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WELL~BOUNDED SEMIGROUPS IN CONNECTED GROUPS
Detlev Poguntke

Communicated by Karl H. Hofmann

In [11 , Dobbins studied the so-called well-bounded semigroups
in locally compact groups, i.e. open subsemigroups S such that the
boundary 3S 1is a subgroup (for instance a connected component of
V~HW where V is finite dimensional real vector space and W a
subspace of codimension 1), He did not answer the question whether
or not there exist such semigroups in the universal covering group
SLZ(IR)N of SLZ(IR) . In this paper, it is shown that the answer
is affirmative. One gets the existence from a general theorem about
well-bounded semigroups in connected locally compact groups which
also clarifies the nature of these semigroups and shows that the
general situation is very similar to the vector space case. In the
(short) proof of the theorem we make extensive use of the theory
developed in Dobbins' paper. We also discuss the ideal theary in
well-bounded semigroups. Especially, we will show that the closure
of a well-bounded semigroup in SLZ(IR y‘ has only a countable des-
cending sequence of two-sided jdeals.

I wish to express my thanks to K.H. Hofmann who told me the problem
concerning SLZ(IR)N at the meeting on "Categorical Topology" in
Mannheim 1975.

Next, I will briefly recall the definitions and theorems of Dobbins
which are crucial in the sequel.

1. DEFINITION. A well-bounded semigroup (in G) ds a pair (G,S)
consisting of a locally compact group G and an open subsemigroup
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S of G such that 3S is a subgroup of G .

2. DEFINITION. A well-bounded semigroup (G,S) is called reduced
if there is no non-trivial {closed) normal subgroup N of G with
SnN=0¢.

3. THEOREM. Let (G,S) be a well-bounded semigroup. Then there
exists a closed normal subgroup M in G such that SnM=9 and
(G/M, SM/M} 1is a reduced well-bounded semigroup.

Moreover, a{SM/M) = (MaS) /M .

If G is connected, then M is unique, namely M = Core (3S) :=

=/ gaqu .
geG

4. THEOREM. Let (G,S) be a reduced well-bounded semigroup, and
let G be connected. Then G is isomorphic to one of the following
roups.

(1) IR
) (B9 abeR, a> ol c6L(R)

(3) SLz(lR)"’ .

Moreover, up to conjugation, 3S is {0} in case (1), further
{(g g » a >0} in case (2), and finally the component of the unit
element in pl {[g a-1) 5 a.b €R, a >0} in case (3), where
p: SLZ(IR )'\' > SLz(iR) denotes the covering homomorphism.

Now we formulate the criterion for the existence of well-bounded
semigroups.

5. THEOREM. Let G be a connected locally compact group and let H
be a closed subgroup of G . Then the following statements are
equivalent:

(1) There exists an open subsemigroup S of G with a5 =H such
that (G,S) is a well-bounded semigroup.

(i1) There exists a closed subgroup E of G , Zisomorphic to IR,
such that the multiplication E x H~ G is a homeomorphism.
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If (1) (or (ii)) holds then the sole open subsemigroups S with
35 = H are the two connected components of G~H , and
S =HC = CH where C denotes one of the two connected components

of E~{0}. Clearly, G=SUOHU S:T_.

REMARK. If H 1is a closed subgroup of the connected locally compact
group G then it can be shown that (i) and (i1) are equivalent to
(iii) G/H 1is homeomorphic to IR .

(We prove the remark by using the reduction in [4], p. 236, applying
Theorem 1 in [5] and using 14.3 of [3] as in the proof of 5.)

i

Before proving 5. we note that the group G = SLZ(R } and the
subgroup H described in 4. (3) satisfy condition (ii} of 5. {com-
pare also [6] or [5]) . Indeed we observe:

6. REMARK. Let p : SLZ(IR)N -+ SLZ(!R) be the covering homomorphism
and let H be the component of the unit element in ]:3_1 {(2 gﬁl) H

a,b € R, a >0} . There exists a unique isomorphism o from IR

-1 ¢cos t sin ty . . cos t sint
onto p° {(gin t cos t) } tERY with po(t) = (.sin t cos g

The center of SLZ(IR)'\' is equal to o(rZ) . The map (t,h) » o(t)h
is a homeomorphism from R x H onto SLZ(IR)N .

Proof of 5. (ii) = (i) Using the inversion G~+G, g~ g'1 , We
see that the multiplication H x E +~ G is also a homeomorphism. Let
C be one of the connected components of E ~ {0} . Define S := CH .
Then S s one of the two components of G~ H . But HC is also

a component of G~H . Since HC and S = CH intersect at least

in C, they are equal. From HC = CH and the fact that C and H
are semigroups, one easily deduces that S is a semigroup. Of course,
S is open and 3S =H .

(i) = {ii) Let M := Core (H) . By 3., (G/M, SM/M) 1is a reduced
well-bounded semigroup with 3(SM/M) = H/M . From 4. and 6., it
follows that there exists a closed subgroup E*' of G/M , isomorphic
to IR , such that the multiplication E' x H/M~> G/M is a homeo-
morphism. Then there exists (for instance by 14.3 in [3]) a closed
subgroup E of G such that the quotient homomorphism G ~ G/M
induces an isomorphism from E onto E' . Obviously, this E 1s the
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required group.

It remains to prove that every open subsemigroup S of G with
3S = H is of the form CH . Since S is a subsemigroup of G con-
taining H we have HS U SH « S=SUH, and, therefore,

S =HS = SH because S NH=@ . Using this equality and

G =HE = EH we get S = (EnS):H = H.(EnS) . Since S 1is an open
subsemigroup of G with 35S = H the intersection SN E is an open
subsemigroup of E 2 R with 3(SnE) = {0} and is therefore one of
the components of E ~ {0} . The proof of 5. is complete.

In order to study the ideal theory in (well-bounded} semigroups
it is useful to introduce (and to determine} the following equivalence
relations.

7. DEFINITION. Let (G,S) be a well-bounded semigroup. Then equi-
valence relations L,R and J on G and, by restriction, on S

are defined by xLy @ Sx = Sy , xRy & xS = yS and xJy & SxS = SyS .
Let D=L UR be the equivalence relation generated by L and R .
Similarily, the semigroups S and S1 := S U {1} define equivalence
relations L*, R*, D* and J* and Ll, Rl, D1 and Jl, respec-
tively. The restrictions of Ll, Rl, D1 and J1 resp. L*, R*, D*
and J¥ on S resp. S are the Green's relations of S resp. S .

8. PROPOSITION. Let (G,5) be a well-bounded semigroup with connec-
ted G, let H=25 and x,y € G . Then LI =Rl = D! = equality,
XLy = xL*y @ Hx = Hy , xRy @ xR*y o xH = yH and therefore

xDy e xD'y e HxH = HyH .

Proof. Suppose x #y and xLly s i.e. Sxu {x} =Syu{y}.
Then there exist s,t € S such that y =sx and x=ty . It
follows y = sty and st =1€ S, a contradiction, Similarily,
Rl equality and hence D1 = equality. Clearly, xLy implies

Sx Ey , i.e. xL*y . From Sx = §& we get the existence of

s,t €S with x = sy and y = tx , hence st =1 . Since H is
the group of units in S (note G =S UHU S'l) it follows that
s,t € H and, consequently, Hx = Hy . From Hx = Hy , we get

Sx = SHx = SHy = Sy , i.e. xlLy . The rest of the proposition is
clear,
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The inclusions D« d and B* c J* are general phenomena. In
order to study the precise relation between D and J we need some
more information about D 1in the three example groups (1), (2), (3)
of 4,

9. LEMMA, Let (G,S) be a reduced well-bounded semigroup with con-
nected G, and let H = 35 be normalized as in 4. Then the equi-
valence relation D can be described in the following way:

In {1): D = equality.

In (2): D has 3 equivalence classes, namely, H, S = HxH for any

X €S, and sl - HxH for an arbitrary x € 571

In (3): Here we also use the notations of 6. There are two types of
D-equivalence classes:

{a) Hol{kn)H = o{ke)d , k€Z , and

(b) Ho(ﬂk+%-)H= {o{t)h | heH, nk <t<mk+aun}s=

= g((nk, n(k+1)))H , k €Z . We write Mk for the D-class of type
(b).

Proof. Cases (1) and (2) are trivial. Assume G SLZ(!R)N . Let
B = p(H) = {(g 2-1) | a,beR, a>o0} and w:=po(3) = {_? é) .
Recall that one has the "Bruhat decomposition” of SLZ{lR} :

SL,(IR) = B 0 WwZB 0 BwB U Bw°B

it

(% |bem and m= (* ) esLy(R) .

More precisely, let U : v

Then

]

y=0 and o« >0 iff meB,

y=0 and a <o iff meg WZB = -B,

vy <o iff me BwB and m has a unique representation m = hwu
with heB and ueu,

y>0 iff me Bw3B and m has a unique representation m = hw3u
with he€ B and u€ U . Another description of BwB and Bw3B is

given by

- cos t sin t
BwB = {{—sin t cos t} lo<t<mB

and BB = (S8 MYy | act<anB

163



POGUNTKE

The rest of the proof consists of pulling these informations back
to G. To thisend, let k€Z and nk <s <nk + 7 . The proof
will be complete if we can show that Ho(s)H = M - First, we claim
that Ho(s) or Ho(s)H 1is contained in M . Fix heH . Then a
continuous function f : IR -+ R is defined by ho(t) € o(f(t))H .
Since o(nZ) 1is the center of G it follows f(nm) = nn for each
n€Z . Moreover, f is injective and hence bijective; for if
ho(t) = o(f(t))x and ho({t') = o(f(t'))x' with x,x' € H and
f(t) = f(t') then xo(-t) = x'o{~t'} and, therefore, x = x' and
t =t' . Especially, f maps the interval =k <t < 7k + 7 onto
itself and, consequently, Ho(s)H < M, . From this inequality and
the above characterization of the B double cosets in SLE(IR) one
easily deduces Ho{s)H = Mk .

The following lemma is useful for determining the equivalence
relations J, Jl and J" .

10. LEMMA. Let (G,S) be a well-bounded semigroup with connected

G and et H =235 . Then SxS = HxS = SxH, SxS = HXS = SxH and

Sle1 = SxS U {x} for each x € G .

Proof. Let E and § = CH = HC be as in 5. and x = eh with

e€E and heH . Then SxS = SehHS = SeS = HCeS = HeCS = HeS =
= HehS = HxS . The proof of the equalities SxS = SxH and
SXS = HXS = SxH s similar. The inclusion xS u {x} < s'xs’ is
obvious. But S'xs! = x5! u xS = SxS U Sx U xS U {x} < SxS U SxH

U HxS U {x} = SxS U {x} .

1

11. THEOREM. Let (G,S) be a well-bounded semigroup with connected
G, let H=23S, and let M= Core (H) . The equivalence relations
D" =D and J* on G coincide. In general, D 1is coarser than ot s
and J is coarser than D , even when restricted to S, namely
in the case that G/M = SLy(R)” . If S =HC in the usual notation
then x = HxHC = S5xS induces a bijective map from S5/J onto the
set of all open two-sided ideals in S . The proper closed two-sided
ideals in S are precisely the closures of the proper open two-sided
ideals. If G/M = R, then there is a bijective map from S/J onto
o,) . If dimG/M =2, then S/J reduces to one point. If
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G/M = SL,(R)" then S/J is countable and HxH~ HXHC = SXS  defines
a bijective map from S/D onto the set of all two-sided ideals in S;

in particular this set is countable.

Proof. Clearly, it suffices to prove the statements of the theorem
in the reduced cases (1), (2), (3) (see 4.).
¥

(1): Obviously, D = Jl

S = (0,») are the intervals {(x,») | x > o} and the closed proper

=J =J = equality. The open ideals in

ideals are the intervals {[x,») | x > o} .

(2): The D-equivalence classes are S, H, 5-1 . Using 10. one sees
that there are two J-equivalence classes S and S_1 (if x¢€ s

then SxS =5, if xe€S! then Sx§ = G) , that there are three
J*—equiva1ence classes S, H, S'1 (if x €S then SxS =S, if

X €H then SxS =5, and if x €S} then SxS =G) , and that
there are infinitely many Jl-equiva1ence classes S, S'1 and {h} ,
hehH, (if xes then sixst =s, if xes! then shst-q,
and if x € H then Sle1 =85 0 {x}) . The rest is clear because

S is a simple semigroup (SxS =S if x € §) .

(3): Here, we use the notations of 6. By 9., the D-equivalence
classes are o(kr)i, k€Z , and M =H o(rk + goH =
= g((nk, nk + w))H , k € Z . Using 10., one gets

SxS = HxHC

o((rky»))H if x € o(kn)H or XEM

and  SXS = HxHC = o([nk,»))H if x € o(km)H ,

and  SxS = HxHC

o((rks=))H if x €M,

and S™xS

SXS U {x} = o((rk,=))H if x € M

and S™xS

o((tks®))H U {x} if x € o(kn)H

In particular, D = J* » and the D-equivalence classes o(kn)H
and Mk are identified under J , and for a fixed k € Z the
Jl-equivalence classes {o(nk)h} , h € H , are identified under D .

To prove the rest of the theorem we compute the ideals in S and
S . Let I be a proper ideal in S , and let k be the smallest
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positive integer k such that I n (Mk Uo(nk)H) #+ 8 , and let

A =10 o{sk)H . The computation of the J-equivalence classes shows
that [ = A U o{{rk,=))H , and indeed for any positive integer k
and any subset A of o(nk)H the union A U o({nk,=)}H is a proper
ideal in S . The closed {open) ideals correspond to the cases
A=o(sk)d (A=0), i.e. the o(lvk,=))H are the proper closed
ideals, and the of((wk,~})H are the proper open ideals. Now let K
be an ideal in S . If KnHs+ @ then K= S . Thus we assume
that K is a subset of S . Then K=9S or K =AU o{{rk,»))H

for some positive integer k and a subset A of o(nk)H . But A
has to be invariant under translations with elements of H , and
hence A =0 or A =o(nk)H . Therefore all ideals in S have the
form o(Ink,=))H or o((nk,=))H for some nonnegative integer k .
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