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Well Bore Breakouts and in Situ Stress 

MARK D. ZOBACK, 1 DANIEL MOOS, 2'3 AND LARRY MASTIN 4 

U.S. Geological Survey, Menlo Park, California 

ROGER N. ANDERSON 

Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 

The detailed cross-sectional shape of stress induced well bore breakouts has been studied using 
specially processed ultrasonic borehole televiewer data. We show breakout shapes for a variety of rock 
types and introduce a simple elastic failure model which explains many features of the observations. Both 
the observations and calculations indicate that the breakouts define relatively broad and flat curvilinear 
surfaces which enlarge the borehole in the direction of minimum horizontal compression. This work 
supports the hypothesis that breakouts result from shear failure of the rock where the compressive stress 
concentration around the well bore is greatest and that breakouts can be used to determine the orienta- 
tion of the horizontal principal stresses in situ. 

INTRODUCTION 

Data from commercially available four-arm caliper logs 

have enabled several workers to show that there are spalled 
sections of well bores, termed "breakouts" in the petroleum 

industry, in which the average azimuth of the long (or spalled) 

dimension is very consistent within a given well or oil field 

[Cox, 1970; Babcock, 1978; Schafer, 1980; Brown et al., 1980]. 

Bell and Gough [1979] and other workers [Springer and 

Thorpe, 1981; Gough and Bell, 1981, 1982; Plumb, 1982; Healy 

et al., 1982; Hickman et al., 1982; Blumling et al., 1983; Cox, 

1983] have suggested that the consistent azimuth of the long 
dimension of the hole was parallel to the azimuth of the least 

horizontal principal stress. 

In this paper we present detailed measurements of the cross- 

sectional shape of breakouts in several wells using specially 
processed data from an ultrasonic borehole televiewer and 

extend the theoretical analysis of the mechanism of breakout 

formation proposed by Bell and Gough [1979, 1982] and 

Gough and Bell [1981, 1982] in order to explain better the 

observed breakout shapes. One of the case histories examined 

in this paper, a well located at Auburn, New York, is discussed 

at length by Hickman et al. [this issue]. 

OBSERVATIONS OF BREAKOUTS 

The analysis of breakout formation by Gough and Bell 

[1981] and Bell and Gough [1982] predicted that breakouts 

are spalled regions on each side of the well bore which are 

centered at the azimuth of the least horizontal principal stress 

Sh where the compressive stress concentration was greatest. 

They suggested that the breakouts were the result of localized 

compressive shear failure, and their analysis predicted that the 
region of failure would be triangular in cross section, enclosed 
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by flat conjugate shear planes oriented at a constant angle to 
the azimuth of the far-field horizontal principal stresses. In 

other words, the breakouts would have the appearance of 

pointed "dog ears" on opposite sides of the hole. However, as 
their primary source of information about well bore breakouts 
was four-arm caliper logs, their theory could not be tested 
because these instruments yield only two orthogonal well bore 

diameters as a function of depth and no information is avai- 

able on the detailed shape of the breakouts. 

To overcome the limitations of four-arm caliper data, we 

have analyzed the detailed shape of breakouts in a variety of 

rock types using data from an ultrasonic borehole televiewer 

(Zemanek et al. [1970] describe the operation of the televiewer 

in detail). The televiewer is a well-logging tool that consists of 

a magnetically oriented rotating piezoelectric transducer 

which emits and receives an ultrasonic (• 1 MHz) acoustic 

pulse that is reflected from the borehole wall 600 times per 
revolution. In typical applications of the televiewer, well bore 

reflectivity, or "smoothness," is plotted as a function of azi- 

muth and depth by displaying the amplitude of the reflected 

pulse as brightness on a three-axis oscilloscope. This yields an 
"unwrapped" image of the well bore surface. The televiewer 

has previously been very effective for studying fractures which 
intersect well bores at depth [e.g., Seeburger and Zoback, 

1982]. In many cases, breakouts are also discernible on tele- 

viewer photos as regions of low reflectivity. By analysis of the 
travel time of the acoustic pulse as a function of azimuth, we 
have been able to make detailed cross sections of the well bore 

in intervals where breakouts occur. Conversion of travel time 

to borehole size is straightforward since the diameter of the 

hole is accurately known from caliper measurements. 

Figure 1 shows breakout data from a well near Auburn, 

New York, which are described in detail by Hickman et al. 
[this issue]. Figure la shows a reflectivity televiewer record of 

a 6.5-m-long zone of breakouts in the well, and Figure lb 

shows a cross-sectional view of the borehole at a depth of 

1476.3 m. Note that the breakouts are basically broad and flat 

depressions and do not have the pointed "dog ear" character 

predicted by the Gough and Bell [1981] theory. Although the 

breakouts shown in Figure lb are not symmetrical and exactly 
180 ø apart, the mean breakout direction in the well is within a 

few degrees of the direction of least horizontal compression 

determined by hydraulic fracturing in the same well (Figure 

lc). 
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Fig. 1. (a) Typical reflectivity borehole televiewer record of a 7.5-m section of a well drilled in granitic rock at 

Monticello, South Carolina. The sinusoidal dark (low reflectivity) bond on the televiewer record centered at 794.5 m is due 
to a fracture plane intersecting the borehole as illustrated in Figure lb. The vertical dark bonds centered approximately 
180 ø apart correspond to low-amplitude reflections coming from breakouts shown in Figure ld. (b) A fracture plane 
intersecting a borehole produces a sinusoidal dark bond on the reflectivity record. (c) A photograph of an oscilloscope 
record showing how travel time as a function of azimuth is determined for a single rotation of the acoustic transducer at a 
depth of about 797 m. Six hundred reflected acoustic pulses (one rotation of the transducer) are displayed side by side as a 
function of azimuth with the amplitude of the reflection modulating scope intensity. The reflected pulse initially has• a 
negative polarity. The large sinusoidal variation in travel time as a function of azimuth corresponds to the televiewer not 
being perfectly centered in the hole. the two sharp travel time delays just west of north and east of south are associated 
with breakouts. The borehole radius which corresponds to travel time is shown on the right. Note that the absissa is 
labeled in the reverse manner of Figure la, but in both figures the breakouts are west of north and east of south. (d) 
Borehole shape corresponding to data shown in Figure lc. The breakouts are approximately 35 ø wide and enlarge the 
radius of the hole by about 15 mm. 
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AUBURN, NEW YORK 

(Cl) N (C) N 
t 

.5 m 1469.1 m 

(b) N (d) N 
t t 

1468.8 m 1475.8 m 

Fig. 2. Representative breakout shapes in the Auburn, New York, 
well. The breakout shown in Figure 2d is part of that shown in Figure 
la. The shaded area represents the difference between the observed 
well bore shape and the nominal well bore diameter. 

Figure 2 shows breakouts in Paleozoic sandstone at other 

depths in the Auburn well, and Figures 3 and 4 show break- 

outs observed in granitic rocks and tuff, respectively. Figure 2c 
shows broad, flat-bottomed breakouts in the Auburn well 

which are similar to those shown in Figure 1. However, deeper 

MONTICELLO 2 

N 

t 
566.9 m 

_ 

N 

t 
568.5 m 

Fig. 3. Representative breakout shapes in granite from the Monti- 
cello 2 well near Monticello, South Carolina. 

NEVADA TEST SITE 

(a) N (b) N 
t USW-GI t USW-GI 

.7 m 1121.:3 m 

(C) • USW-GI (d) f USW-G2 
.3 m IIII.0 m 

(e) f USW-G2 (f) t USW-G2 
5.7 m 1097.5 m 

Fig. 4. Representative breakout shapes in tuff from wells drilled 
at the Nevada Test Site. (a)-(c) Well USW-G1, where the breakouts 
are concentrated in a flow breccia unit. (d)-(f) Well USW-G2, where 
the breakouts are in the Bullfrog (Figure 4d) and Trom (Figure 4c); 
Figure 4f is units of the Crater Flat Tuff. 

breakouts are also present in the well (Figures 2a and 2b). 
Figure 3 shows breakouts in wells drilled in granitic rock. 

Although the breakouts are somewhat irregular in the wells, 
they are basically broad and flat-bottomed, as in Figure 2c. 

Figure 4 shows breakouts in two wells drilled in tuff at the 

Nevada Test Site. In these wells the breakout shapes vary 

considerably and range from being broad and flat-bottomed 
(Figures 4a and 4d) to being relatively deep. Note, however, 

S H S H 

I------% To = 12.5 MPo 

,. I.. '•,',i ;• ;• ;• ;,.'/, 
,?../'•'( •.. )..). ;:. ;.../ 

? 

Fig. 5. (a) Orientation of potential shear failure surfaces adjacent 
to a well bore for Sn*= 45 MPa, Sh*= 30 MPa, AP--0, and 
p = 1.0. (b) Area in which failure is expected for z o = 12.5 MPa. The 
0 b, ½b, and ro are described in the text. 
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S•= I0 MP• 
S•-- 15 MPa 

4 

S h = I 0 MPa 

S H = 2:0 MPa 

8 

S•= I0 MPa 
S H = :30 MPa 

/..t = o.5 /..t = •.o 

Fig. 6. Theoretical size of the areas in which the compressive 
shear strength of the rock is exceeded by the concentrated stresses. 
For the values of the effective compressive principal stress and coef- 
ficient of friction shown, the contours in each figure define the size of 
the initial failure zone for a given value of z 0 and AP - 0. 

that the deep breakouts are not appreciably wider than the 
more shallow breakouts. 

Independent evidence in each of the cases presented in Fig- 
ures 1-4 shows that the breakouts are aligned with the local 

direction of least horizontal compression. Hickman et al. [this 
issue] show that the Auburn breakouts are perpendicular to 

hydraulic fracture orientations in the same well; Stock et al. 
[1983] discuss similar evidence for the wells on the Nevada 
Test Site; S. H. Hickman and M.D. Zoback (written com- 

munication, 1984) show that the Monticello breakouts indi- 

cate a direction of maximum horizontal compression which is 

about the mean of p axis of local earthquakes. In each of these 

cases the breakouts are observed to form in the region around 

the hole of greatest compressive stress, as predicted by Gough 
and Bell [1981]. However, the examples suggest that many 
breakouts can be rather broad and flat-bottomed, unlike the 

"dog ear" shape predicted by their theory. To investigate this, 
we consider below a simple theoretical model for breakout 
initiation that considers the nature of the concentrated stress 

field around the hole in more detail than Gough and Bell 

[1981]. 

BREAKOUT INITIATION 

For a cylindrical hole in a thick, homogeneous, isotropic 
elastic plate subjected to effective minimum and maximum 
principal stresses (Sh* and $u*), the following equations apply 
[Kirsch, 1898; Jaeger, 1961]: 

G,- «(S•* q- Sh*) i ---•-T q- «(S,* - S•*) 

1--4-•T+S-•-g- cos20+ r• (1) 

= + &*) 1 + - 

ß 1 + 3 • cos 20 r2 (2) 

( z•o=-•(Sn*+S•*) 1+•-3• sin20 (3) 

where a• is the radial stress, ao is the circumferential stress, 
is the tangential shear stress, R is the radius of the hole, r is 

distance from the center of the hole, 0 is azimuth measured 

from the direction of $•*, and AP is the difference between the 

fluid pressure in the borehole and that in the formation (posi- 
tive indicates excess pressure in the borehole). The conjugate 
surfaces along which compressive shear failure would be ex- 

pected to occur are shown in Figure 5a for nominal stress 

values of Sn* = 45 MPa and Sh* = 30 MPa. Away from the 

well bore, these conjugate shear failure surfaces are planes 
oriented at an angle to $n* controlled by the coefficient of 

friction (in this case assumed to be 1.0). Near the well bore the 

stress concentration results in markedly curved potential shear 
failure surfaces. This is the result of rotation of the azimuths of 

the maximum and minimum principal stresses near the free 

surface of the cylindrical well bore. It is important to note that 

the magnitude of shear and effective normal stress along these 

potential failure surfaces varies as a function of r and 0. The 

region where compressive shear failure is expected to occur 

can be predicted from the extended Griffith criterion of Mc- 

Clintock and Walsh [1962]. This criterion considers the exten- 

sion of closed cracks which have a finite frictional strength in 

a biaxial stress field. In this context, potential failure surfaces 

are cracks with a frictional sliding coefficient of/4 subjected to 

a shear stress and effective normal stress. As discussed by 
Paterson [1978] and Jaeger and Cook [1979], the McClintock 

and Walsh [1962] analysis is equivalent to the Coulomb cri- 

terion in which the failure envelope has a slope equal to the 

coefficient of frictional sliding,/4 and an intercept z0 equal to 
the cohesive strength of the rock. The region around the well 

bore in which failure is expected can then be computed in 

terms of a simple Mohr's circle. Failure will occur where the 

radius of the Mohr circle {[(G0- Gr)/2] 2 + ZrO 2}1/2 is greater 
than or equal to the distance from the center of the circle to 

the failure line given by [p/(1 + •2)1/2]{G 0 q- [(G O q- G•)/2]}. To 
compute the size and shape of the region around the well bore 

that is expected to fail under given in situ stresses, we can 

rearrange the above expressions. Assuming that the Navier- 

Coulomb criterion G• = Zo -- #GO applies, the maximum value 

of cohesive strength at which the material will fail is given by 

ro = (1 + •2)1/2 Go - Or q- .•r02 
2 -- la( Gø 2 (4) 

We have chosen to isolate the variable ro because where bt for 

most rocks varies between 0.6 and 1.0 [Byerlee, 1978], % can 

vary from several megapascals to a few tens of megapascals 

[Handin, 1966]. By substituting appropriate values into (1)- 
(4), we can predict the size of initial region in which the ratio 
of shear to normal stress on the potential shear surfaces is 

large enough to cause failure. For AP = 0 and a nominal 

value of ro = 12.5 MPa, Figure 5b shows the size of the region 

in which the stresses exceed the rock strength on the failure 

surfaces shown in Figure 5a. 

Figure 6 shows several other examples for different stress 

values and coefficients of friction. As in Figure 5b, the con- 

tours shown in Figure 6 are envelopes enclosing the region in 

which the ratio of shear to normal stress is large enough to 

cause failure for the given value of z0 and AP = 0. Figure 6 

illustrates that the breakout shapes are generally broad and 

flat-bottomed. For given values of $•*, $n*, and bt the lower 

the cohesive strength of the rock, the deeper and wider the 

breakout region. For example, in the case where Sh*= 10 

MPa, Sn* = 15 MPa, and bt = 0.5, no breakout would be ob- 

served in a borehole drilled in rock with a cohesive strength 
higher than 10 MPa. However, if the cohesive strength were 

much lower than 6 MPa, the breakouts would be so large as 
to extend nearly around the borehole. We have not shown 
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3 20 ø 30ø 40ø 50ø 

*•'- 

0 

• stress ratio 

ß 

I I I I i i I i i I I 

I00 1.04 1.08 1.12 1.16 

DISTANCE FROM CENTER OF WELL/INITIAL RADIUS 

Fig. 7. Relationship between the ratio of the horizontal principal stresses and the maximum depth and width of 
breakouts. The curves correspond to breakouts with various values of •bb, the half width, where # = 0.6 and AP = 0. The 
example data from Auburn, New York, are explained in the text. 

breakout sizes for lower values of Zo in Figure 6 because they 

would be so large as to encompass nearly the entire well and 

invalidate the analysis. The effects of nonzero values of AP are 
considered below. 

It can be seen in Figure 6 that the effect of increasing the 

ratio of the horizontal principal stresses is to make the break- 

outs much larger for a given value of • and Zo. Similarly, for a 

given stress ratio and Zo, much smaller breakouts result for 

larger values of •, especially for the larger stress ratios. One 

interesting feature in the case of the 3:1 stress ratio is the 

change in shape of large breakouts. These breakouts have 

distinctly steeper edges than either the deep breakouts at 
smaller stress ratios or the smaller breakouts at the same 

stress ratio. These shapes are similar to the breakout shown in 

Figure 4b. In general, the edges of the breakouts steepen as the 
stress ratio increases. 

The broad, flat-bottomed breakouts modeled in Figure 6 

are more similar to many of the breakouts shown in Figures 

1-4 than the idealized "dog ears" suggested by the Bell and 

Gough analysis. It should be pointed out, however, that the 

analysis presented so far considers only the formation of a 

breakout in an initially cylindrical borehole. A possible expla- 

nation of the deeper, irregularly shaped breakouts shown in 

Figures 2-4 is that the breakouts continue growing after their 
initial formation. This will be discussed in the next section. 

It is straightforward to extend the theory presented above 

to consider the general problem of the initial size of breakouts 

in terms of the rocks' cohesive strength and coefficient of fric- 

tion and the magnitude of the horizontal principal stresses. 

For simplicity, we assume here that Su*< 3Sh*, which is 
almost always the case in situ [see Brace and Kohlstedt, 1980], 

and that there is no excess fluid pressure in the well bore 

(AP = 0). A more complete analysis is presented in the appen- 

TABLE 1. Comparison of Observed and Theoretical Breakout Size 
Auburn, New York 

Observed Theoretical 

Depth, 
m cp• %/R mm %/R mm mm 

1471.9 19 ø 1.027 115.0 1.019 114.1 0.9 

1473.1 20 ø 1.063 119.1 1.022 114.5 4.6 

1474.6 22 ø 1.071 120.0 1.027 115.0 5.0 

1476.3 15 ø 1.027 115.0 1.012 113.3 1.7 

1476.3 22 ø 1.045 117.0 1.027 115.0 2.0 

dix. By substituting (1)-(3) into (4), we can express the cohesive 

strength at the point the breakout intersects the well bore 

zo(R, 0b), and the cohesive strength at the breakout's deepest 
point, Zo(%, •/2), as 

ß o(e, 0•)= «(aS. + bs•*) 

Zo(%, r•/2)= «(cSu* + dSh*) 

(5) 

(6) 

where 

a = I-(1 + •/12) 1/2 - tt](1 - 2 cos 208) 

b = [(1 + •/12) 1/2 - /•](1 + 2 cos 20B) 

R 2 
C --- --,L/ q- (1 q- ,/12) 1/2 - [(1 q- ,/12) 1/2 -- 2It] 

rb 2 
(7) 

+ • (1 + it2) 

3R2 •/12)1/2 d = -tt- (1 + •/12) 1/2 q-- [(1 + + 2tt] 
l'b 2 

3R ½ 
,, (1 + tt 2) •/2 

r b 

If we assume that a breakout follows a trajectory along a 

given value of Zo as shown in Figure 6, then 

zo(R, 0•)= Zo(rb, r•/2) (8) 

It follows that 

S•,*= 2ZO(a: -- ;c ) (9) 

Sh* 

Figure 7 graphically shows Su*/Sa*, which is independent of 
ß o, as a function of %/R and ½• (where •p• = n/2- 0•, see 
Figure 5b) for tt- 0.6. As expected, extremely little spalling 
will occur when the two effective horizontal stresses are about 

equal. Although the breakouts get deeper and wider as 
Su*/S•* increases, even for large stress ratios, the well bore 
radius increases by only about 15% when ½b is as large as 50 ø. 

It is clear, then, that although this simple theory of the initial 

formation of a breakout can explain the broad, flat-bottomed 
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breakouts observed in Figures 2-4, it cannot explain the 

deeper breakouts. 

Before considering the process of breakout growth and ex- 
tension, we now examine data from the well in Auburn, New 

York, in order to compare measured values of ½b and rb with 

those expected from knowledge of S/•* and Sh* [Hickman et 

al., this issue], and the radius R of the drill bit. As we have no 

knowledge of/• for the rock in question (the Theresa sand- 

stone of early Paleozoic age), we will estimate a value which 

reasonably satisfies the breakout data. Table 1 shows the 
breakout data from five sections in the well from 1471 to 1477 

m depth, where the breakout shapes are similar to the theoret- 

ical shape discussed above. A hydraulic fracturing stress 

measurement at a depth of 1480 m indicates that Si•*/Sh* = 
2.24, and we have determined empirically that a value of 

/• - 0.6 seems to best satisfy the breakout data. 

As shown in Table 1 and Figure 7, as there was apparently 
little growth after the breakouts initially formed, there is good 

agreement between the size of the observed breakouts and 

that of the theoretical prediction. However, the observed 

breakouts in each case are 1.0-5.0 mm deeper than those pre- 

dicted by the theory. This difference is large enough to cause 

significant problems if we were trying to use the width and 
depth of the breakouts to estimate Si•*/S•*. For example, even 

the breakout at 1471.9 m (where ½• = 19 ø and Ar• = 0.9 mm) 

could not be used to estimate Si•*/S•* (Figure 7) because of 

the steepness of the curves for ½• < 20 ø. For small values of ½• 

the slightest increase in the observed value of rdR yields an 
unreasonably large Si•*/S•*. In order to use breakout shapes 

as a method for determining the magnitude of effective prin- 

cipal stresses, it may be necessary to observe breakouts im- 

mediately after formation. 

In the analysis above, we assumed that the fluid pressure in 

the well bore was the same as that in the formation (AP = 0). 

Figure 8 illustrates the effect of differences between fluid pres- 
sure in the well bore and that in the formation for Sn* = 22.0 

MPa, S•*-- 11.0 MPa, and /• = 0.6. By increasing the well 

bore pressure by 2.5 MPa (Figure 8b), the size of the break- 

outs is substantially diminished for cohesive strengths in the 

5-10 MPa range. However, a decrease in AP by the same 

amount (Figure 8c) markedly promotes breakout devel- 

opment. In this case, breakouts could occur for rock with a 
cohesive strength as high as 17.5 MPa. The strong influence of 
AP on the size and shape of breakouts is due to the change in 

normal stress on potential failure planes near the well bore. 

Positive AP increases normal streses on those planes and in- 

hibits failure, whereas negative AP lowers normal stresses and 

promotes failure. A possible practical example of the principle 
illustrated in Figure 8 is the common practice of using dense 

additives in drilling muds (like barite) for stabilizing boreholes 

drilled in poorly indurated (low cohesive strength) formations. 
The mud increases AP, and well bore spalling is minimized. 

The simple theory presented above is intended to explain 

the initial size and shape of breakouts. To address briefly the 

problem of breakout growth in order to consider the mecha- 

nism responsible for some of the deeper breakouts observed in 

Figures 2-4, we can consider the elastic stress concentration 
around the well bore once a breakout has formed and the 

shape of the well bore is no longer circular. The stress field 
around the now broken-out well bore was computed using the 

numerical method known as the boundary element technique 

[Crouch and Starfield, 1983]. Figure 9 shows several successive 

stages of breakout growth using the same failure criterion 
used for breakout initiation [after Mastin, 1984]. The applica- 

(o) 

(b) 

(c 

Fig. 8. The effect of excess well bore fluid pressure AP on the size 
of well bore breakouts. As in Figure 2, the contours define the size of 
the initial failure zone for T o = 10 MPa when Sn* = 22.0 MPa, Sh* = 
11.0 MPa, and/• = 0.6. (a) No excess well bore pressure (AP = 0). (b) 
Excess pressure in well bore of 2.5 MPa (AP = 2.5 MPa). (c) Well 
bore pressure which is 2.5 MPa less than the formation pore pressure 
(AP = - 2.5 MPa). 

bility of the simple elastic failure model to the problem of 
breakout growth is clearly questionable. There is undoubtedly 
inelastic deformation occurring as the rock around the well 

bore fails [e.g., Risnes et al., 1982] and time-dependent effects 
related to subcritical crack growth are probably occurring 

[e.g., Martin, 1972]. In fact, Plumb and Hickman [this issue] 
show apparent evidence of breakout growth with time in the 
Auburn well. The process of breakout growth is undoubtedly 

quite complex and the pattern of breakout growth shown in 
Figure 9 is probably overly simplified. Nevertheless, the calcu- 
lations with the simple failure model indicate that as the 

breakouts deepen, they do not become wider. This may ex- 

plain why breakouts with markedly different depths have ap- 

proximately the same width (e.g., Figures 2 and 4). 

CONCLUSIONS 

Observations of well bore breakouts with an ultrasonic 

borehole televiewer show that regions around well bores fail in 

a manner which is strongly controlled by the magnitude and 
orientation of the in situ stress field. Thus study of breakouts 

in existing wells may prove to be an extremely important new 
source of data on the orientation of the in situ stress field. A 

simple elastic failure model seems to confirm the hypothesis 
that the breakouts form as a compressive failure process, and 

the theory successfully predicts many of the general character- 
istics of the observed breakout shapes. However, inelastic de- 

formation around the well bore is apparently quite important 
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BREAKOUT SHAPES UNDER SUCCESSIVE 

EPISODES OF FAILURE 

Fig. 9. Successive stages of breakout extension based on bound- 
ary element calculations of redistributcd stresses around a broken out 
well bore [after Mastin, 1984]. 

in arresting breakout growth, and time-dependent failure pro- 
cesses are probably important in breakout evaluation. Both of 
these processes will have to be considered before breakout 

growth and development are fully understood. 

APPENDIX 

We showed in the body of this paper that it is possible to 

determine the magnitude of the horizontal principal stresses 

from measurements of the shape of spalled areas (breakouts) 
of a well bore, provided that SH* _< 3Sh*, AP = 0, and elastic 

failure theory adequately describes the process. In this appen- 
dix we will develop the general solution and show that it is 

still possible to separate and solve for SH* and Sh* as func- 

tions of r b and 0 b even when the above conditions are on SH*, 
S•*, and AP not explcitly satisfied. 

We assume again that the breakout is a zone of compressive 
shear failure and is bounded by a surface defined by the ma- 

terial's cohesion r0. Since a single value of •0 defines the 
boundary of the breakout, we can parametcrize the breakout 

shape by its maximum depth, r = r• (at 0 = 7[/2) and by the 
azimuth of the point at which the breakout intersects the 

borehole wall, 0 = 0• (at r = R). From (3) we note that rr0 = 0 
whenever r = R or 0 = •r/2. When •:r0 = 0, (4) becomes 

If SH*< 3S•* and AP = 0, then ao > a• everywhere in the 
immediate vicinity of the well, and we do not need to worry 

about the sign of the stress difference. Equations (6)-(8) were 
obtained in this manner. 

By substituting the complete formulae for the stresses 

around the borehole (equations (1)-(3)) into (4), we obtain (in 

place of equations (5)-(7)) 

zo(R, 0•)= «[(a• + a2)SH* + (b• + b2)S•* ] + eAP (A2) 

ro(r•, •) = «[(c , + c2)SH* + (d , + d2)Sa*] + fAP (A3) 
al= -#(1-2cos20b) 

a 2 = _+_(1 +/12)•/2(1 -- 2 cos 20•) 

b • '- - #(1 + 2 cos 20•) 

b 2 = __+(1 +/,t2)1/2(1 + 2 cos 20•) 

(r52) c• = --# 1 + 2 

c2= +(1 +#2)•/2 1----+3 
• rb 2 

(A4) 

( d 2 = +(1 +/12) 1/2 --1 + 3-- 3 

e = • (1 +/12) 1/2 

a 2 
f= •(1 + #2),/2__ 

rb 2 

If ao- a, is positive, take the positive sign for a2, b2, c2, and 
d 2 and the negative sign for e and f. If ao - a, is negative, take 
the negative sign for a2, b2, c2, and d 2 and the positive sign for 
e andf. Using formulae (9)-(11) become 

(a, + a2)('r o + fAP) -- (c, + c2)('r o -- eAP) 
Sh* = 2 (A5) 

(a• + a2)(d • + d2)- (b• + b2)(c • + c2) 

(d, + d2)('c o - eAP) -- (b, + b2)(T 0 --fAP) 
SH* = 2 (A6) 

(a, + a2)(d , + d2)- (b, + b2)(c , + c2) 

SH* (d 1 + d2)('c o -- eAP) - (b, + b2)(-c o --lAP) 
- (A7) 

Sh* (a, + a2)(z o --fAe)- (c, + c2)(z o --eAe) 

Several features of these equations are immediately appar- 
ent. First, if ao- a• is positive and AP- 0, these equations 

reduce to (9)-(11). As breakouts are caused by well bore spall- 
ing due to the high shear stresses near 0- rt/2, it turns out 

that as long as ro is reasonably large, the first of these con- 
ditions is always satisfied within the breakout zone, even for 

finite values of AP. This is easily demonstrated by noting that 
ao- ar >> 0 at the well bore and that although the difference 
decreases with radial distance, the material will not fail 

beyond a region in which this stress difference is still large 
(and, by inference, positive). Where AP is nonzero, the forma- 

tion of a breakout at the azimuth of the least effective prin- 
cipal stress still requires that ao - a• > O. Thus, in solving for 
the stresses in terms of the parameters describing the breakout 

shape, we can always assume that this relationship holds. 
If AP is nonzero, we cannot solve explicitly for SH*/Sh* in a 

straightforward manner. However, (A7) can still be used to 

obtain an estimate of the ratio of the stresses if ro- eAP • Zo 
-kAP. In all but unusual circumstances (such as over- 

pressured zones), AP will be much smaller than z 0. Also, e and 
k are approximately equal to one. Therefore, z o -- eAP will in 
general be approximately equal to z o -kAP. Estimates of 
stress ratio from (11) will therefore be within 10% or less of 
the correct value unless the breakout formed when the fluid 

pressure in the well was greatly different from that in the 
formation. 
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