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ABSTRACT

Context. Accurate simulations of flows in stellar interiors are crucial to improving our understanding of stellar structure and evolution.
Because the typically slow flows are merely tiny perturbations on top of a close balance between gravity and the pressure gradient,
such simulations place heavy demands on numerical hydrodynamics schemes.
Aims. We demonstrate how discretization errors on grids of reasonable size can lead to spurious flows orders of magnitude faster than
the physical flow. Well-balanced numerical schemes can deal with this problem.
Methods. Three such schemes were applied in the implicit, finite-volume Seven-League Hydro code in combination with a low-
Mach-number numerical flux function. We compare how the schemes perform in four numerical experiments addressing some of the
challenges imposed by typical problems in stellar hydrodynamics.
Results. We find that the α-β and deviation well-balancing methods can accurately maintain hydrostatic solutions provided that grav-
itational potential energy is included in the total energy balance. They accurately conserve minuscule entropy fluctuations advected
in an isentropic stratification, which enables the methods to reproduce the expected scaling of convective flow speed with the heating
rate. The deviation method also substantially increases accuracy of maintaining stationary orbital motions in a Keplerian disk on long
timescales. The Cargo–LeRoux method fares substantially worse in our tests, although its simplicity may still offer some merits in
certain situations.
Conclusions. Overall, we find the well-balanced treatment of gravity in combination with low Mach number flux functions essential
to reproducing correct physical solutions to challenging stellar slow-flow problems on affordable collocated grids.

Key words. hydrodynamics – methods: numerical – convection

1. Introduction

Astrophysical modeling often involves self-gravitating fluids.
They are commonly described by the equations of fluid dynamics
with a gravitational source term – viscous effects are negligible
in most astrophysical systems and therefore the nonviscous Euler
equations are used. Such systems can attain stationary equilib-
rium configurations in which a pressure gradient balances grav-
ity, that is hydrostatic equilibrium. A prominent example are
stars, modeled in classical approaches as spherically symmet-
ric gaseous objects. Apart from this dimensional reduction, the
assumption of hydrostatic equilibrium considerably simplifies the
modeling of the – in reality rather complex – structure of stars.
The resulting equations of stellar structure (e.g., Kippenhahn et al.
2012) enable successful qualitative modeling of the evolution
of stars through different stages. The price for this success is
a parametrization of multidimensional and dynamical processes
that limits the predictive power of such theoretical models and

requires their calibration with observations. Recent attempts to
simulate inherently multidimensional and dynamical processes,
such as convection in stellar interiors (e.g., Browning et al. 2004;
Meakin & Arnett2006,2007;Woodward et al.2015;Rogers et al.
2013; Viallet et al. 2013; Pratt et al. 2016; Müller et al. 2016;
Cristini et al. 2017; Edelmann et al. 2019; Horst et al. 2020), have
tried to overcome this shortcoming.

Such simulations pose a number of challenges to the under-
lying numerical techniques. Not only is the range of relevant spa-
tial and temporal scales excessive, but the flows of interest arise
in a configuration that is often close to hydrostatic equilibrium.
This has two implications: (i) The schemes must be able to pre-
serve hydrostatic equilibrium in stable setups over a long period
of time compared to the typical timescales of the flows of inter-
est. (ii) The flow speed v expected to arise from a small perturba-
tion of the equilibrium configuration should be slow compared
to the speed of sound c, thus the corresponding Mach number,
M ≡ v/c, is expected to be low.
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If we decide to avoid approximating the equations and
include all effects of compressibility, aspect (ii) above calls for
special low-Mach-number solvers in numerical fluid dynam-
ics combined with time-implicit discretization to enable time
steps determined from the actual fluid velocity instead of the
speed of sound as required by the CFL stability criterion
(Courant et al. 1928) of time-explicit schemes. The propagation
of sound waves is irrelevant for the problems at hand. Sev-
eral suitable methods are implemented in the Seven-League
Hydro (SLH) code. Numerical and theoretical details are dis-
cussed in Barsukow et al. (2017b,a), Edelmann & Röpke (2016),
Miczek et al. (2015), Edelmann (2014), and Miczek (2013), and
examples of the application to astrophysical problems can be
found in Horst et al. (2020), Röpke et al. (2018), Edelmann et al.
(2017), Michel (2019), and Bolaños Rosales (2016).

Aspect (i), however, also requires attention. The condition
for hydrostatic equilibrium is part of the equations of stel-
lar structure, that are discretized and numerically solved in
classical stellar evolution modeling approaches. In contrast,
hydrostatic equilibrium is only a special solution to the full
gravo-hydrodynamic system at the level of the partial differen-
tial equations, but it is not guaranteed that discretizations of these
equations can reproduce the physically correct equilibrium state.
This is in particular the case because gravitational source terms
are usually treated in an operator-splitting approach, resulting
in different discretizations of the pressure and gravity terms.
Astrophysical fluid dynamics simulations often employ finite-
volume schemes, in which hydrodynamical flows are modeled
with a Godunov-type flux across cell interfaces. Hydrodynam-
ical quantities are therefore determined at these locations. The
gravitational source term, in contrast, is discretized in a com-
pletely different and independent way. In a second-order code,
for example, it is often calculated using cell-averaged densi-
ties assigned to cell centers. In general, this procedure does not
lead to an exact cancellation of gravity and pressure gradient
in hydrostatic configurations. Spurious motions are introduced
that mask the delicate low-Mach-number flows arising from per-
turbations of this equilibrium, such as, for instance, convection
driven by nuclear energy release.

To overcome the problem of aspect (i), so-called well-
balancing methods have been introduced, which are numerical
methods that ensure exact preservation of certain station-
ary states. Methods of this type have predominantly been
developed for the simulation of shallow-water-type models in
order to resolve stationary solutions such as the lake-at-rest
solution without numerical artifacts (e.g., Brufau et al. 2002;
Audusse et al. 2004; Bermudez & Vázquez 1994; LeVeque
1998; Desveaux et al. 2016a; Touma & Klingenberg 2015;
Castro & Semplice 2018; Barsukow & Berberich 2020). These
stationary states can be described using an algebraic relation,
which favors the development of well-balanced methods. In the
simulation of hydrodynamics under the influence of a gravi-
tational field, the situation is different, since hydrostatic solu-
tions are described by a differential equation that admits a large
variety of solutions that depend on temperature and chemical
composition profiles, as well as the equation of state (EoS). In
practice, the concrete hydrostatic profile is determined by equa-
tions describing physical processes other than hydrodynamics
and gravity, such as thermal and chemical transport and the
change in energy and species abundance due to reactions.

Different approaches can be used to deal with this: The
majority of well-balanced methods for the Euler equations
with gravity, for example Chandrashekar & Klingenberg (2015),
Desveaux et al. (2016b), Touma et al. (2016), and references

therein, are designed to only balance certain classes of hydro-
static states, often isothermal, polytropic, or isentropic strat-
ifications, under the assumption of an ideal gas EoS. How-
ever, for many astrophysical applications, in particular, cases
involving late stellar evolutionary stages and massive stars, non-
ideal effects of the gas may be important. In stellar interiors,
the most important additions to the ideal gas EoS are radia-
tion pressure and electron degeneracy effects. This requires a
more complex – often in parts tabulated – EoS to properly
describe the thermodynamical properties of the gas. We dis-
cuss an example of such an EoS in Sect. 2.2.2. Well-balanced
methods which are capable of balancing hydrostatic states for
general EoS have been introduced by Cargo & Le Roux (1994),
Käppeli & Mishra (2014, 2016), Grosheintz-Laval & Käppeli
(2019), Berberich et al. (2018, 2019, 2020, 2021), and Berberich
(2021).

Most methods that have been discussed in the astrophysi-
cal context and literature (e.g., Zingale et al. 2002; Perego et al.
2016; Käppeli et al. 2011; Käppeli & Mishra 2016; Popov et al.
2019) balance a second-order approximation of the hydrostatic
state rather than the hydrostatic state itself. Another recent
approach is the well-balanced, all-Mach-number scheme by
Padioleau et al. (2019). None of these publications tested a low-
Mach-number, well-balanced method in more than one spatial
dimension in a stable stratification over long timescales. As we
show in this paper, long-term stability cannot be automatically
inferred from one-dimensional (1D) tests, yet it is of fundamen-
tal importance for applications in stellar astrophysics.

Using a staggered grid, which in this context means storing
pressure on the cell interfaces instead of the cell centers, can alle-
viate some of the problems of well-balancing the atmosphere,
as shown, for example, in the MUSIC code (Goffrey et al. 2017,
Sect. 6). For this approach, it still has to be shown that convective
velocities scale correctly with the strength of the driving force
at low Mach numbers, which we found very challenging in our
approach, see Sect. 5.3.

The methods introduced in Berberich et al. (2018, 2019,
2021) can balance any hydrostatic stratification exactly. The only
assumption is that the hydrostatic solution to be balanced is
known a priori. This poses no severe restriction for many astro-
physical applications where the initial condition is often con-
structed under the assumption of hydrostatic equilibrium. An
example are simulations of stellar convection, where the initial
model is commonly derived from classical stellar evolution cal-
culations that by construction impose hydrostatic equilibrium.
In this context exact well-balancing refers to preserving an ini-
tial state, which can be calculated to arbitrary precision, and not
to the exactness of other input physics, such as the EoS.

Here, we discuss three possible well-balancing methods that
follow rather different approaches. The first method extends the
work of Cargo & Le Roux (1994) which only applied to 1D
setups into the three-dimensional (3D) case and achieves well-
balancing by modifying the pressure part of a general EoS. We
refer to this as the Cargo–LeRoux (CL) well-balancing method.
The other two methods modify how variables are extrapolated to
the cell interfaces. We refer to them as the α-β well-balancing
(Berberich et al. 2018, 2019) and the deviation well-balancing
method (Berberich et al. 2021). For these three schemes, we
describe their theoretical background and study their impact
on the accuracy of solutions to a set of simplified test prob-
lems, which are designed to resemble typical situations in astro-
physics.

The structure of the paper is as follows: Sect. 2 reviews the
basic set of equations of fluid dynamics and their implications.
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It also introduces the notation that is used in the subsequent sec-
tions. In Sect. 3 we discuss the discretization of these equations
and describe the AUSM+-up flux used in the later tests. The well-
balancing schemes are introduced in Sects. 4.1–4.3. In Sect. 5 we
test the applicability of the well-balancing methods and their per-
formance in an extensive suite of simple application examples.
Conclusions are drawn in Sect. 6.

2. Equations of compressible, ideal hydrodynamics

This section introduces the general set of equations that are
solved with the SLH code in their formulation in general coordi-
nates. The following subsections closely follow the presentation
of Miczek (2013).

2.1. Compressible Euler equations

We employ curvilinear coordinates x = (x, y, z) = (x1, x2, x3)
with a smooth mapping,

x : R3 → R3, x 7→ x(ξ), (1)

to Cartesian coordinates ξ = (ξ, η, ζ) = (ξ1, ξ2, ξ3). The rea-
soning here is that the coordinates ξ simplify the computations,
while the coordinates x are adapted to the physical object, such
as a spherical star.

The compressible Euler equations on curvilinear coordinates
then read

J
∂u

∂t
+ Aξ

∂ f ξ

∂ξ
+ Aη

∂ f η

∂η
+ Aζ

∂ f ζ

∂ζ
= Js, (2)

with the vector u of conserved variables and the fluxes f ξl given
by

u =
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, (3)

for l = 1, 2, 3. Here, density and pressure are denoted by ̺ and
p, respectively. The velocity vector, expressed through its curvi-
linear components, reads u = (u, v,w) and enters the equation for
the total energy density E = ̺ǫ + 1

2
̺|u|2 + ̺φ with the specific

energy ǫ and the gravitational potential φ. The inclusion of the
potential in the total energy does not lead to numerical difficul-
ties here because it is similar in magnitude to the internal energy
in a stellar context in general and in all the test problems pre-
sented in Sect. 5 in particular. This is possibly different in other
situations, where one of the energies is much larger and cancel-
lation errors can become a problem.

The Euler Eq. (2) in their curvilinear form in depend on the
derivatives of the coordinate transformation. Its Jacobi determi-
nant is

J =

∣

∣

∣

∣

∣

∂x

∂ξ

∣

∣

∣

∣

∣

=

3
∑

l,m,n=1

ǫlmn

∂xl

∂ξ

∂xm

∂η

∂xn

∂ζ
, (4)

where ǫlmn is the three-dimensional Levi-Civita symbol. The nor-
mal vector nξl and interface area Aξl in ξl-direction are

nξl =
J

Aξl
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, Aξl =

√

(

J
∂ξl

∂x

)2

+

(

J
∂ξl

∂y

)2

+

(

J
∂ξl

∂z

)2

. (5)

External forces that enter Eq. (2) are – with an exception dis-
cussed below – collectively denoted by the source term s. While
there are different possible contributions, for example energy
generation due to nuclear burning, gravity inevitably appears in
any astrophysical setup. At the same time it might pose diffi-
culties for hydrodynamical codes to maintain hydrostatic solu-
tions to Eq. (2) (see Sect. 2.3) if it includes a strong gravitational
source term as is common in the interior of stars. When gravity
is the only source term, the expression for s reads

s =
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0











































. (6)

This adds gravitational forces to the momentum part of Eq. (2).
The presence of a gravitational field also affects the evolution
of total energy. We include this effect in the definition of the
total energy rather than the source term, since this treatment sig-
nificantly improved our accuracy in numerical experiments. We
found this to be crucial in simulations of low Mach number con-
vection.

The source term adds gravitational force to the momentum
equations. For our current treatment and test setups, the gravi-
tational potential φ is fixed in time and changes the mass distri-
bution during the simulation is excluded, meaning self-gravity
is neglected. It is a reasonable simplification if the setup is very
close to hydrostatic equilibrium and the change in the mass dis-
tribution is negligible. Such an approximation, however, fails for
stellar core simulations at later evolutionary stages, where asym-
metries in the mass distribution may arise due to violent con-
vective motions. However, these setups are not the typical use
cases of the well-balancing techniques presented in this paper
as deviations from hydrostatic equilibrium are nonnegligible. In
our notation lower indices do not indicate partial derivatives to
avoid confusion.

2.2. Equation of state

The common choice to close the Euler system Eq. (2) is using
an EoS. There are few physically relevant EoS which can be
given in a short, explicit analytical form. Two of these are dis-
cussed in the following. We assume that all components of the
gas are in local thermodynamic equilibrium, that is they can all
be described with a common temperature.

2.2.1. Ideal gas

The ideal gas is one of the simplest EoS, yet with a wide range
of applications. It describes an ensemble of randomly moving,
noninteracting particles in thermodynamic equilibrium. It is an
acceptable model for terrestrial gases, such as air, for which the
interactions between the particles are small. It serves well in the
case of a fully ionized plasma, such as in the interior of stars,
as long as the effects of degeneracy and radiation pressure are
small.

The ideal gas pressure is given by

p(̺, ǫ) = p(̺,T (̺, ǫ)) =
R

µ
̺T (̺, ǫ), (7)

with the temperature

T (̺, ǫ) =
(γ − 1)µ

R
·
ǫ

̺
· (8)
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The gas constant R for the ideal gas is 8.31446261815324 ×
107 erg K−1 mol−1. The specific heat ratio γ depends on the inter-
nal degrees of freedom in the underlying gas mixture, typical
values are 5/3 for monatomic gases and 7/5 for diatomic gases.
For our treatment, it is convenient to write the ideal gas EoS in
the form of Eq. (7) depending on the temperature T instead of
the explicit dependence of ǫ. We use this form of the EoS to for-
mulate hydrostatic equilibria with certain temperature profiles.

2.2.2. Helmholtz equation of state

While the ideal gas is a useful approximation of the EoS of stellar
interiors, it does not capture the effect of partially or fully degen-
erate electrons or of radiation pressure. A commonly used EoS
that includes these effects to great precision is the Helmholtz
EoS (Timmes & Swesty 2000). It relies on a interpolation of
the Helmholtz free energy from tabulated values using biquintic
Hermite polynomials. All other quantities are then derived from
expressions involving derivatives of the Helmholtz free energy.
This approach ensures that all thermodynamic consistency rela-
tions are fulfilled automatically. This EoS has a wide range of
applicability and serves as a typical example of a general tab-
ulated EoS, contrasting our approaches to some well-balanced
methods relying on using a specific EoS, such as the ideal gas.

2.3. Hydrostatic solutions

Except for the very late stages of stellar evolution, stars can be
considered as gaseous spheres, which change only over very
long timescales, much longer that those of the fluid motions.
Dynamical processes acting in the interiors, as for example con-
vective motions, however, evolve on much shorter timescales.
Thus, in hydrodynamical simulations that aim to follow such fast
processes, a star can, to first order, be described as a static strat-
ification with pressure and density profiles constant in time, that
is

u ≡ 0, ̺(t, x) = ̺(x), and p(t, x) = p(x). (9)

These conditions reduce the first and the last part of Eq. (2) to
the trivial relations

∂t̺ = 0 and ∂t(̺E) = 0. (10)

The momentum equations lead to the hydrostatic equation

∇p(̺,T ) = −̺∇φ. (11)

This equation is invariant under transformations between differ-
ent sets of curvilinear coordinates. A pair of constant-in-time
functions ̺ and p, which satisfy Eq. (11) together with the cho-
sen EoS is called hydrostatic solution or hydrostatic equilibrium.
Since the EoS usually depends on temperature, there is in many
cases a whole continuum of hydrostatic solutions rather than
uniqueness.

Convective stability

Depending on the stratification, perturbations to the hydrostatic
solution may lead to dynamical phenomena. One important
example is convection, where hydrostatic equilibrium is not per-
fectly fulfilled anymore but deviations are small.

The criterion for stability against convection is typically
derived by considering the behavior of a small fluid element
being perturbed from the surrounding stratification. The fre-
quency at which the element oscillates around its equilibrium

position χ0 is called the Brunt–Väisälä frequency N. Its square
is given by

N2 =
∂φ

∂χ

1

̺ext

(

∂̺int

∂χ
−
∂̺ext

∂χ

)
∣

∣

∣

∣

∣

∣

χ0

, (12)

where χ denotes the vertical coordinate1, ̺int is the density of
the small fluid element, and ̺ext is the density of the background
stratification. It is assumed that the fluid element changes its state
adiabatically, that is without exchanging heat with its surround-
ing, and the derivative ∂̺int/∂χ is interpreted as the adiabatic
change of density while maintaining pressure equilibrium with
the background stratification at height χ. For the full derivation
of Eq. (12) we refer the reader to any textbook on stellar astro-
physics (e.g., Maeder 2009; Kippenhahn et al. 2012).

It is common to express the gradients in Eq. (12) in terms
of different variables. In the case of homogeneous composition
(µ(x) = const.) Eq. (12) is equivalent to

N2 = −
∂φ

∂χ

∂

∂χ

(

s

cp

)

= −
∂φ

∂χ

δ

T

[

∂T

∂χ
−

(

∂T

∂χ

)

ad

]

, (13)

with specific entropy s and specific heat at constant pressure cp

and the equation of state derivative,

δ = −
∂ ln ̺

∂ ln T
, (14)

which is 1 in the ideal gas case. The subscript “ad” denotes the
adiabatic derivative as mentioned above.

Another common form of this equation is using a variant of
the temperature gradients expressed using pressure as a coordi-
nate,

∇ =
∂ ln T

∂ ln p
. (15)

Using this definition Eq. (12) is equivalent to

N2 = −
∂φ

∂χ

δ

Hp

(∇ − ∇ad) , (16)

with the pressure scale height,

Hp = −
∂χ

∂ ln p
= −p

∂χ

∂p
. (17)

We call a hydrostatic equilibrium stable with respect to convec-
tion or convectively stable, if N2 ≥ 0. Otherwise we call it unsta-
ble with respect to convection or convectively unstable. This is
a local definition, which means that a hydrostatic solution can
be convectively stable in one region and convectively unstable in
another. A suitable reference time for convectively stable setups
is the minimal Brunt–Väisälä time

tBV = min
x∈Ω

tloc
BV(x) =

2π

maxx∈Ω N(x)
. (18)

It seems to be a natural timescale for the evolution of small per-
turbations as explained for example in Berberich et al. (2019).
For any hydrostatic solution, the value of N2 can be either cal-
culated analytically (for simple EoS, like the ideal gas EoS) or
numerically for more complex EoS.

1 That is the direction opposing the vector of gravitational acceleration.
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Another useful timescale is the sound crossing time tSC

through the domain. Similar to Käppeli & Mishra (2016), we
define tSC in the direction of coordinate ξl as

tSC = 2 min
ξi,i,l

∫ ξl
U

ξl
L

dξl 1

c
(

ξ1, ξ2, ξ3
) , (19)

with ξl
L

and ξl
R

being the lower and upper boundaries of the
domain in that direction. The speed of sound c is calculated using
the equation of state. An expression for the sound speed using a
general equation of state is given by

c(̺, ǫ) =

√

∂p(̺, ǫ)

∂̺
+
∂p(̺, ǫ)

∂ǫ
·
ǫ + p(̺, ǫ)

̺
, (20)

where the function for the pressure p comes from an equation of
state (see Sect. 2.2).

3. Discretization

Analytic solutions to Eq. (2) as for example given by the hydro-
static solution of Sect. 2.3 are exceptions and require special
initial conditions. To obtain more general solutions, which also
allow for more complex dynamics such as turbulent convec-
tion developed from perturbations in a hydrostatic stratification,
Eq. (2) needs to be solved numerically. While there are several
different numerical approaches, this section focuses on the meth-
ods that are employed by the SLH code. For a more general
introduction on this topic, see Toro (2009).

3.1. Finite-volume scheme

For the numerical solution, the underlying equations have to be
discretized on a, possibly curvilinear, mesh that resembles the
physical spatial domain. This grid is then mapped to Cartesian
coordinates on which the computations are conducted. A set of
integers (i, j, k) denotes the center of the (i, j, k)-th cell while,
for example, (i + 1/2, j, k) denotes the interface between cell
(i, j, k) and (i+1, j, k). The semi-discrete finite-volume scheme
is obtained by integrating Eq. (2) over the cell volume in com-
putational space, leading to

Vi jk

∂Ui jk

∂t
= − Ai+ 1

2
, j,k(F̂ξ)i+ 1

2
, j,k + Ai− 1

2
, j,k(F̂ξ)i− 1

2
, j,k

− Ai, j+ 1
2
,k(F̂η)i, j+ 1

2
,k + Ai, j− 1

2
,k(F̂η)i, j− 1

2
,k

− Ai, j,k+ 1
2
(F̂ζ)i, j,k+ 1

2
+ Ai, j,k− 1

2
(F̂ζ)i, j,k− 1

2
+ Vi jkŜi jk,

(21)

where Vi jk is the volume of the corresponding cell in physical
space and Ai+ 1

2
, j,k, Ai, j+ 1

2
,k, and Ai, j,k+ 1

2
are the interface areas of

the interfaces in ξ, η, and ζ-direction respectively. Details on the
computation of cell volumes and interface areas are computed
to second order following Kifonidis & Müller (2012). The cell-
averaged source term is approximated to second order by

Ŝi jk = ̺i jk





































0
(gx)i jk

(gy)i jk

(gz)i jk

0





































, (22)

where ̺i jk is the cell-averaged value of density and the cell-

centered gravitational acceleration (gχ)i jk = −
∂φ

∂χ

∣

∣

∣

∣

xi jk

is com-

puted analytically from the given gravitational potential φ.

In Eq. (21), F̂ξl is an approximation of the interface flux for
l = 1, 2, 3. There is some freedom in constructing the approxi-

mate flux function that calculates F̂ξl and many approaches can
be found in the literature. However, the specific choice is crucial
for the accuracy of the numerical solution. This is further dis-
cussed in Sect. 3.2 in the context of flows at low Mach numbers

M =
|u|

c
, (23)

where c is the speed of sound given by Eq. (20).
The values that enter the approximate flux function need to

be reconstructed from the center of the cells to the corresponding
interfaces. The reconstruction and the evaluation of the flux is
done for each coordinate direction separately, before the result-
ing fluxes over the surfaces are added for each cell.

The semi-discrete scheme is then evolved in time using an
ODE solver, such as a Runge–Kutta method. With an at least
linear reconstruction and a sufficiently accurate ODE solver
this discretization yields a second-order accurate scheme as
has been numerically verified by Berberich et al. (2019). For
the tests in this article we mainly use the implicit second-
order accurate three step Runge–Kutta method ESDIRK23 of
Hosea & Shampine (1996).

We chose an advective CFL time step (CFLu), not strictly for
reasons of stability, but as a good compromise between accuracy
and efficiency. In curvilinear coordinates it takes the form

∆tCFLu
= cCFL min

i jkl

(∆ξl)i jk

|nξl · u|i jk

, (24)

with a constant cCFL of order unity and an estimate of the cell
length in direction ξl given by

(∆ξ1)i jk =
Vi jk

1
2

(

Ai− 1
2
, j,k + Ai+ 1

2
, j,k

) , (25)

and accordingly for (∆ξ2)i jk and (∆ξ3)i jk.
This time step criterion generally works well when the flow

is fully developed, but it has problems when the Mach numbers
on the grid are very small (e.g., in the beginning of a simula-
tion with zero initial velocities), because this yields very large
or infinite time steps. As a way to prevent this, Miczek (2013)
suggests to include the free-fall signal velocity in the time step
calculation. The so-called CFLug time step is then given by

∆tCFLug
= cCFL min

i jkl

(∆ξl)i jk

si jkl

, (26)

with the signal velocity

si jkl =
1

2

(

al|nξl · u| +

√

|nξl · u|2 + 4alcCFL(∆ξl)nξl · g

)

i jk
. (27)

The parameter al selects the right branch of the quadratic solu-
tion and is given in Table 1.

For Mach numbers close to M = 1, however, it is usually
more efficient to use explicit time stepping. For this we use the
third-order accurate RK3 scheme of Shu & Osher (1988) with a
CFLuc time step controlled by the fluid velocity and sound speed.
It is given by

∆tCFLuc
=

cCFL

Ndim

min
i jkl

(∆ξl)i jk

|nξl · u|i jk + ci jk

, (28)
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Table 1. Parameter al used in the computation of the signal velocity in
Eq. (27).

Condition al

nξl · u > 0, nξl · g > 0 +1
nξl · u ≤ 0, nξl · g ≤ 0 −1

nξl · u > 0, nξl · g ≤ 0,

(

n
ξl
·u
)2

4n
ξl
·g
+ cCFL(∆ξl) ≤ 0 +1

nξl · u > 0, nξl · g ≤ 0,

(

n
ξl
·u
)2

4n
ξl
·g
+ cCFL(∆ξl) > 0 −1

nξl · u ≤ 0, nξl · g > 0,

(

n
ξl
·u
)2

4n
ξl
·g
+ cCFL(∆ξl) > 0 −1

nξl · u ≤ 0, nξl · g > 0,

(

n
ξl
·u
)2

4n
ξl
·g
+ cCFL(∆ξl) ≤ 0 +1

where Ndim denotes the spatial dimensionality of the equations.
In contrast to the previous criteria, this is a strict stability cri-
terion for the explicit time stepping. We note that the use of
a third-order scheme is not strictly necessary for the presented
results. A second-order time integration scheme, such as RK2
(Shu & Osher 1988), yields virtually identical results in combi-
nation with second-order spatial reconstruction.

3.2. Numerical flux functions

A fundamental part of the discretization is the choice of a numer-
ical two-state flux. These fluxes give approximate solutions of
the two-state Riemann problem at the cell interfaces. Choos-
ing different numerical fluxes yields different properties for the
scheme. Many of the typically used Riemann solvers or other
flux functions suffer from excessive Mach number dependent
diffusion. In the case of the Roe solver (Roe 1981) the origin
of this is an upwind term in the schemes that is needed for
numerical stability (e.g., Turkel 1987; Guillard & Viozat 1999;
Miczek et al. 2015). Other Godunov-type schemes are subject to
similar issues (Guillard & Murrone 2004). To correct this behav-
ior, a number of low Mach number fixes have been proposed that
aim on reducing the excessive diffusion and make it independent
of the Mach number (e.g., Turkel 1987; Li & Gu 2008; Rieper
2011; Oßwald et al. 2015; Miczek et al. 2015; Barsukow et al.
2017a; Berberich & Klingenberg 2020).

One peculiarity of astrophysical setups compared to, for
example, setups in the engineering community is the presence of
strong stratifications where pressure and density may change by
orders of magnitudes within the computational domain. In such
setups, the reduction of diffusion comes with the risk of reducing
stability and many of the schemes found in the literature develop
instabilities. The SLH code is designed in a modular fashion that
facilitates the implementation and testing of different types of
flux functions. In numerical tests we find the so-called AUSM+-
up method to yield appropriate results in the low-Mach regime
in combination with the well-balancing method discussed here.
The basic construction and a modification for improved low-
Mach behavior is discussed here.

An approach to numerical flux functions that can easily be
extended to flows at low Mach numbers is followed in the class
of Advective Upstream Splitting Methods (AUSM), which have
been first introduced by Liou & Steffen (1993). In Liou (1996)
the AUSM scheme was extended to AUSM+, the idea of which
we briefly describe in the following. To be consistent with the
original publication, we use dimensionalized quantities.

The central idea is to split the analytical flux function fχ of
Eq. (2) into a pressure and a mass flux via

f xi
= p ei+1 + ṁiψ, (29)

with

ṁi = ̺vi, ψ =





































1
u
v
w

E +
p

̺





































, i ∈ [1, 2, 3] (30)

and the i-th canonical basis vector in the five-dimensional flux
vector space ei. This formulation is given for Cartesian coordi-
nates, a transformation to curvilinear coordinates is possible.

The pressure and mass flux of Eq. (29) are discretized sepa-
rately which results in the numerical flux function

F̂xi
(UL,UR) = p1/2(UL,UR) ei+1 + ṁ1/2(UL,UR)ψup(UL,UR),

(31)

where the upwind term ψup is given by

ψup(UL,UR) =

{

ψ(UL) if ṁ1/2(UL,UR) ≥ 0,
ψ(UR) otherwise.

(32)

The core properties of this numerical flux function are deter-
mined by the definition of the interface values p1/2 and ṁ1/2

of the pressure p and the mass flux ṁi. With the initially pro-
posed definitions of Liou (1996), this flux function is not capa-
ble of resolving low Mach number flows. However, Liou (2006)
extended the AUSM+ scheme to AUSM+-up with enhanced low
Mach number capability.

For AUSM+-up, the interface pressure is defined as

p1/2 = P
+
(5)(ML)pL + P

−
(5)(MR)pR

− KuP
+
(5)(ML)P+(5)(MR)(̺L + ̺R)( fa c1/2)(uR − uL), (33)

where P±
(5)

are fifth degree polynomial functions, c1/2 is an

approximation for the interface speed of sound, and Ku is a con-
stant that can be set to a value between zero and unity. We refer
the reader to Liou (2006) for the detailed definitions of the terms.
The third term on the right hand side of Eq. (33) that includes
velocity-diffusion is called u-term and is designed to reduce the
numerical dissipation at low Mach numbers. It involves a scaling
factor fa defined as

fa = Mo(2 − Mo), (34)

with

Mo = min [1,max (Ma,Mcut)] , (35)

where Mcut is a cut-off Mach number that ensures that fa does
not approach 0 in the limit of very small Mach numbers. This
is necessary to prevent singularities as the inverse of fa enters
into the mass-flux part (see Eq. (36)) in the original definition
of AUSM+-up. However, as described below, the SLH code sets
the scaling in these two parts independently such that Mcut can
be theoretically set to zero. In SLH, for implementation reasons
the value is set to a small value, typically to 10−13, to avoid diver-
gence at smaller Mach numbers. This could easily be changed,
but does not have a practical influence on our calculations. The
mass flux in AUSM+-up is given by

ṁ1/2 = c1/2M1/2

{

̺L if Ṁ1/2 > 0,
̺R otherwise,

(36)
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with the interface Mach number

M1/2=M
+
(4)(ML) +M−(4)(MR) −

Kp

f
p

a

max
(

1 − σM̄2, 0
) pR − pL

̺1/2c2
1/2

.

(37)

Here, M±
(4)

are fourth degree polynomial functions and M̄ =

(u2
L
+u2

R
)/(2c2

1/2
). Kp and σ are constants between zero and unity.

The last term is called the p-term and is a pressure diffusion
term that was introduced to ensure pressure–velocity coupling at
low speeds (Edwards & Liou 1998). In the original AUSM+-up
scheme the Mach number dependent scaling of the p-term, f

p
a ,

was chosen identical to that of the u-term, fa. Similar to Miczek
(2013) we chose independent cut-off values for fa and

f
p

a = M
p
o (2 − M

p
o ), M

p
o = min

[

1,max
(

M,M
p
cut

)]

. (38)

This way, f
p

a can be defined with a significantly higher cut-off
Mach number (typically around 10−1) compared to fa. This pre-
vents stability issues, which can occur at locally very low Mach
numbers when 1/ f

p
a becomes exceedingly large. We use this

modified scheme in the presented tests and refer to it as AUSM+-
up. Still even this scheme is struggling with maintaining a simple
hydrostatic stratification as shown in Sect. 5.1.

It is important to note that the role of the effect of the pres-
sure diffusion is altered by combining AUSM+-up with any of
the well-balancing methods described in the following: well-
balancing techniques lead to an exact reconstruction of the
hydrostatic pressure. Only the nonhydrostatic pressure devia-
tions are captured by the reconstruction and given to the numer-
ical flux. Hence, when well-balancing is applied, the pressure
diffusion acts on the nonhydrostatic pressure only.

We define a corresponding basic scheme called AUSM+B-up
by setting Mcut = M

p
cut = 1. This scheme does have high dis-

sipation at low Mach numbers and we just use it to assess the
interaction of the various well-balanced schemes with low Mach
number flux functions.

4. Well-balancing methods

To illustrate the issue with configurations close to hydrostatic
equilibrium in finite-volume codes we consider the effect of one
time step on an initial configuration in perfect hydrostatic equi-
librium. For simplicity we discretize the time derivative using the
forward Euler method and only consider the one-dimensional
Euler equations. From the analytic result we expect that this
step will not alter the states and any subsequent steps will also
keep the hydrostatic equilibrium intact. To this end we associate
a discrete stationary solution that provides a good approxima-
tion to the hydrostatic equilibrium. If starting from a discrete
hydrostatic equilibrium, the solution of the time evolutionary
problem does not change for a numerical scheme, we call it
well-balanced.

The density, momentum, and total energy after one time step
of length ∆t (denoted by the superscript “1”) are calculated from
the previous values (denoted by the superscript “0”), the inter-

face fluxes F̂, and the cell-centered source term Ŝ. The result for
cell i is

̺1
i = ̺

0
i −
∆t

∆x

[(

F̂
0

i+ 1
2

)

1
−

(

F̂
0

i− 1
2

)

1

]

, (39)

(̺u)1
i = (̺u)0

i −
∆t

∆x

[(

F̂
0

i+ 1
2

)

2
−

(

F̂
0

i− 1
2

)

2

]

+ ∆t
(

Ŝi

)

2
, (40)

E1
i = E0

i −
∆t

∆x

[(

F̂
0

i+ 1
2

)

3
−

(

F̂
0

i− 1
2

)

3

]

, (41)

where the indexes outside the parentheses stand for the vec-
tor component of the flux or source term. To be well-balanced,
a scheme needs to guarantee that the step leaves the state
unchanged, which leads to the conditions

0 =

(

F̂
0

i+ 1
2

)

1
−

(

F̂
0

i− 1
2

)

1
, (42)

0 =

(

F̂
0

i+ 1
2

)

2
−

(

F̂
0

i− 1
2

)

2
− ∆x

(

Ŝi

)

2
, (43)

0 =

(

F̂
0

i+ 1
2

)

3
−

(

F̂
0

i− 1
2

)

3
. (44)

As the fluxes are evaluated at different states, none of these con-
ditions is fulfilled automatically. A consistent numerical flux will
automatically satisfy Eqs. (42) and (44) because the 1- and 3-
components of the fluxes are zero for u = 0. The case of Eq. (43)
is less straightforward. Here, the discretization of the source term
must be constructed to match the flux difference in the hydro-
static case. The methods described in the following subsections
achieve this in different ways.

4.1. Cargo–LeRoux method

4.1.1. The one-dimensional Cargo–LeRoux method

One method to turn almost any hydrodynamics scheme into
a well-balanced scheme was suggested by Cargo & Le Roux
(1994) (see also Le Roux 1999). The only prerequisites it needs
are support for a general equation of state and flux func-
tions that resolve contact discontinuities. For completeness we
describe the original method, which is only applicable in the
one-dimensional case, and turn to the multidimensional exten-
sion in Sect. 4.1.2. The one-dimensional Euler equations with
gravity read

∂

∂t

















̺
̺u
E′

















+
∂

∂x



















̺u

̺u2 + p
u(E′ + p)



















=

















0
̺g
̺gu

















, (45)

with g being the, possibly negative, gravitational acceleration in
the x-direction. The 1D method presented here relies on gravity
being constant in space and time. Furthermore, E′ = ̺ǫ + 1

2
̺|u|2

is the total energy excluding potential energy. It is only used in
the one-dimensional method in this subsection. The multidimen-
sional extension in Sect. 4.1.2 follows a slightly different princi-
ple using the total energy E including the potential as defined in
Sect. 2.

Cargo & Le Roux (1994) suggest the introduction of a
potential q defined by its spatial and temporal derivatives

∂q

∂x
= ̺g,

∂q

∂t
= −̺ug. (46)

Numerically, this potential is treated like a composition vari-
able, meaning that its time evolution is determined by the advec-
tion equation,

∂(̺q)

∂t
+
∂(̺qu)

∂x
= 0. (47)

This ensures that the conditions of Eq. (46) are fulfilled at all
times if they are satisfied initially.

Expressing the right side of Eq. (45) using q yields

∂

∂t

















̺
̺u
E′

















+
∂

∂x



















̺u

̺u2 + p
u(E′ + p)



















=





















0
∂q

∂x

−
∂q

∂t





















. (48)
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Collecting derivatives with respect to the same variable and
inserting 0 = q − q results in

∂

∂t

















̺
̺u

E′ + q

















+
∂

∂x



















̺u

̺u2 + p − q
u(E′ + q + p − q)



















=

















0
0
0

















. (49)

At this point we introduce a modified EoS based on an arbitrary
original EoS by defining a new pressure, Π, and total energy per
volume, F, as

Π = p − q, F′ = E′ + q. (50)

With this definition Eq. (49) takes the form of the homogeneous
Euler equations for a modified EoS,

∂

∂t

















̺
̺u
F′

















+
∂

∂x



















̺u

̺u2 + Π

u(F′ + Π)



















=

















0
0
0

















. (51)

The physical meaning of q is that of hydrostatic pressure, except
for an arbitrary constant offset. This means that the modified
pressure Π of an atmosphere in perfect hydrostatic equilibrium
is spatially constant, making the solution of the Euler equations
trivial.

This new EoS does not change the speed of sound. This can
easily be seen from rewriting the expression for the speed of
sound for a general EoS (20) in terms of Π and F′. Because
q does not depend on any other thermodynamic variables, the
rewritten expression takes the same form as the original.

4.1.2. A multidimensional extension

An obvious multidimensional extension of the aforementioned
method would be introduce a potential q with the defining
properties

∇q = ̺g,
∂

∂t
q = −̺g · u. (52)

While the algebra shown in Eqs. (48)–(51) is still valid for this
new potential, the problem with this definition is the mere exis-
tence of this potential q. From Eq. (52) follows that

∇ × (∇q) = ∇ × ̺g = 0, (53)

and using the fact that ∇ × g = 0, due to g being derived from a
gravitational potential, we can simplify this equation to

∇ × ̺g = ̺∇ × g − g × ∇̺ = −g × ∇̺ = 0. (54)

This means that a potential only exists if the cross product g×∇̺
vanishes. This only happens for any of the following three con-
ditions: the trivial case of gravity being globally zero, the case of
constant density, and the case where the gradient of density has
the same equilibrium with its surroundings. Thus, the approach
of Eq. (52) is not suitable.

In order to construct a general, but approximate, multidimen-
sional extension of the well-balanced method from Sect. 4.1.1,
we restrict ourselves to problems in which ̺ does not vary
strongly on equipotential surfaces of the gravitational potential
φ. We denote an average on these equipotential surfaces, which
we call horizontal average, with the operator 〈·〉, so we can define
an averaged density

̺0 = 〈̺〉. (55)

By definition of the horizontal average, the gradient of ̺0 is par-
allel to g. This allows us to define the potential by

∇q = ̺0g,
∂

∂t
q = 0, (56)

for which Eq. (54) is fulfilled automatically.
The fluxes (Eq. (3)) and the source term (Eq. (6)) in the com-

pressible Euler equations (Eq. (2)) can then be rewritten as

f ξl =















































̺ nT
ξlu

̺u nT
ξlu + (nξl )xΠ

̺v nT
ξlu + (nξl )yΠ

̺w nT
ξlu + (nξl )zΠ

nT
ξiu (F + Π)















































, s =











































0

−(̺ − ̺0)
∂φ

∂x

−(̺ − ̺0)
∂φ

∂y

−(̺ − ̺0)
∂φ

∂z

0











































. (57)

There are two fundamental differences between this form and
Eq. (51). First, F = E + q is defined including the poten-
tial energy. This is different from the one-dimensional case in
Eq. (50). q is now temporally constant, but because of the differ-
ent definition of the total energy, the source term in the energy
equation still vanishes. Second, the source term in the momen-
tum equation does not completely vanish anymore. It is now
proportional to the local deviation of density from its horizon-
tal average. Even though this scheme loses some of the advan-
tageous properties of the one-dimensional version, it is still
a significant improvement for multidimensional simulations of
stratified atmospheres.

A positive side effect of q being temporally constant is that,
in contrast to the original Cargo–LeRoux method, the grav-
itational acceleration, g, is now allowed to vary spatially. A
temporal variation of g is also possible, for example through
self-gravity, but that necessitates a recomputation of q to keep
the well-balanced property.

Because it only requires to a slight modification of the EoS,
it is expected that the Cargo–LeRoux well-balancing method
can be implemented into an existing hydrodynamic code rather
easily, provided it supports a general EoS. Cargo–LeRoux well-
balancing generally only works with flux functions that preserve
contact discontinuities. It works well with the AUSM+-up family
of fluxes used in this paper.

4.2. The α-β method

Another approach to balance any hydrostatic solution is the α-
β well-balancing method presented by Berberich et al. (2018).
Similar to the Cargo–LeRoux method, the hydrostatic solution
needs to be known a priori. An advantage of the α-β well-
balancing however is, that it permits an arbitrary, even multi-
dimensional, structure of the hydrostatic target solution. Hence,
the α-β method is able to deal with the example of a low-density
bubble in pressure-equilibrium with its surrounding of Sect. 4.1
that could not be balanced with the Cargo–LeRoux method.

The key idea of this method is to replace the physical val-
ues of ̺ and p by their respective relative deviation prior to the
reconstruction at the cell interfaces. The reconstructed values are
then multiplied by the known hydrostatic solution at the inter-
faces. The second-order approximation of gravity is constructed
such that the source term exactly cancels the flux over the inter-
face and hence that the initial hydrostatic stratification is main-
tained to machine precision.

For convenience, the working principle of the α-β well-
balancing method is demonstrated for the one-dimensional Euler
equations in Cartesian coordinates. The extension to higher
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dimensional curvilinear grids follows the same principle and can
be found in Berberich et al. (2019) together with a mathemati-
cally more rigorous formulation of the method.

For a given gravitational potential φ(x), we denote ˜̺ and p̃ as
the solution to the hydrostatic equation (Eq. (11)) in one dimen-
sion, that is

∂p̃

∂x
= − ˜̺

∂φ(x)

∂x
. (58)

The solutions are written as

˜̺ = ̺0 α(x), p̃ = p0 β(x), (59)

where α(x), β(x) are dimensionless profiles and ̺0, p0 carry the
physical dimension of density and pressure, respectively. It is
assumed that the profiles in Eq. (59) are known at least at coor-
dinates that coincide with cell centers and interfaces.

The numerical solution of the one-dimensional Euler equa-
tion in the finite volume approach requires the reconstruction
of the quantities from each cell center i of the computational
domain to the respective cell interfaces i + 1

2
. In general, there

is some freedom in choosing the set of quantities that is recon-
structed in addition to the velocities. This is exploited by the α-β
well-balancing method, which considers the relative deviation
from the hydrostatic solution. The set of quantities at cell i that
are reconstructed is hence chosen to be

Wi =
(

W
̺

i
,Wu

i ,W
p

i

)

=

(

̺i

α(xi)
, ui,

pi

β(xi)

)

. (60)

There is no restriction on the specific choice of the reconstruc-
tion scheme that calculates the value of Wi at the interface, that
is Wi± 1

2
. After reconstruction, the variables are transformed back

to their physical counterpart by multiplication with the known
hydrostatic solution at the interfaces,

̺
L/R

i+ 1
2

= α
(

xi+ 1
2

)

(

W
̺

i+ 1
2

)L/R

, u
L/R

i+ 1
2

=

(

Wu

i+ 1
2

)L/R

,

p
L/R

i+ 1
2

= β
(

xi+ 1
2

)

(

W
p

i+ 1
2

)L/R

. (61)

Here, L/R denotes the value at the interface when reconstruct-
ing from the left or right side, respectively. The values given by
Eq. (61) enter into the numerical flux function (see Sect. 3.2).

If density ̺ and pressure p on the computational grid corre-
spond to the hydrostatic solution Eq. (59) and u ≡ 0, it follows
that the quantities reconstructed from the left and right side are
equal for all cell interfaces and hence

UL

i+ 1
2

= UR

i+ 1
2

= Ui+ 1
2
. (62)

If the left and right interface state are the same, any numerical
flux function has to equal the analytical flux function to ensure
the consistency of the method. Thus,

F̂x

(

UL

i+ 1
2

,UR

i+ 1
2

)

= f x

(

Ui+ 1
2

)

=



















0
p̃(xi+ 1

2
)

0



















, (63)

which immediately follows from Eq. (3) for vanishing velocities.
In order to maintain hydrostatic equilibrium, the residual flux

of Eq. (63) has to be balanced exactly by the source term s in
Eq. (2). To achieve this, the α-β method expresses the gravita-
tional potential in Eq. (6) with the aid of the hydrostatic equation
Eq. (58) as

−
∂φ

∂x
=

p0

̺0 α(x)

∂β(x)

∂x
. (64)

The one-dimensional source term for gravity (see Eq. (22)) is
then given by

Ŝi =

















0
si

0

















, si =
p0

̺0

βi+ 1
2
− βi− 1

2

∆x

̺i

αi

, (65)

which is a second-order accurate discretization. If the states on
the computational grid correspond to the hydrostatic solution,
then Eq. (65) reduces to

si =





















0

p̃
(

xi+ 1
2

)

− p̃
(

xi− 1
2

)

0





















= F̂x

(

UL

i+ 1
2

,UR

i+ 1
2

)

− F̂x

(

UL

i− 1
2

,UR

i− 1
2

)

(66)

and the discretized source term exactly cancels the interface
fluxes. This leads to zero residual and thus to a well-balanced
scheme. The well-balanced property for the one-dimensional α-
β method is formally shown in Berberich et al. (2018).

4.3. The deviation method

In the following we give a short description of the simple
and general well-balanced method introduced in Berberich et al.
(2021). For more details we refer the reader to this reference.
The core of the method is the target solution ũ, which must be
known a priori. It has to be a stationary solution to the Euler
equations (2), that is it has to satisfy the relation

Aξ

∂ f ξ(ũ)

∂ξ
+ Aη

∂ f η(ũ)

∂η
+ Aζ

∂ f ζ(ũ)

∂ζ
= Js(ũ). (67)

It is noteworthy that, in contrast to other well-balancing meth-
ods, it can include a nonzero velocity. In the numerical applica-
tions in Sect. 5 we are going to store the hydrostatic or stationary
solution which shall be well-balanced in ũ. Subtracting Eq. (67)
from Eq. (2) yields the evolution equation

J
∂(∆u)

∂t
+Aξ

(

∂ f ξ(ũ + ∆u)

∂ξ
−
∂ f ξ(ũ)

∂ξ

)

+Aη

(

∂ f η(ũ + ∆u)

∂η
−
∂ f η(ũ)

∂η

)

+Aζ

(

∂ f ζ(ũ + ∆u)

∂ζ
−
∂ f ζ(ũ)

∂ζ

)

= J (s(ũ + ∆u) − s(ũ))

(68)

for the deviations ∆u = u − ũ from the target solution ũ. In
order to obtain a well-balanced scheme which exactly maintains
the stationary target solution ũ, we discretize Eq. (68) instead of
Eq. (2). This yields

Vi jk

∂(∆U)i jk

∂t
= − Ai+ 1

2
, j,k(F̂

dev

ξ )i+ 1
2
, j,k + Ai− 1

2
, j,k(F̂

dev

ξ )i− 1
2
, j,k

− Ai, j+ 1
2
,k(F̂

dev

η )i, j+ 1
2
,k + Ai, j− 1

2
,k(F̂

dev

η )i, j− 1
2
,k

− Ai, j,k+ 1
2
(F̂

dev

ζ )i, j,k+ 1
2
+ Ai, j,k− 1

2
(F̂

dev

ζ )i, j,k− 1
2

+Vi jkŜ
dev

i jk , (69)
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where the numerical flux differences
(

F̂
dev

ξ

)

i+ 1
2
, j,k
=

(

F̂ξ

)

i+ 1
2
, j,k
− f ξ

[

ũ
(

xi+ 1
2
, j,k

)]

,

(

F̂
dev

η

)

i, j+ 1
2
,k
=

(

F̂η

)

i, j+ 1
2
,k
− f η

[

ũ
(

xi, j+ 1
2
,k

)]

,

(

F̂
dev

ζ

)

i, j,k+ 1
2

=
(

F̂ζ

)

i, j,k+ 1
2

− f ζ

[

ũ
(

xi, j,k+ 1
2

)]

are the differences between the numerical fluxes evaluated at the
states ũ + ∆UL/R and the exact fluxes evaluated at the values
of the target solution at the interface centers. The interface val-
ues ∆UL/R are obtained via reconstruction. To reconstruct in the
set of variables uother = T (u) that is different from conserved
variables u, the reconstruction is applied to the transformed
deviations

∆Uother
i jk = T

(

ũ
(

xi jk

)

+ ∆Ui jk

)

− T
(

ũ
(

xi jk

))

. (70)

After reconstruction, the interface values are transformed back.
For the left interface values, this reads

UL

i+ 1
2
, j,k
= T −1

(

T
(

ũ
(

xi+ 1
2
, j,k

))

+ ∆Uother

i+ 1
2
, j,k

)

, (71)

and right interface values are calculated likewise. The source
term difference discretization in Eq. (69) is

Ŝ
dev

i jk = Ŝ
(

ũ
(

xi jk

)

+ ∆Ui jk

)

− Ŝ
(

ũ
(

xi jk

))

, (72)

where Ŝ(U) means that the source term discretization Eq. (22)
is evaluated at the state U. It has been shown in Berberich et al.
(2021) that this modification of the scheme (21) renders it well-
balanced in the sense that the residual vanishes if u = ũ and that
the method can be applied in arbitrarily high order finite-volume
codes.

This method follows ideas already published elsewhere
in the literature. Veiga et al. (2019) introduce a similar well-
balanced scheme in the context of finite element methods. The
method introduced in Dedner et al. (2001) for stratified MHD
flows with gravity also shares many features with the devia-
tion method. The key difference is that the Dedner et al. (2001)
method subtracts the residual of the initial state of the simulation,
while the deviation method subtracts a known background state
during the spatial reconstruction step, which is at an earlier stage.
While we have not quantified this in tests, it is expected that
the deviation method will produce a more accurate reconstruc-
tion close to equilibrium because it is essentially reconstructing
a constant function.

5. Numerical tests and application examples

This section presents simple test simulations that verify that
the presented well-balancing methods in combination with a
low-Mach flux function are stable and do enable correct rep-
resentation of slow flows in stellar-type stratifications. This
is done for steady-state and dynamical test problems. Unless
stated otherwise, time integration is performed with the implicit
ESDIRK23 scheme in combination with the CFLug time step
criterion (Eq. (26)). The corresponding value of cCFL is stated
for each of the simulations individually. For the numerical flux,
the AUSM+-up scheme (Sect. 3.2) is used with f

p
a = 0.1 and

fa = 10−13. Interface values are calculated from cell averages by
applying linear reconstruction without any slope or flux limiters.

The set of reconstructed quantities is either ̺-P or ̺-T , depend-
ing of the well-balancing method, and will be stated explicitly
for the respective simulations. The choice of appropriate bound-
ary conditions depends on the specific setup, hence they are
given for each setup individually. All of our test cases are two-
dimensional for computational reasons, although the methods
are equally valid in three spatial dimensions. Qualitatively dif-
ferent results for the 3D case are not expected.

5.1. Simple stratified atmospheres

A useful test problem for the quality of a well-balanced scheme
is a stably stratified atmosphere. A zero-velocity initial condition
should be maintained perfectly, at least down to rounding errors.
However, in a not well-balanced scheme the pressure-gradient
force and gravity do not cancel exactly and the systems ends up
in a state with small, but nonzero, acceleration. Depending on the
details of the numerical flux, this acceleration may prevent the
simulation of flows at very low Mach numbers or it may cause
unphysical convection in formally stable stratifications. In any
case, keeping a hydrostatic stratification stable is a necessary,
but not a sufficient condition for a well-balanced scheme to be
useful for the simulation of stratified atmospheres.

We start with the one-dimensional (1D), isothermal test case
of Käppeli & Mishra (2016) on the domain [0, 2 cm]. Gravity is
points into negative x-direction and the gravitational potential is
given by

φ = s0x, (73)

with a steepness s0 of 1 cm s−2. The constant temperature profile
is convectively stable for any equation of state with a positive
value of δ (Eq. (14)). The density and pressure profiles fulfilling
Eq. (11) are given by,

̺ = ̺0 exp

(

−
̺0

p0

φ

)

, p = p0 exp

(

−
̺0

p0

φ

)

. (74)

This expression holds for any form of the gravitational potential,
not just Eq. (73). The reference density and pressure are set to
̺0 = 1 g cm−3 and p0 = 1 Ba, respectively. We use Dirichlet
boundary conditions, which are initialized with the hydrostatic
profile and then left unchanged throughout the simulation. The
equation of state is that of an ideal gas with an adiabatic exponent
γ = 5/3.

Figure 1 shows the time evolution of the maximum Mach
number for this isothermal configuration in 1D simulations with
64 grid cells using a variety of well-balancing methods and two
different flux functions. The simulations use linear reconstruc-
tion in ̺-P variables, cCFL = 0.9 for the time step size, and they
were run until t = 5000 tBV. The figure shows that runs without
well-balancing immediately reach Mach numbers between 10−6

and 10−5, while all of the tested well-balancing methods man-
age to keep the Mach number below 10−12. The choice of flux
function does not qualitatively affect the results here, in partic-
ular it does not play a role if we use a low Mach number flux,
such as AUSM+-up, or a standard flux, such as AUSM+B-up (see
Sect. 3.2).

Certain phenomena, such as convection, are inherently mul-
tidimensional and cannot develop in 1D geometry. Therefore we
repeat this test using a two-dimensional (2D) atmosphere. For
simplicity we keep gravity pointing in the negative x-direction.
The horizontal boundaries are periodic. Figure 2 shows the evo-
lution of the maximum Mach number and horizontal density
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Fig. 1. Time evolution of the maximum Mach number in a 1D atmo-
sphere with an isothermal temperature profile (Eq. (74)) and a lin-
ear gravitational potential (Eq. (73)). The colors indicate different
well-balancing (WB) methods, the markers different flux functions.
CL stands for Cargo–LeRoux. Time is given in units of the Brunt–
Väisälä time tBV = 9.93 s (Eq. (18)) and sound-crossing time tSC =

3.10 s (Eq. (19)). The curves have been slightly smoothed for better
visibility.
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Fig. 2. Same as Fig. 1, but for a 2D atmosphere. The solid lines repre-
sent the maximum Mach numbers on the grid and the dotted lines the
horizontal density fluctuations according to Eq. (75). The curves have
been slightly smoothed for better visibility.

fluctuation ∆̺ over time. The latter is defined as

∆̺ = ̺ − 〈̺〉y, (75)

with 〈·〉y denoting an average over the y direction.
Similar to the 1D case, we see that the simulations without

well-balancing immediately reach Mach numbers around 10−5.
All simulations using any well-balanced method start from very

low Mach numbers (≈10−13), but the ones using the low Mach
number AUSM+-up flux show an exponential growth over the
next few thousand tBV. The growth of the Mach number is linked
to that of ∆̺. This growth even affects the Mach numbers in
the simulation without well-balancing, where the Mach number
increases further after about 4000 tBV. The well-balanced sim-
ulations using the AUSM+B-up flux do not show this behavior
and retain the very low Mach numbers. We found that other low
Mach number fluxes, such as the one by Miczek et al. (2015) and
Li & Gu (2008), show a growth similar to AUSM+-up, although
the rate varies between the different schemes. These spurious
velocities are likely due to pressure–velocity decoupling, which
is a common issue with compressible low Mach number meth-
ods. In combination with a gravity source term this can lead to
an instability very similar to convection, but in stable stratifica-
tions. The reason is that pressure does not immediately return to
its horizontal equilibrium. A common way to partially alleviate
this effect is to introduce a form of pressure diffusion, such as the
one suggested by Edwards & Liou (1998), which is also used in
the AUSM+-up solver.

While the standard flux seems to perform better in this static
test case, it is ultimately not suited for the simulation of dynamic
phenomena at low Mach numbers, such as convection or waves,
due to its high numerical dissipation.

Figure 3 shows the typical pattern of the exponentially grow-
ing perturbation in both Mach number and ∆̺. In both quantities
we see a resolved pattern in the horizontal direction, but a grid-
level oscillation in the vertical direction. One hypothesis for this
behavior is that it is due to unresolved internal gravity waves in
combination with pressure–velocity decoupling, see Sect. 5.3.

We run the same tests for polytropic stratifications. Here the
profiles of density, pressure, and temperature are

̺ = ̺0θ
1
ν−1 , p = p0θ

ν
ν−1 , T =

p0µ

̺0R
θ = T0θ, (76)

with

θ = 1 −
ν − 1

ν

̺0

p0

φ. (77)

We set µ = 1 g mol−1. The polytropic index ν determines the
slopes of the profiles. If ν is less than the adiabatic exponent γ,
the atmosphere is stable. If ν > γ, it is unstable. If both are equal
the atmosphere is isentropic and therefore marginally stable.

Figure 4 shows the maximum Mach number and ∆̺ for an
isentropic atmosphere. Here the Brunt–Väisälä time tBV is not
well defined because N = 0. Instead we use the sound-crossing
time tSC = 4.28 s for reference. α-β and deviation well-balancing
stay at very low Mach numbers below 10−7, independently of the
choice of flux function. This result suggests that the issue with
the exponential growth of perturbations in combination with low
Mach number flux functions is more severe in more stable strat-
ifications. In contrast to the isothermal test we see that Cargo–
LeRoux well-balancing behaves quite similarly to the not well-
balanced case. Both quickly reach Mach numbers of about 10−1

with flow patterns that resemble 2D convection. It is likely that
this marginally unstable stratification experiences the growth of
convection due to the less than ideal well-balancing properties
of the Cargo–LeRoux method.

As a last test we run a polytropic stratification with ν =
1.6 < γ = 5/3, which is stably stratified, but less so than the
isothermal case. The relevant timescales here are tBV = 20.1 s
and tSC = 4.13 s. The results are shown in Fig. 5. Here we see
that the cases without well-balancing and with Cargo–LeRoux
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Fig. 3. Mach number (top panel) and horizontal density fluctuation ∆̺
(bottom panel) of the 2D isothermal simulation using the AUSM+-
up flux and deviation well-balancing at time t = 1000 tBV. Gravity is
directed in negative x-direction.

well-balancing fail to preserve the hydrostatic equilibrium in
combination with the low Mach number flux. For the other two
well-balancing methods there is a much clearer difference in the
growth rate of the perturbation with deviation well-balancing
growing significantly more slowly, reaching only Mach numbers
of 10−7 after 5000 tBV. Any of the well-balancing methods man-
ages to keep the Mach numbers below 10−11 when combined
with the AUSM+B-up flux, which does not have low Mach number
properties. This is in agreement with the findings in the isother-
mal case.

Appendix A shows the same isentropic and polytropic tests
as in Figs. 4 and 5, but in the 1D case. In contrast to the 2D
cases, the Mach numbers stay at low values for the runs using
well-balancing also when using the AUSM+-up solver. This is
consistent with the hypothesis that these velocities are a form of
unphysical convection caused by pressure–velocity decoupling,
which is obviously not possible in only one spatial dimension.

The spurious growth we found in combination with low-
Mach-number fluxes is likely not a problem particular to
the well-balanced methods we presented. We considered very
long timescales of thousands of sound-crossing and Brunt–
Väisälä times. This is much longer than the timescales typi-
cally used to test well-balancing methods. Käppeli & Mishra
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Fig. 4. Same as Fig. 2, but for an isentropic stratification. The solid lines
represent the maximum Mach numbers on the grid and dotted lines the
horizontal density fluctuations according to Eq. (75). Time is given in
units of the sound-crossing time tSC = 4.28 s. The curves have been
slightly smoothed for better visibility.
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Fig. 5. Same as Fig. 2, but for a polytropic stratification with ν = 1.6.
The adiabatic exponent is γ = 5/3. The solid lines represent the max-
imum Mach numbers on the grid and dotted lines the horizontal den-
sity fluctuations according to Eq. (75). Time is given in units of Brunt–
Väisälä time tBV = 20.1 s and sound-crossing time tSC = 4.13 s. The
curves have been slightly smoothed for better visibility.

(2016), for example, ran their hydrostatic setup only for 2 tSC
2.

While this would definitely show any major issues with the basic

2 Käppeli & Mishra (2016) show another test of a 3D simulation that
covers several convective turnover times and contains a stable layer. The
simulation shows strong, unphysical flows in the stable layer when run
without a well-balanced method, but these disappear when their well-
balanced method is used. Considering they did not use a low Mach num-
ber method, this is consistent with our results.

A53, page 12 of 27

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202140653&pdf_id=3
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202140653&pdf_id=4
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202140653&pdf_id=5


P. V. F. Edelmann et al.: Well-balancing in astrophysical hydrodynamics

well-balanced property of the scheme, it does not reveal the long-
term growth of instabilities in the stable region. This is some-
thing to bear in mind when applying such methods to partly
convectively stable configurations, such as stars. Whether the
described phenomenon is an issue for real-world applications
depends on many factors, such as how well the stratification is
resolved and what timescales are of relevance. In particular for
applications with large stable regions and long simulation times,
such as in asteroseismological hydrodynamics simulations, this
has to be carefully considered. The most promising method in
this test is the deviation well-balancing method in combination
with the AUSM+-up flux.

5.2. Hot bubble

Convection in the stellar interior is usually slow and almost adi-
abatic. A typical convection zone is nearly isentropic, although
the stratification in the star’s gravitational field can span orders
of magnitude in pressure and density. The buoyant acceleration
of a fluid parcel is given by its entropy fluctuation with respect
to the mean entropy at any given radius. Entropy fluctuations
are constantly created by sources of heating or cooling. How-
ever, once the fluid parcel has left the heating or cooling layer
and travels through the rest of the convection zone, the parcel’s
entropy must be preserved except for those parts that have mixed
with their surroundings. If the flow is slow, all entropy fluctua-
tions inside the convection zone are also small and it becomes
numerically challenging to preserve their exact values when den-
sity and pressure change by large factors as the fluctuations are
advected along the gravity vector.

We test the numerical schemes’ entropy-preservation prop-
erties under the conditions described above by simulating the
buoyant rise of a “bubble” with an adjustable initial entropy fluc-
tuation embedded in a layer of constant entropy. The layer is
strongly stratified in pressure and density due to the presence of
gravity. We call this setup “hot bubble”, because we use positive
initial entropy fluctuations. Negative initial entropy fluctuations
would make the bubble fall, but everything else would work in
the same way. Our setup is similar to that used by Almgren et al.
(2006) to test their MAESTRO code, although their equation of
state and stratification differ from our setup. We also test our
methods down to much lower Mach numbers.

We construct the stratification in a two-dimensional box
106 cm wide and spanning the vertical range from y = 0 to
y = ymax = 1.5 × 106 cm. To avoid any influence of boundary
conditions, we use periodic boundaries and a periodic profile of
gravitational acceleration

gy = g0 sin(kyy), (78)

where g0 is a constant to be specified later and ky = 2π/ymax. The
box is filled with an ideal gas with the ratio of specific heats γ =
5/3 and mean molecular weight µ = 1 g mol−1. At y = 0, we set
the pressure to p0 = 106 Ba and the temperature to T0 = 300 K.
The stratification is isentropic, that is

̺(y) =

(

p(y)

A

)1/γ

, (79)

where A = A0 = const. everywhere outside of the bubble. Inside
the bubble, we perturb the entropy via

A = A0
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where (∆A/A)t=0 is the bubble’s amplitude and r =
[

(x − x0)2 + (y − y0)2
]1/2

is the distance from the bubble’s center

with x0 = 5× 105 cm and y0 = 1.875× 105 cm. The bubble has a
radius of r0 = 1.25 × 105 cm. We do not perturb the hydrostatic
pressure stratification, which is given by the expression
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The amplitude g0 of the gravity profile sets the ratio of the max-
imum to the minimum pressure in the periodic pressure profile.
To make the problem numerically challenging, we use a pres-
sure ratio of 100, which is achieved with g0 = −1.09904373 ×
105 cm s−2. This stratification is stronger than that in the convec-
tive core of a typical massive main-sequence star, in which the
pressure changes by a factor of a few. On the other hand, the
relative pressure drop from the bottom of the solar convective
envelope to the photosphere is ≈109.

We start with a moderate initial entropy perturbation of
(∆A/A)t=0 = 10−3, which makes the bubble rise at moderately
low Mach numbers of a few times 10−2. This allows us to per-
form simulations with all three well-balancing methods as well
as simulations without any well-balancing at modest grid reso-
lution of 128 × 192, see Fig. 6. We run this series of simula-
tions with fixed time steps of 0.2 s. With the exception of the
Cargo–LeRoux and α-β methods, which require ̺-P reconstruc-
tion, we test both ̺-P and ̺-T reconstruction. The central, most
buoyant, part of the bubble accelerates fastest. The bubble gets
deformed into a mushroom-like shape with two trailing vortices
and it expands as it rises into layers of lower pressure. Ideally,
the initially positive entropy fluctuations ∆A/A should mix with
the isentropic (∆A/A = 0) background stratification, creating
smaller but still positive entropy fluctuations. The entropy fluctu-
ations may locally increase a bit as kinetic energy is slowly dissi-
pated into heat, but there is no physical way for them to become
negative. Any negative entropy fluctuations in the numerical
solution result from numerical errors.

Figure 6 shows that both the absence of well-balancing
and the Cargo–LeRoux method generate large areas of nega-
tive entropy fluctuations comparable to or even larger in abso-
lute value than the bubble’s initial amplitude. Large-scale posi-
tive entropy fluctuations also occur far from the bubble and they
clearly do not result from hydrodynamic mixing. They rather
seem to be caused by entropy nonconservation as the bubble
pushes the surrounding stratification upwards and downwards. In
the no-well-balancing case, errors in ∆A/A are smaller when ̺-T
reconstruction is employed as compared with ̺-p reconstruction.
This may be due to the fact that the pressure changes by a fac-
tor of 100 in the computational domain whereas the temperature
only changes by a factor of 6.3. In any case, α-β and deviation
well-balancing clearly provide far superior results with only a
mild and highly localized undershoot in ∆A/A above the bubble.
With the deviation method, this success is independent of the
choice of reconstruction.

All of the methods tested converge upon grid refinement,
although not in the same way, see the series of runs shown in
Fig. 7. In this series, we keep the 0.2 s time steps for all runs
except those on the finest (256×384) grid, for which we use 0.1 s.
When there is no well-balancing or the Cargo–LeRoux method
is used, the amplitude of the large-scale entropy-conservation
errors around the bubble decreases upon grid refinement and
the bubble’s shape slowly approaches that obtained with the
α-β and deviation methods. The errors are still substantial even
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to right) on a 128 × 192 grid. In all of the cases, entropy fluctuations ∆A/A are shown on the same color scale ranging from −10−3 (dark blue)
through 0 (white) to 10−3 (dark red). The minimum and maximum values of ∆A/A in the whole simulation box are given in each panel’s inset. The
amplitude of the initial entropy perturbation is (∆A/A)t=0 = 10−3.

on the finest (256 × 384) grid tested. The slight entropy under-
shoot produced by the α-β and deviation methods does not
decrease in amplitude but it does decrease in spatial extent as
the grid is refined. Surprisingly, we do not observe any signifi-
cant entropy fluctuations far from the bubble even on the coarsest
grid (64 × 96) with these two methods.

As the bubble’s initial amplitude (∆A/A)t=0 is decreased, the
typical Mach number in the flow field decreases as

Ma ∝

(

∆A

A

)1/2

t=0

. (82)

This scaling results from the fact that the bubble’s acceleration
is proportional to ∆̺/̺ ∝ ∆A/A and the velocity an object
in uniformly accelerated motion reaches over a fixed distance
(i.e., until the bubble has reached the same evolutionary stage)
is proportional to the square root of the acceleration. Although
the bubble’s acceleration is not constant, the bubble always
evolves in the same way, just slower, when its initial amplitude
is decreased and the scaling still holds.

The scaling is also demonstrated in Fig. 8, which shows a
series of runs performed on a 128 × 192 grid with (∆A/A)t=0

ranging from 10−3 down to 10−11. As (∆A/A)t=0 decreases, we
increase time steps in this order: 0.2 s, 1 s, 10 s, 25 s, 25 s.
The solver’s convergence worsens as all fluctuations become
smaller, limiting the maximum time step size. We only include
the α-β and deviation well-balancing methods in this experi-
ment, because entropy-conservation errors quickly dominate the
solution when the initial amplitude is decreased and the Cargo–
LeRoux or no well-balancing method is used. Because the Mach
number is expected to scale according to Eq. (82), we scale the

time when the simulation is stopped with (∆A/A)
−1/2

t=0
. This way,

we compare the results when the bubble has reached approx-
imately the same height and evolutionary stage as the previ-

ously discussed case with (∆A/A)t=0 = 10−3 at t = 300 s
(Fig. 6). Both the α-β and deviation well-balancing methods pro-
vide essentially the same solutions, reproducing the expected
Mach-number scaling down to Ma ∼ 10−6. The amplitude of the
entropy undershoot above the bubble is 24% lower when the α-
β method is used as compared with the deviation method. The
most extreme run with (∆A/A)t=0 = 10−11 reaches the limits
of our current implementation and we can see numerical noise
developing in the stratification, see Figs. B.1 and B.2. Figure 8
also shows that the minimum and maximum entropy fluctuations
in the evolved flow scale in proportion to the initial amplitude of
the bubble.

5.3. Simple convection setup

The previous section demonstrated the capabilities of the α-β
and deviation well-balancing schemes to evolve the rise of a bub-
ble with an entropy excess in an isentropic stratification at low
Mach numbers. This can be interpreted as a test for the funda-
mental mechanism of convection. The purpose of this section
is to also assess the benefit from well-balancing techniques for
fully developed convection in a realistic stellar scenario.

The prototype of a convective region in stellar interiors
includes a steady heating source in the form of nuclear burning
that injects energy over a long period in time. If radiative trans-
port of energy is not efficient enough, the temperature gradient
will steepen until it reaches the adiabatic temperature gradient.
According to Eq. (16), this region will become unstable and con-
vection will set in. As convection is very efficient in transporting
energy, a common assumption is that the stratification settles to
an nearly adiabatic temperature gradient in the steady state.

In stars, a convective region is typically adjacent to con-
vectively stable regions. The mixing processes across the inter-
faces of convectively stable and unstable regions have a profound
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Fig. 7. Same as Fig. 6, but showing the solutions’ resolution dependence (top to bottom) at t = 300 s.

impact on stellar evolution, yet it is particularly difficult to
parametrize these processes in one-dimensional stellar evolu-
tion codes. A common strategy for improving the current 1D
description is to investigate the dynamics at the interfaces of
convection zones by means of multidimensional hydrodynami-
cal simulations (Jones et al. 2017; Cristini et al. 2019; Pratt et al.
2020; Higl et al. 2021; Horst et al. 2021).

The Mach number of convection deep in the stellar interior is
estimated to be on the order of 10−4 in early stages of stellar evo-
lution. Accurate modeling of the early phases is, however, cru-
cial as it determines the whole subsequent evolution of the star
and inaccuracies will propagate to later stages. Thus, numerical
experiments that address convection in stellar interiors rely on
schemes that accurately maintain hydrostatic stratifications and
that are able to follow convection at low Mach numbers for a
sufficient amount of time.

The initial stratification for the test series presented in this
section consists of a convective region with a stable layer on
top. One possibility to set up this configuration would be to
use realistic initial conditions from a 1D stellar evolution code.
However, such 1D profiles usually require some extra treat-
ment before they can be used for hydrodynamical simulations,
for example a smoothing of sharp composition gradients or to
properly impose a flat entropy profile in the convection zone.
Instead, we use analytical initial conditions to be able to test the

numerical methods under well-defined but realistic conditions.
This way, any numerical artifacts that may arise can solely be
attributed to the methods applied rather than to inadequate ini-
tial conditions.

To construct the initial hydrostatic stratification, we follow
the procedure described by Edelmann et al. (2017). It imposes
the profile of the superadiabaticity ∆∇ = ∇ − ∇ad while integrat-
ing the equation of hydrostatic equilibrium (Eq. (11)). Accord-
ing to Eq. (16), ∆∇ determines the sign of the Brunt–Väisälä fre-
quency. It is therefore possible to precisely control which regions
are convectively stable (∆∇ < 0) and unstable (∆∇ > 0) as well
as the respective transitions between these regions. A marginally
stable stratification is imposed inside the convection zone by set-
ting ∆∇CZ = 0. In the stable region, we impose ∆∇SZ = −∇ad,
which corresponds to an isothermal stratification.

To connect the two regions, we use a sinusoidal transition,
which ensures that the transition between the two ∆∇-values is
well-defined and can be resolved numerically. The profile with
a transition between the convection and stable zones then takes
the form

∆∇(y) = ∆∇CZ

+
1

2

[

1 + sin

(

π

2
η(y,K, yCZ,SZ)

)]

(∆∇SZ − ∆∇CZ) , (83)
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Fig. 8. Dependence of the maximum Mach number Ma and mini-
mum and maximum entropy fluctuations ∆A/A on the bubble’s initial
amplitude (∆A/A)t=0. All measurements are taken when the bubble has
evolved to a stage comparable to that shown in the bottom row of Fig. 6.
Open and filled symbols correspond to runs with α-β and deviation well-
balancing, respectively. The lines show that the Mach number scales
according to Eq. (82) and the minimum and maximum entropy fluctua-
tions scale in proportion to the bubble’s initial amplitude.

with

η(y,K, yi) =























−1 if K(y − yi) < −1,

1 if K(y − yi) > 1,

K(y − yi) otherwise,

(84)

where the constant K determines the steepness of the transition.
It is set such that the transition is resolved by at least 20 grid
cells. The coordinate yCZ,SZ denotes the middle of the transi-
tion starting at yCZ,SZ − 1/K and ending at yCZ,SZ + 1/K. The
value of yCZ,SZ is given in Table 2. The computational domain
spans 2yCZ,SZ in the horizontal direction. The profiles of tem-
perature T , pressure p and density ̺ then follow from integrat-
ing the equation of hydrostatic equilibrium Eq. (11) as described
by Edelmann et al. (2017) with a spatially constant gravitational
acceleration of |g| = 6.6× 104 cm s−2. The initial values required
for the integration are listed in Table 2. They are representative of
the conditions expected in the convective core of a 25 M⊙ main

sequence star with a mean atomic weight of A = 1.3 and a mean

charge of Z = 1.1.
Figure 9 shows the resulting profiles of ∆∇, T , and ̺ as well

as the fact that the transition between the convective and stable
zone is well resolved even on the coarsest SLH grid. Because
cores of massive stars are hot, a considerable fraction of the total
pressure is contributed by the radiation field. The relative impor-
tance of radiation pressure is given in the lower panel of Fig. 9. It
ranges from roughly 20% in the bottom region to about 60% in
the top region where the density is low. This test setup is there-
fore also an example where the ideal gas EoS is not sufficient
to describe the thermodynamic behavior of the gas and which
requires well-balancing methods that can handle general EoS.

To trigger convection in the initially marginally stable con-
vection zone, a heat source is placed at the bottom of the convec-
tion zone that continuously injects energy into the system with
a sinusoidal profile peaking at the bottom of the domain. The
heating profile is given by

ėh(y) = ė0 a sin

(

π

2

[

1 + η (y,K, 0)
]

)

erg s−1 cm−3, (85)

Table 2. Parameters of the convection test setup.

Quantity Value

T0 3.7 × 107 K

p0 2.4 × 1016 g cm−1 s−2

|g| 6.6 × 104 cm s−2

ybot, ytop 0, 2.6 × 1011 cm
yCZ,SZ 0.66 ytop

xright − xleft 2 yCZ,SZ

∆∇CZ, ∆∇SZ 0,−∇ad

A, Z 1.3, 1.1
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s
)

0.2

0.4

0.6

p
ra

d
/

p
to

t

Fig. 9. Initial stratification of the convection setup. The red curve illus-
trates the position and shape of the energy injection which has nonzero
values only at the bottom of the convection zone. Its actual amplitude is
set for the different simulations individually. Dots denote the positions
of cell centers on a grid with 144 vertical cells, the lowest resolution
used in the SLH simulations presented in this section.

with

a =
4 sin(πK∆y/4)

πK∆y
, K =

1

0.2 yCZ,SZ

, (86)

where ∆y denotes the grid spacing in the vertical direction. As
introduced here, ė0 is dimensionless. The factor a ensures that
the total heating rate is independent of grid resolution. In a sta-
tionary state, the convective velocity is expected to scale with
the heating rate,

Marms ∝ ė0
1/3. (87)

This scaling can be motivated using dimensional arguments
(e.g., see Jones et al. 2017) or the mixing-length theory
(Kippenhahn et al. 2012) and has been confirmed in numeri-
cal experiments (e.g., Cristini et al. 2019; Edelmann et al. 2019;
Andrassy et al. 2020).

To test the low-Mach capabilities of the methods that are
presented in this paper, the amplitude of the heating factor ė0

is decreased successively while the root mean square (rms)
Mach number measured from the simulation is compared to the
expected scaling Eq. (87). The upper limit of ė0 is chosen such
that the resulting Mach number is in a regime where also sim-
ulations without well-balancing follow the scaling. A deviation
from the expected scaling at lower values of ė0 and correspond-
ingly lower Mach number then indicates that numerical errors
have become significant and the method has reached its limit of
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applicability. The scaling test is performed for all available well-
balancing methods and also in the absence of well-balancing.
The domain is discretized by 72 × 144 cells. This rather coarse
resolution is chosen to assess the ability of the well-balancing
method to balance hydrostatic stratifications even with a moder-
ate number of cells. While any consistent method will ultimately
be able to follow low-Mach-number flows given a sufficiently
fine grid, this is computationally not feasible, especially in 3D.
The simulations use periodic boundary conditions in the hori-
zontal direction. At the top and bottom of the domain solid-wall
boundaries are employed that do not allow mass to enter or leave
the domain. For the time stepping, we set cCFL = 0.5. The initial
stratification is perturbed by random density fluctuations at the

O
(

10−14
)

level to facilitate the growth of the convective insta-

bility. Additionally, the heating profile Eq. (85) is modulated by
a sinusoidal function along the horizontal direction to break the
initial horizontal symmetry. The wavelength is one fourth of the
horizontal extent and the amplitude is set to 0.01 ėh(y). The mod-
ulation is switched off after the flow has reached a substantial
fraction of its final speed.

For all simulations, a grid file is saved every 200 time steps.
For each saved grid, the mass-weighted rms Mach number Marms

is calculated. To this end, only the fixed region from ybot to yCZ,SZ

is considered, although the position of the boundary between
convective and stable zone is dynamical and may change over
time. However, for the simulation presented in this section, this
effect is negligible and a fixed region is chosen for convenience.
For all simulations, Marms is then averaged over the same time
span in terms of the convective turnover time τconv, which we
define as

τconv =
2 yCZ,SZ

vrms

, (88)

where vrms is the rms velocity. This ensures that the stochastic
fluctuations, which have different typical timescales for different
flow speeds, are accounted for in a similar way for all simu-
lations. Due to the steady heat injection and the small amount
of numerical dissipation in 2D simulations, the value of τconv

slightly decreases over time as velocities slightly increase. Thus,
the average of τconv depends on the time interval considered and
is not clear how to chose the proper time interval for the differ-
ent simulations. Instead, the number of turnover times Nτ as a
function of physical time t,

Nτ(t) =

∫ t

0

1

τconv(t′)
dt′, (89)

is used to determine the respective time intervals and the aver-
aging is done in the time interval t ∈ [t(Nτ = 5), t(Nτ = 10)].
The resulting Marms as functions of the heating rate are depicted
in Fig. 10. For the two highest values of ė0, that is at Marms

around 9 × 10−3 and 4 × 10−3, all methods agree and Marms fol-
lows the scaling given by Eq. (87). This is not the case at lower
heating rates. For ė0 . 105, the simulation using the Cargo–
LeRoux well-balancing method considerably deviates from the
expected scaling by giving a value of Marms that does not cor-
relate with the energy input anymore but stays rather constantly
slightly below 4× 10−3. Almost identical results are found when
no well-balancing is applied in combination with ̺-p as recon-
struction variables. At this point, it seems that Cargo–LeRoux
well-balancing is not able to improve the behavior at lower Mach
numbers. The results slightly improve if ̺-T are used for recon-
struction and no well-balancing is used. In this case, the Mach
number settles slightly below Marms = 2 × 10−3 for an energy

102 103 104 105 106 107

heating rate ė0

10−3

10−2

M
a r

m
s

Marms ∝ ė
1/3
0

Deviation WB ̺-T rec.

α-βWB ̺-p rec.

Cargo-LeRoux WB ̺-p rec.

no WB ̺-p rec.

no WB ̺-T rec.

Fig. 10. Root mean square Mach number Marms as a function of
the heating rate ė0. The dashed line represents the expected scaling
according to Eq. (87). All values correspond to time averages over
t ∈ [t(Nτ = 5), t(Nτ = 10)] (see text). The vertical error bars denote one
standard deviation of the temporal average of Marms.

input rate lower than ė0 = 105. The reason for this could be
the nonnegligible contribution of radiation-pressure to total pres-
sure. As prad ∝ T 4, a more accurate reconstruction of T could
lead to an interface pressure that is closer to the hydrostatic solu-
tion and hence artifacts from imperfect balancing are reduced.

By definition, α-β well-balancing requires ̺-p to be recon-
structed while the variables can be chosen freely for deviation
well-balancing. Hence we have chosen ̺-T for the deviation
runs for comparison. However, no major differences can be
seen between α-β and deviation in Fig. 10. Both Marms pro-
files closely follow the scaling down to the smallest value of
ė0. Due to the hydrostatic solution’s being stored at cell inter-
faces in these two methods, the particular choice of variables
for reconstruction seem to be less important. In contrast, the
Cargo–LeRoux method reconstructs the potential q at the inter-
faces using values at the cell centers, which can introduce an
error in the total energy over many time steps. A possible fix for
this would be to store q at the cell interfaces, however this is
currently not implemented in our code.

It is not obvious how to assess the accuracy at which hydro-
static equilibrium is maintained within the convective region.
Convection will inevitably introduce ram pressure, pram. Its
ratio with thermal pressure, pthermal, is expected to scale as
pram/pthermal ∼ Marms

2. This gives an order-of-magnitude esti-
mate for the expected minimal deviation from the initial hydro-
static pressure stratification caused by convective motion alone,
independent of the choice of well-balanced method. We have
verified that the respective relative deviation from the hydro-
static pressure at t(Nτ = 7.5) scales as Marms

2 for all sets of
simulations. The only exception is the simulation with devia-
tion well-balancing at the lowest heating rate, which may be a
result of sound waves excited by the strong flow field in the
stable zone (see Fig. 11 and the next paragraph). Table C.1
lists the ratio exemplarily for the simulations using α-β well-
balancing. There, the relative deviation ranges from about 10−7

at the smallest heating rate to roughly 10−4 at the largest rate.
At t = 0 we measure a mean relative deviation of 2.7 × 10−8,
which originates entirely in the discretization error of the pres-
sure gradient. The fact that the relative deviations from hydro-
static equilibrium are of the same order of magnitude as the
ram pressure implies that they are not an artifact of the well-
balancing method, but physically caused by the convective
motions.
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Fig. 11. Mach number of the flow for different values of the heating rate ė0 (left to right) and different well-balancing methods (top to bottom).
The dashed black lines denote the boundaries of the convection zone at y = ytop, see Table 2 for an overview of simulation parameters. The insets
displays the rms Mach number Marms within the convection zone for the snapshot shown. All snapshots are taken at t(Nτ = 7.5).

To also add a qualitative visual verification of the aris-
ing convection, the flow patterns are shown in Fig. 11 in the
middle of the time frame considered. For the highest heating
rate, all simulations show the typical flow morphology of two-
dimensional convection: A pair of large eddies form with a size
that is determined by the vertical extent of the convection zone.
At lower heating rates, the flow pattern remains basically the
same for deviation and α-β well-balancing, which strengthens
our confidence in these solutions. In contrast, the flow patterns
obtained with Cargo–LeRoux well-balancing or without any
well-balancing are dominated by incoherent, small-scale struc-
tures. While for the “no WB” run with ̺-T reconstruction, the
Mach numbers achieved are somewhat smaller, the general flow
pattern is similar. We assume that these motions are caused by
the imperfect hydrostatic equilibrium.

Convective regions are known to excite internal gravity
waves (IGW) in adjacent stable layers (see e.g., Rogers et al.
2013; Edelmann et al. 2019; Horst et al. 2020). Assuming that
IGW are predominantly generated at periods close to the
convective turnover time τconv (cf. Edelmann et al. 2019), we
can estimate their vertical wavelength λv using the dispersion
relation of IGW in the Boussinesq approximation (see, e.g.,
Sutherland 2010),

λv =
λh

√

[Nτconv/(2π)]2 − 1
, (90)

where λh is the horizontal wavelength. It follows that the verti-
cal wavelength decreases with increasing τconv for λh = const.
and the waves will become unresolved when the heating rate is
decreased on the same computational grid.
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Fig. 12. Expected typical vertical wavelength (Eq. (90)) in grid cells of
internal gravity waves as a function of Marms in two series of simulations
with the deviation well-balancing method. Black crosses correspond to
simulations at fixed resolution but increasing heating rate. Blue crosses
correspond to simulations at a fixed heating rate but different resolution.
The two encircled data points result from the same simulation but Marms

has been determined at a different time.

We estimate the vertical wavelengths according to Eq. (90)
exemplarily for the simulations with deviation well-balancing
shown in Figs. 10 and 11. To calculate λv, the value of the
Brunt–Väisälä frequency is taken at the top of the box domain
and λh = 2 yCZ,SZ, which corresponds to the maximal horizon-
tal wavelength that fits into the computational domain. The ratio
of λv to the vertical grid spacing is shown in Fig. 12 as black
crosses. At all but the two highest heating rates, the vertical
wavelength is less than two cells and it follows from the Nyquist
sampling criterion that such waves cannot be represented on our
coarse grid. Indeed, for these runs strange patterns appear in the
stable zone as can be seen in Fig. 11. A peculiar pattern is visi-
ble in the stable zone for deviation well-balancing at the lowest
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Fig. 13. Mach number for a heating rate of ė0 = 104 and deviation well-balancing at different resolutions. The upper left box in each panel indicates
the change in the vertical resolution relative to the resolution used for the Mach number scaling. The lower right box gives the total number of
cells of the particular simulation. All snapshots are taken as soon as convection has fully developed. The dashed white line illustrates the profile
of the Brunt–Väisälä frequency as a function of height with arbitrary units on the x-axis.

heating rate. While its origin is not completely understood, we
have verified that the results look similar to the other runs when
̺-p reconstruction or a higher grid resolution is applied. Our
estimate gives typical wavelengths of two to six cells in the two
simulations with the highest heating rates. Hence, the flow pat-
terns in Fig. 11 for these two simulation probably include some
real internal gravity waves, but they are still dominated by arti-
facts.

To confirm that our interpretation is correct, we run another
series of simulations with increasing vertical resolution at
ė0 = 104. Deviation well-balancing is used in this experiment.
Because of the higher computational costs, there is not enough
data to perform meaningful averages and Marms is extracted for a
single snapshot as soon as convection has developed in the whole
convective zone. The results are shown as blue crosses in Fig. 12.
Because Marms is measured at earlier times compared with the
corresponding simulation in the heating series, the Marms of the
lowest-resolution run does not coincide with the (red circled)
black cross corresponding to the same simulation. We see that
the expected typical vertical wavelength is resolved by more than
eight cells on the finest grid. Figure 13 shows the flow pattern
for the different grid resolutions. In the center and right panel of
the lower row, the resolution in the convective zone corresponds
to the resolution of the upper right panel (288 × 576). Close to
the transition to the stable zone, the vertical spacing is smoothly
reduced to 1/32 of the starting resolution. This saves computing
resources and also illustrates that the patterns do not depend on
the resolution in the convective zone. The transition is shown in
Fig. C.1.

Our resolution study indicates that with increasing vertical
resolution in the stable zone artifacts are diminished. For the
highest resolution fine wave patterns are observed. As grid res-
olution increases, nearly horizontal wave patterns first appear
close to the convective boundary, where N gradually increases
from zero to relatively large values higher up in the stable
zone.

While our findings can be explained by unresolved IGW, we
cannot exclude that at least to some extent also numerical arti-
facts contribute to the flows in the stable zone. Nevertheless,
our tests with the simple convective box show that, as soon as
we resolve the IGW sufficiently, artifacts tend to disappear and
any instabilities possibly still present do not visibly dominate
the flow. At the same time, this illustrates that, depending on
the actual stellar profile, rather high grid resolution is needed to
properly resolve the waves.

5.4. Keplerian disk

Some astrophysical problems involve stationary solutions that
are not at rest, for example a rotating star that is partially sta-
bilized by the centrifugal force (e.g., Tassoul 2000; Maeder
2009). Another case is the Keplerian motion around a central
gravitational mass m in its gravitational potential φ(r) = −Gm

r
.

Gaburro et al. (2018) describe a nondimensional test setup of a
circular disk with ̺0 = p0 = 1 around a massive object. Neglect-
ing its own gravitational field, such a disk can be stabilized by a
flow velocity of

u(x, y) = − sin
[

atan2 (y, x)
]

√

Gm

r(x, y)
(91)

v(x, y) = cos
[

atan2 (y, x)
]

√

Gm

r(x, y)
, (92)

where r =
√

x2 + y2 and atan2 (y, x) is the typical shortcut for
choosing the quadrant of arctan (y/x) correctly. For convenience
we set G = m = 1. We simulate the Keplerian disk from
radius r = 1 to 2 on a polar grid with 20 radial and 70 angular
cells as well as on a finer grid with 100 radial and 350 angular
cells. Polar coordinates are the appropriate choice for the prob-
lem’s geometry and should therefore lead to the least amount
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Fig. 14. Time evolution of the angle-averaged density profiles ̺ − 1
in the Keplerian disk setup. Top panel: results with a grid resolution of
20 × 70 cells, where the dots on top of the lines represent correspond-
ing results computed with implicit time stepping. Bottom panel: same
quantity computed on a much finer grid of 100 × 350 cells. The black
dashed lines in each panel show the respective initial density profiles.

of numerical errors. We use periodic and solid-wall boundaries
in the angular and radial directions, respectively. The flow has
a maximum Mach number of 1 at the inner domain boundary
dropping to ≈0.6 at the outer boundary. We perform most of our
simulations with the explicit RK3 scheme (see Sect. 3) because
it is more efficient in this Mach number range. The time step
of explicit runs is set by the CFLuc criterion (Eq. (28)) with
cCFL = 0.4. For the lower-resolution setup we also perform sim-
ulations with implicit time stepping and the CFLug time step cri-
terion (Eq. (26)) with cCFL = 0.4. We find that the results of the
implicit runs are identical to the explicit time stepping (see dots
in upper panel of Fig. 14). Tests with the explicit, second-order
RK2 scheme also give almost identical results.

Since the disk is isobaric, we use ̺-p reconstruction for
this test case. Here we only compare simulations without well-
balancing to runs with deviation well-balancing, since the other
methods presented in this work are not capable of stabilizing a
target solution with a nonzero velocity field (see Sect. 4.3).

In order to asses the stability of the setup we add a density
perturbation with ̺ = 2 in the circular region (x + 1.5)2 + y2 <
0.152 and follow its evolution up to 10 000 orbital periods, where
the orbital period is taken at the central point of the perturbation.
A perfect solution will maintain the initial radial density distri-
bution of the perturbation at all times. However, due to its radial
extent there will be a phase shift between the innermost and
outermost regions of the perturbation. Furthermore, numerical
diffusion will spread the perturbation predominantly in the direc-
tion of its movement. Therefore the perturbation evolves into a
homogeneous ring orbiting the central object with a density that
corresponds to the initial angle-averaged density ̺.

In Fig. 14 we show how the profile of ̺−1 evolves with time.
The target solution is given as a black dashed line. For a grid
resolution of 20 × 70 cells the run without well-balancing only
shows small deviations from the target solution after 10 orbital

periods. However, we already see that mass starts to accumulate
in the center. The mass can not leave the domain and accrete onto
the central object due to our wall boundaries. Over time, more
and more mass flows to the inner boundary. After 100 orbits the
center has approximately the same density as the initial pertur-
bation, and after 1000 orbits the profile has completely shifted
toward the inner boundary. This is also clearly visible in the
two-dimensional density distribution shown in Fig. D.1. With
deviation well-balancing the profile remains mostly stable up to
1000 orbits. The perturbation is slowly diffusing symmetrically
around the initial peak, maintaining the general shape of the ini-
tial density profile. After 10 000 orbits we see that also the run
with deviation well-balancing has become noticeably asymmet-
ric toward the center. The regions where the density falls bellow
the initial density profile are most likely related to the fact that
we do not use flux limiters for these runs. Undershoots at steep
gradients are a common consequence of this omission.

Increasing the resolution improves the stability of the runs
without well-balancing (see bottom panel in Fig. 14). At a reso-
lution of 100 × 350 cells the distribution is still almost identical
to the initial perturbation even after 100 orbits. Only after 1000
orbits we start to notice the accumulation of mass at the inner
boundary similar to the low-resolution case. After 10 000 orbits,
however, the distribution has again completely shifted towards
the center and the initial perturbation is not recognizable any
longer. The high-resolution run with deviation well-balancing,
on the other hand, is almost identical to the target solution even
after 1000 orbits. The increased radial resolution has reduced the
radial diffusion observed in the low-resolution runs. The density
undershoots become more noticeable at the 10 000 orbit mark.
There we again identify a tendency for a slow drift towards the
center. However, thanks to the use of well-balancing the shape
of the initial perturbation is still retained approximately.

This test shows that the flexibility of the deviation well-
balancing method also allows to maintain stable configurations
other than hydrostatic equilibrium. This is particularly important
for the long-term evolution of such systems. Without well-
balancing stability can only be achieved by increasing grid res-
olution, which leads to substantially higher computational cost.

6. Summary and conclusions

We have presented the deviation, the α-β, and the Cargo–LeRoux
well-balancing methods that aim to improve the ability of finite-
volume codes to maintain hydrostatic stratifications even at mod-
erate grid resolution. The performance of these methods were
assessed in a set of test simulations of static and dynamical
setups. Special emphasis was given to flows at low Mach num-
bers. They are particularly challenging to evolve because they
require special low-Mach hydrodynamic flux solvers, which in
turn come with reduced dissipation and hence are prone to
numerical instabilities. Also, it seems natural that slight devia-
tions from hydrostatic equilibrium lead to low-Mach flows, as
is the case, for example, in stellar convection. All simulations
were performed with the time-implicit SLH code that solves the
fully compressible Euler equations using a modified version of
the low-Mach AUSM+-up hydrodynamic flux solver. Our expe-
rience shows that the inclusion of gravitational potential energy
in the total energy is essential to correctly representing slow
flows in stratified atmospheres in the cell-centered discretiza-
tion of gravity implemented in SLH; see Mullen et al. (2021)
for an alternative approach. To the best of our knowledge, the
present study is the first to reach Mach numbers as low as
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2 × 10−4 in stratified convection using the fully compressible
Euler equations.

The first test of the well-balancing schemes is to evolve a 1D
hydrostatic atmosphere in time at low resolution for an isother-
mal, an isentropic, and a polytropic stratification. In all cases,
the absence of a well-balancing scheme quickly led to spuri-
ous velocities at significant amplitudes. The application of any
of the considered well-balancing methods removed this problem
and managed to keep the flow below Mach numbers of 10−12

for very long times. Repeating the same test in 2D revealed that
low Mach number flux functions, such as AUSM+-up, are sub-
ject to an exponential growth of the Mach number and horizontal
density fluctuations, which is not physically expected in a stably
stratified atmosphere. This effect became less pronounced the
closer the stratification was to the marginally stable, isentropic
profile. In the isentropic case α-β and deviation well-balancing
in combination with the low-Mach flux remained stable (Ma .
10−8) for long times, while with Cargo–LeRoux well-balancing
the setup developed a flow at Mach numbers of about 10−1.
These examples showed that it is important to test well-balanced
schemes in more than one spatial dimension and for more than
just a few sound-crossing times, as only then slowly grow-
ing instabilities become noticeable, especially in very stable
stratifications.

While it is a necessary condition to maintain an initially
static setup, only dynamical setups are of actual interest in mul-
tidimensional simulations. In a second test, we considered the
rise of a hot bubble in a periodic background stratification span-
ning two orders of magnitude in pressure at constant entropy.
We tuned the bubble’s entropy excess to reach different ris-
ing speeds. With Cargo–LeRoux well-balancing and without
any well-balancing, unphysical entropy fluctuations appeared in
large parts of the atmosphere and a relatively fine grid (256×384)
was required to make their amplitude smaller than that of even
the hottest bubble considered. The corresponding Mach number
of Ma ∼ 3×10−2 seemed to be close to a limit of practical appli-
cability of these two methods in such a strong stratification. The
α-β and deviation methods fared much better with no entropy
changes far from the bubble and only a slight entropy undershoot
right above the bubble even on a coarse (64 × 96) grid. Equally
good results were obtained with the initial amplitude decreased
by a factor of 106, leading to Ma ∼ 3 × 10−5. Numerical effects
started to dominate only at Ma ∼ 3 × 10−6 after the amplitude
was decreased by another factor of 102.

We proceeded with a setup involving a convection zone with
a stable zone on top. The stratification was chosen to be represen-
tative of core convection in a 25 M⊙ main-sequence star. Radi-
ation pressure was a substantial fraction of the total pressure,
testing the methods’ capability to deal with a general EoS. We
used volume heating of adjustable amplitude to drive the con-
vection. With Cargo–LeRoux well-balancing and without well-
balancing, the rms Mach number of the convective flow ceased
to correlate with the heating rate at Marms ∼ 4×10−3 and the flow
became dominated by small-scale structures of numerical origin.
The lowest reachable value of Marms dropped by about a factor
of two when switching from ̺-p to ̺-T reconstruction in the
absence of well-balancing. Only the α-β and deviation methods
were able to reproduce the expected scaling of Marms with the
heating rate (Eq. (87)) down to the slowest flows tested (Marms ∼

2 × 10−4). We observed spurious patterns in the stable layer and
demonstrated that they were caused by unresolved internal grav-
ity waves, whose vertical wavelength becomes extremely short
with increasing period. The patterns disappeared when the typi-
cal vertical wavelengths of waves with periods close to the con-

vective turnover frequency became resolved by 8 to 10 cells (grid
of 288 × 2380 cells).

The deviation method, unlike the other methods presented
in this work, can deal with arbitrary stationary states. We illus-
trated this capability in our last test, in which we followed many
orbits of a density perturbation in a Keplerian disk around a point
mass. The angle-averaged density profile should ideally remain
constant in this model. Without any well-balancing, imperfect
balance between the centrifugal force and gravity led to mass
redistribution towards inner parts of the disk after many orbits.
Deviation well-balancing much improved the solutions with only
slight radial broadening of the initial perturbation even after 104

orbits with a moderate resolution of 100 × 350 cells.
In summary, our results show that well-balancing can sub-

stantially reduce the grid resolution needed to correctly follow
tiny perturbations in situations in which the stationary back-
ground state involves the balance of two large opposing forces.
We obtained comparable results with the α-β and deviation
methods, both far surpassing the Cargo–LeRoux method in accu-
racy in the low-Mach-number regime. The α-β and deviation
methods are also expected to be more accurate than the majority
of other well-balanced methods present in astrophysical litera-
ture (e.g., Zingale et al. 2002; Perego et al. 2016; Käppeli et al.
2011; Käppeli & Mishra 2016; Padioleau et al. 2019), because
they exactly balance the stationary solution rather than an
approximation to it. Although an analytical prescription is often
not available, the stationary solution can be computed to an arbi-
trary degree of accuracy in many astrophysical applications. This
statement only holds in the case that the hydrostatic background
state does not change in time. In this case an update is necessary,
which we do not discuss in this paper. This step would likely
involve a local approximation to hydrostatic equilibrium, simi-
lar to the ones suggested in the other aforementioned methods.
It should be noted, however, that such an update is unnecessary
in the case of very slow flows, such as in earlier phases of stel-
lar evolution, because the background state hardly changes over
time, even after hundreds of convective turnover times.

We prefer to use the deviation method, because it is more
general and does not impose any restrictions on reconstruction
variables. The method can be applied both to nearly hydro-
static cases and to cases in which rotation becomes impor-
tant. The latter can have strong impact on stellar evolution
(Maeder & Meynet 2000) as well as on the propagation of IGW
in stars (Rogers et al. 2013).

The Cargo–LeRoux method still has its place, though.
Horst et al. (2021) show for the case of convective helium-shell
burning that this method considerably reduces numerical diffu-
sion of the hydrostatic background stratification as compared to
the unbalanced case if the gravitational energy is not included
in the total energy. Therefore we consider the Cargo–LeRoux
method as a valid method that leads to improvements already
with little development effort.

This paper focuses on setups with simple grid geometries,
but the SLH code can use general curvilinear grids. This allows
us to adapt grid geometry to the problem at hand. Standard
spherical grids adapt to the geometry of slowly or nonrotat-
ing stars, but they suffer from singularities at the center and at
the poles. A star can be inscribed in a simple Cartesian grid
(e.g., Woodward et al. 2015), but this requires to also impose
a spherical boundary condition on the grid. When done on the
cell level, the sphere is rough on small scales and can gener-
ate spurious vorticity. We have implemented the cubed-sphere
grid proposed by Calhoun et al. (2008) in our SLH code. The
grid is logically rectangular but geometrically spherical with a
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Fig. 15. Left panel: geometry of the cubed-sphere grid. The number of cells has been reduced compared to grids used in the other two panels to ease
the identification of individual cells and their shapes. Middle and right panel: shell convection in a setup comparable to that in Sect. 5.3 but with
a shallower stratification and ideal gas EoS. Middle panel: color coded Mach number in a run without well-balancing. Numerical discretization
errors quickly lead to spurious flows in the central region and the maximum Mach number reaches 3×10−2. In the run with deviation well-balancing
shown in the right panel the convective shell is clearly maintained. The maximum Mach number is 2 × 10−3.

smooth outer boundary, see Fig. 15 for a 2D version. Discretiza-
tion errors along the grid’s strongly deformed diagonals make
it almost impossible to follow nearly hydrostatic flows without
any well-balancing method. Figure 15 shows an SLH simulation
with a convective shell embedded between two stably stratified
zones. With deviation well-balancing, we obtain the expected
convective shell with convection-generated IGW propagating in
the stable zones. If we turn the well-balancing off, a convection-
like flow of numerical origin appears and mixes the convection
zone with the whole inner stable zone. This result is promising,
but limits of applicability of the deviation method on the cubed-
sphere grid are still to be investigated.
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Appendix A: Simple stratified atmospheres

These are the 1D counterparts of the isentropic and polytropic
tests in Sect. 5.1.
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Fig. A.1. Same as Fig. 4, but as a 1D simulation. The adiabatic exponent
is γ = 5/3. The solid lines represent the maximum Mach numbers on
the grid. Time is given in units of the sound-crossing time tSC = 4.28 s.
The curves have been slightly smoothed for better visibility.
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Fig. A.2. Same as Fig. 5, but as a 1D simulation. The adiabatic expo-
nent is γ = 5/3. The solid lines represent the maximum Mach numbers
on the grid. Time is given in units of Brunt–Väisälä time tBV = 20.1 s
and sound-crossing time tSC = 4.13 s. The curves have been slightly
smoothed for better visibility.
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Appendix B: Hot bubble

This appendix explores the amplitude dependence of the hot bubble test from Sect. 5.2.

α
-β

W
B

,
̺
-p

re
c
.

min = -8.35e-05
max = 8.69e-04

(∆A/A)t=0 =9.95e-04
t =3.00e+02 s

min = -8.33e-07
max = 8.68e-06

(∆A/A)t=0 =9.95e-06
t =3.00e+03 s

min = -8.33e-09
max = 8.69e-08

(∆A/A)t=0 =9.95e-08
t =3.00e+04 s

min = -8.35e-11
max = 8.69e-10

(∆A/A)t=0 =9.95e-10
t =3.00e+05 s

min = -2.83e-13
max = 1.18e-11

(∆A/A)t=0 =9.95e-12
t =3.00e+06 s

D
ev

ia
ti

o
n

W
B

,
̺
-p

re
c
.

min = -1.10e-04
max = 8.80e-04

min = -1.10e-06
max = 8.80e-06

min = -1.10e-08
max = 8.80e-08

min = -1.10e-10
max = 8.80e-10

min = -7.29e-13
max = 1.21e-11

Fig. B.1. Same as Fig. 6, but showing the dependence of the solution on the initial amplitude (∆A/A)t=0 (left to right) on the 128 × 192 grid for

the two best well-balancing methods (rows). The final time of the simulations is scaled with (∆A/A)
1/2

t=0
allowing the bubbles to reach the same

evolutionary stage, see Sect. 5.2.

α
-β

W
B

,
̺
-p

re
c
.

max = 3.64e-02

(∆A/A)t=0 =9.95e-04
t =3.00e+02 s

max = 3.64e-03

(∆A/A)t=0 =9.95e-06
t =3.00e+03 s

max = 3.64e-04

(∆A/A)t=0 =9.95e-08
t =3.00e+04 s

max = 3.65e-05

(∆A/A)t=0 =9.95e-10
t =3.00e+05 s

max = 3.19e-06

(∆A/A)t=0 =9.95e-12
t =3.00e+06 s

D
ev

ia
ti

o
n

W
B

,
̺
-p

re
c
.

max = 3.65e-02 max = 3.65e-03 max = 3.65e-04 max = 3.65e-05 max = 3.37e-06

Fig. B.2. Mach-number distributions in the solutions shown in Fig. B.1. The color scheme ranges from 0 (black) to the maximum value (white)
reached in the simulation box, which is also indicated at the top of the panels.
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Appendix C: Simple convective box setup

Table C.1 shows that the relative deviation from hydrostatic
equilibrium in the convective box test from Sect. 5.3 scales with
the square of the rms Mach number in the convection zone.

Table C.1. Relative deviation from hydrostatic equilibrium, rms Mach
number, and ratio of the squared Mach number to the deviation at dif-
ferent heating rates.

ė0
(∂p/∂y)−̺ g

(∂p/∂y)
Marms Marms

2
[

(∂p/∂y)−̺ g

(∂p/∂y)

]−1

1002 2.03 × 10−07 2.07 × 10−04 0.21

1003 1.10 × 10−06 4.54 × 10−04 0.19

1004 3.71 × 10−06 9.50 × 10−04 0.24

1005 1.45 × 10−05 2.04 × 10−03 0.29

1006 3.79 × 10−05 4.33 × 10−03 0.49

1007 1.88 × 10−04 9.21 × 10−03 0.45

Notes. The data is derived from the simulations using the α-β well-
balancing method, spatially averaged over the convection zone, and
averaged over a time frame spanning 5 τconv. The results confirm the
expected scaling of the relative deviation from hydrostatic equilibrium
with ∼ Marms

2 (see text) within the accuracy of our order-of-magnitude
estimate.
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Fig. C.1. Varying vertical grid spacing as a function of the vertical coor-
dinate y for the simulations shown in the center and right panels of the
lower row in Fig. 13. The superadiabaticity is shown as a blue line, a
negative value indicates a convectively stable stratification. The spacing
changes smoothly to a finer resolution slightly before the transition to
the stable zone starts.
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Appendix D: Keplerian disk

Figure D.1 shows the time evolution of density in the Keplerian disk problem from Sect. 5.4.
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Fig. D.1. Snapshots of the density distribution during the evolution of the Keplerian disk. Shown are runs with deviation well-balancing and
without well-balancing using explicit time stepping and resolutions of 20× 70 cells as well as 100× 350 grid cells. The bottom two rows show the
same setup evolved with implicit time stepping at a resolution of 20 × 70 cells. To emphasize the deviation from the initial background density of
̺0 = 1 we show here ̺ − 1 and give the maximum and minimum of this quantity in an inset for each snapshot.
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