter, solid line = exact solution.) 

6. Simulation of Pollutant Plume in the 
Bay of Tangier 

The Bay of Tangier (Figure 15) is a semi-enclosed shallow 

basin located on the west coast of the southern Strait of 

Gibraltar. The Moroccan city of Tangier is located 

immediately inland of the shore of the bay. The bed 

topography is spatially quite non-uniform, with the mean 

water depth increasing progressively from 0 m at the shore to 

about 50 m at the interface with the greater Mediterranean 

Sea. The vertical flow structure in the Bay of Tangier 

consists of an upper layer of incoming cold fresh surface 

Atlantic water overlying a deep current of outgoing warmer 

salt water[22, 23]. The bay is heavily used by shipping, 

whose volume has grown since the recent development of a 

Mediterranean port at Tangier. Assessment of the 

environmental risk is therefore required, and the present 

numerical tool is being developed with this longer-term aim 

in mind. 

The simulations presented herein test the dynamically 

adaptive scheme for an idealised version of the Bay of 

Tangier, noting its complicated geometry and non-uniform 

bathymetry. An initial mesh of 5702 elements and 3000 

nodes was created according to the boundary geometry for 

the Bay of Tangier shown in Figure 15. Then the 

hydrodynamic module was used to simulate the flow field 

within the bay. At a prescribed time, pollutant was injected 

into the fully established flow field. The concentration of the 

injected pollutant is given by 

 

 

Figure 15.  Plan and 2D views of the Bay of Tangier study area and its bathymetry 
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where the initial pollutant concentration is 1 10C = ,     

x1 = 500 m, y1 = 4500 m, and r = 150 m. We assume a 

constant diffusion coefficient x yD D= = 0.001 m2/s. 

coefficient is set to nM = 0.001 s/m1/3. The flow is forced by a 

constant velocity profile on the western boundary of the 

domain, which decreases linearly from 1 m/s at the northwest 

corner of the domain to 0 at the western shoreline. There is 

no wetting and drying. Figure 16 shows the results obtained 

using the Van Albada limiter on the adaptive mesh at times t 

= 3 h (when the pollutant is released), 3.70 h, 4.40 h and 5 h. 

The Figure has three columns. The first presents the adapted 

mesh, the second the velocity vector field, and the third the 

pollutant concentration distribution. A close-up is also 

included of the local mesh in the vicinity of the pollutant 

plume. The results show the convection of the pollutant from 

the time of its injection, as it advects with the water currents 

in the bay. The mesh adapts according to the pollutant 

concentration gradient (25) in order to capture the frontal 

behaviour of the plume. The maximum pollutant 

concentration reduces by 5% at t = 3.70 h and 20% at t = 5 h. 

The CPU time required to simulate the results at t = 3, 3.70, 

4.40 and 5 h is respectively 0.9, 1.8, 2.7 and 3.2 h (including 

the hydrodynamic simulation time required to establish the 

flow field before injection of the pollutant). The simulation 

was run on the same PC Pentium (Dual Core CPU - 1.5GHz) 

as the previous examples. It is therefore found that the 

Roe-Vazquez approach coupled with the Van Albada limiter 

on a dynamically adaptive mesh has facilitated a PC based 

model of pollution in the Bay of Tangier that runs at about 

half real-time giving plausible results at high resolution in 

regions where the gradients of concentration and flow 

variables are locally high.  

(a) t = 3 h 

 

(b) t = 3.70 h 

  

(c) t = 4.40 h 

  

 (d) t = 5 h 

Figure 16.  Bay of Tangier: adapted meshes (first column), velocity 

vectors (second column) and pollutant concentration (third column) at 

different simulation times 
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7. Conclusions 

This paper has described a numerical model for simulating 

pollutant transport in the Bay of Tangier on the south side of 

the Strait of Gibraltar. The numerical model solves the 

coupled non-linear shallow water and advection–diffusion 

equations by means of a second-order Godunov-type finite 

volume method on dynamically adaptive unstructured 

meshes. Attention has been given to ensuring that the flux 

gradient and source terms are properly balanced. Excellent 

agreement is achieved between the model predictions and 

Goutal’s[19] analytical solution for steady unidirectional 

flow over irregular bed topography, confirming that the 

scheme is correctly handling spatial bed gradients in the 

vector of source terms. Results in close agreement with 

experimental data by Denham and Patrick[27] confirm that 

the model simulates advective and diffusive processes that 

characterise separation and recirculation effects in a channel 

with a sidewall expansion. The third validation test of 

pollutant advection in a flat-bottomed channel demonstrated 

that use of the Van Albada limiter led to less diffusive but 

slightly more oscillatory results than for the Minmod limiter. 

For the same case, it was demonstrated that the use of a 

dynamically adaptive mesh led to a significant speed up in 

computational time over a fixed fine mesh, while retaining 

accuracy. The application to the Bay of Tangier, though 

highly idealised, indicates the potential of the model in 

simulating pollutant transport at field scale for a situation 

involving complicated coastal geometry and beach 

topography. The method provides a relatively quick 

simulation (at about half real-time on a PC) that, with better 

input data and after proper calibration to field measurements, 

could be used in practice to provide water quality predictions 

useful in the environmental assessment of the Bay of Tangier. 

Further studies should be performed in future, investigating 

chemical reactions and the influence of wind intensities and 

direction. 

Nomenclature 

( , )ijA W n
   flux Jacobian evaluated using Roe’s 

    average state 

c     wave celerity 

C    pollutant concentration (µg/l)  

CFL   Courant number 

Crit( )iτ   adaptation criterion for cell iτ  

dij    the sum of distances between ix and 

    ijΓ and iy  and ijΓ     

    ij ( , ) ( , )i ij j ijd d x Γ d x Γ= +  

Dx, Dy   pollutant diffusion coefficients in x- 

    and y- directions (m2/s) 

F1, F2   inviscid flux component vectors 

1F , 2F    diffusive flux component vectors 

G    acceleration due to gravity (m/s2) 

h    total depth from the sea bed to the free 

    surface (m) 

L    list of triangles for coarsening or  

    refinement 

L    left eigenvector matrix of A 

ijL    edge length of ijΓ  

m    required adaptation level 

meas( )i jΓ   edge length of ijΓ  

n    time step counter 

nM    Manning coefficient  

( , )ij x yn n=n


 unit vector normal to ijΓ ,   

    pointing towards cell jV  

N(i)    set of neighbouring triangles of cell iV  

ijN    distance vector between barycentre  

    coordinates of cells iV and jV . 

R    right eigenvector matrix of A 

S    vector of source terms 

n
S


   approximation to the source term on 

    the cell interface ijΓ  

Sfx, Sfy   bed shear stress components 

t    time (s) 

tn    time, nt n t= ∆  (s) 

u, v   Cartesian components of    

    depth-averaged velocity (m/s) 

Vi    volume of i-th computational cell 

W    vector of dependent variables  

x, y   Cartesian horizontal distances from  

    origin 

Zb    bed elevation above a fixed horizontal 

    datum (m) 

t∆    time step 

ijΓ    common edge of two neighbouring  

    cells iV  and jV  

ρ    water density (kg/m3) 

Φ    numerical flux vector 

Λ    diagonal matrix of the absolute values 

    of the eigenvector of A 

nψ    numerical source vector 

θ ( , )i X Y   quadratic functional 
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