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WELL-BOUNDED SEMIGROUPS IN CONNECTED GROUPS 

Detlev Poguntke 

Communicated by Karl H. Hofmann 

In [1] , Dobbins studied the so-called well-bounded semigroups 

in locally compact groups, i.e. open subsemigroups S such that the 

boundary BS is a subgroup (for instance a connected component of 

V ~ W where V is f in i te dimensional real vector space and W a 

subspace of codimension I). He did not answer the question whether 

or not there exist such semigroups in the universal covering group 

SL2(IR)~ of SL2(IR) In this paper, i t  is shown that the answer 

is affirmative. One gets the existence from a general theorem about 

well-bounded semigroups in connected locally compact groups which 

also clarif ies the nature of these semigroups and shows that the 

general situation is very similar to the vector space case. In the 

(short) proof of the theorem we make extensive use of the theory 

developed in Dobbins' paper. We also discuss the ideal theory in 

well-bounded semigroups. Especially, we will show that the closure 

of a well-bounded semigroup in SL2(~)'~ has only a countable des- 

cending sequence of two-sided ideals. 

I wish to express my thanks to K.H. Hofmann who told me the problem 

concerning SL2(IR) ~ at the meeting on "Categorical Topology" in 

Mannheim 1975. 

Next, I will briefly recall the definitions and theorems of Dobbins 

which are crucial in the sequel. 

I. DEFINITION. A well-bounded semi~roup 

consisting of a locally compact group G 
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(in G) is a pair (G,S) 

and an open subsemigroup 
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S of G such that aS is a subgroup of G . 

2. DEFINITION. A well-bounded semigroup (G,S) is called reduced 

i f  there is no non-trivial (closed) normal subgroup N of G with 

S n N : ~ . 

3. THEOREM. Let (G,S) be a well-bounded semi~roup. Then there 

exists a close_~d normal subgroup M i n  G such that S N M = ~ an_dd 

(G/M, SM/M) is a reduced well-bounded semi~roup. 

Moreover, B(SM/M) = (MaS) /M . 

I f  G i s  conn.ecte.d, the.n.. M is un..iq.ue, namel~ M = Core (aS) := 
:=t*'~ gBSg -1 

gEG 

4. THEOREM. Let (G,S) be a reduced well-bounded semigroup, and ...... 

let G be connec.ted. Then G i s  isomorphic to one of the following 

~roup,s. 

(I) IR 

(2) ; 

(3) SL2(IR)~ 

a,b E in, a > o} ~ GL2(IR ) 

Moreover, up to  conjugation, BS i s  {0} in case (1), further 

{(~ ~) , a > o} __in case (2), and .f.inall~ th.e., component, of the unit 

element in p-i {(~ b '" a_1) ; a,b EIR, a > o} in case (3), where 

p : SL2(IR)~ ÷ SL2(IR ) denotes the coverin9 homomorphis.m. 

Now we formulate the criterion for the existence of well-bounded 

semigroups. 

of G with BS = H such 

5. THEOREM. Let G be a.connecte..d, locall Y compact group and let H 

be a closed subgroup of  G . Then the follow.in 9 statements are 

eguivalent: 

(I) There exists an open subsemigroup S 

.th.a..t. ' (G,S) is a w e l l - b o u n d e d ~ .  

( i i )  There exists a closed subgroup E of G , isomorphic to  IR , 

such that the multiplication E x H + G is a homeomorphism. 
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L f  ( i )  (or ( i i ) )  holds then the sole open sub semigroups S with 

BS = H are the two connected components o_f_f G ~ H , and 

S = HC = CH wheme C denotes on e of the two connected components 

o_f_f E ~ {0} . Clearly, G = S 0 H 0 S ---I 

REMARK. I f  H is a closed subgroup of the connected loca l ly  compact 

group G then i t  can be shown that ( i )  and ( i i )  are equivalent to 

( i i i )  G/H is homeomorphic to IR . 

(We prove the remark by using the reduction in [4], p. 236, applying 

Theorem 1 in [5] and using 14.3 of [3] as in the proof of 5.) 

Before proving 5. we note that the group G = SL2(R )~ and the 

subgroup H described in 4. (3) sat isfy condition ( i i )  of 5. (com- 

pare also [6] or [5]) . Indeed we observe: 

6. REMARK. Let p : SL2(IR) ~ ÷ SL2(IR ) be the covering homomorphismk _ 

and le t  H be the component of the unit element in p-I {(a a.1) ; 

a,b E R, a > o} . There exists a unique isomorphism ~ from IR 
r cos t sin ~) r cos t sin ~) 

onto p-1 { , -s ln  t cos ; t E In} with p~(t) = ,-sin t cos " 

The center of SL2(IR) ~ is equal to o(x77) . The map ( t ,h)  ~ ~(t)h 

is a homeomorphism from R x H onto SL2(IR) ~ . 

- I  
Proof of 5. ( i i ) - ~  ( i )  Using the inversion G ÷ G , g ~ g , we 

see that the mult ipl icat ion H x E + G is also a homeomorphism. Let 

C be one of the connected components of E ~ {0} . Define S := CH . 

Then S is one of the two components of G~ H . But HC is also 

a component of G ~ H . Since HC and S = CH intersect at least 

in C , they are equal. From HC = CH and the fact that C and H 

are semigroups, one easi ly deduces that S is a semigroup. Of course, 

S is open and BS = H . 

( i )  - ( i i )  Let M : :  Core (H) . By 3., (G/M, SM/M) is a reduced 

well-bounded semigroup with @(SM/M) = H/M . From 4. and 6., i t  

follows that there exists a closed subgroup E' of G/M , isomorphic 

to IR , such that the mult ip l icat ion E' x H/M + G/M is a homeo- 

morphism. Then there exists (for instance by 14.3 in [3]) a closed 

subgroup E of G such that the quotient homo~rphism G ÷ G/M 

induces an isomorphism from E onto E' . Obviously, this E is the 
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required group. 

I t  remains to prove that every open subsemigroup S of G with 

BS = H is of the form CH . Since ~ is a subsemigroup of G con- 

taining H we have HS U SH c ~ =  S U H , and, therefore, 

S = HS = SH because S N H = ~ . Using th is  equal i ty and 

G = HE = EH we get S = (ENS).H = H.(EnS) . Since S is an open 

subsemigroup of G with BS = H the intersection S N E is an open 

subsemigroup of E m R with B(SNE) = {0} and is therefore one of 

the components of E ~ {0} . The proof of 5. is complete. 

In order to study the ideal theory in (well-bounded) semigroups 

i t  is  useful to introduce (and to determine) the fol lowing equivalence 

relat ions.  

7. DEFINITION. Let (G,S) be a well-bounded semigroup. Then equi- 

valence relat ions L,R and J on G and, by res t r i c t i on ,  on S 

are defined by xLyw Sx = Sy , xRy~ xS = yS and xJyw SxS = SyS . 

Let D = L u R be the equivalence relat ion generated by L and R . 

S im i la r i l y ,  the semigroups S and S 1 := S U {1} define equivalence 
* * D ~ j *  L 1 R 1 D 1 j1 relat ions L , R , and and , , and , respec- 

t i ve l y .  The rest r ic t ions of L 1, R I ,  D 1 and j1 resp. L*, R*, D* 

and J* on S resp. S are the Green s relat ions of S resp. S . 

8. PROPOSITION. Let (G,S) be a well-bounded semigroup with connec- 

ted G , l e t  H = BS and x,y E G . Then L I = R 1 = D 1 = equality~ 

xLy~  xl.mywHx = Hy , xRy~ xRmy~ xH = yH and therefore 

xDywxD ywHxH = HyH . 

Proof. Suppose x • y and xLly , i . e .  Sx u {x} = Sy u {y} . 

Then there ex is t  s , t  E S such that y = sx and x = ty  . I t  

follows y = sty and st = I E S , a contradict ion. S im i l a r i l y ,  

R 1 = equal i ty and hence D 1 = equal i ty.  Clearly, xLy implies 

Sx =Sy , i . e .  xL*y . From Sx = Sy we get the existence of 

s , t  E S with x = sy and y = tx  , hence st = 1 . Since H is 

the group of units in S (note G = S 0 H 0 S -1) i t  follows that 

s , t  E H and, consequently, Hx = Hy . From Hx = Hy , we get 

Sx = SHx = SHy = Sy , i .e .  xLy . The rest of the proposition is 

clear. 
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The inclusions D c J and D* J* c are general  phenomena. In 

o rder  to s tudy the prec ise  r e l a t i o n  between D and J we need some 

more i n fo rma t i on  about D in  the th ree  example groups ( I ) ,  ( 2 ) ,  (3) 

o f  4. 

9. LEMMA. Let (G,S) be a reduced wel l -bounded semigroup w i th  con- 

nected G , and l e t  H : @S be normal ized 'as  i n  4. Then the equ i -  

valence r e l a t i o n  D can be descr ibed in  the f o l l o w i n g  way: 

In (1): 

In (2): 

x E S  , 

In (3): 

D = e q u a l i t y .  

D has 3 equ iva lence c lasses ,  namely, H, S = HxH f o r  any 

and S "1 = HxH f o r  an a r b i t r a r y  x E S - I  

Here we a lso use the no ta t i ons  o f  6. There are two types o f  

D-equiva lence c lasses :  

(a) H~(k~)H : o(k~)H , k E Z  , and 

(b) Ho(~k + ~)H = { a ( t ) h  I h E H , ~k < t < ~k + ~} = 

= o ( (~k ,  ~ ( k + l ) ) ) H  , k E ~  . We w r i t e  M k f o r  the D-c lass of  type 

(b). 

Proof .  Cases (1) and (2) are t r i v i a l .  Assume G = SL2(IR)~ Let 

Recal l  t h a t  one has the "Bruhat  decomposi t ion"  o f  SL2(IR ) : 

SL2(IR) = B 0 w2B 0 BwB 0 Bw3B 

More p r e c i s e l y ,  l e t  U := { (~  ~) I b E,R} and m : (y ~ ) E  SL2(IR) . 

Then 

y = o and ~ > o i f f  m E B , 

y = o and ~ < o i f f  m E w2B = -B , 

y < o i f f  m E BwB and m has a unique rep resen ta t i on  

w i t h  h £ B and u E U , 

y > o i f f  m E Bw3B and m has a unique rep resen ta t i on  

w i t h  h E B and u E U • Another  d e s c r i p t i o n  o f  BwB 

given by 

and 

BwB : { f  cos t s i n  t )  I o < t < 7} B 
, - s l n  t cos 

Bw3B = {~ cos t s i n  t t )  I ~ < t < 27} B 
~-s ln  t cos 

m = hwu 

m = hw3u 

and Bw3B i s  
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The rest of the proof consists of pul l ing these informations back 

to G . To this end, le t  k E~ and ~k < s < ~k + ~ . The proof 

w i l l  be complete i f  we can show that H~(s)H = M k . F i rs t ,  we claim 

that H~(s) or Ho(s)H is contained in M k . Fix h E H . Then a 

continuous function f :IR ~ R is defined by h~(t) E o(f ( t ) )H . 

Since ~ ( ~ )  is the center of G i t  follows f(n~) = n~ for each 

n E Z . Moreover, f is in ject ive and hence b i jec t ive ;  for i f  

ho(t) = ~ ( f ( t ) ) x  and ha( t ' )  = ~ ( f ( t ' ) ) x '  with x,x '  E H and 

f ( t )  = f ( t ' )  then xo(- t )  = x ' o ( - t ' )  and, therefore, x = x' and 

t = t '  . Especially, f maps the interval ~k < t < ~k + ~ onto 

i t s e l f  and, consequently, Ho(s)H ~ M k . From this inequal i ty and 

the above characterization of the B double cosets in SL2(IR ) one 

easi ly deduces Ho(s)H = M k . 

The fol lowing lemma is useful for  determining the equivalence 

relat ions j ,  j1 and Jm . 

10. LEMMA. Let (G,S) be a well-bounded semigroup with connected 

G and le t  H = BS . Then SxS = HxS = SxH, SxS = HxS = SxH and 

slxs I = SxS U {x} for each x E G . 

Proof. Let E and S = CH = HC be as in 5. and x = eh with 

e E E and h E H . Then SxS = SehHS = SeS = HCeS = HeCS = HeS = 

= HehS = HxS . The proof of the equal i t ies SxS = SxH and 

SxS : HxS= SxH is similar.  The inclusion SxS u {x} ~ slxs I is 

obvious. But SIxs I = SxS 1U xS I = SxS u Sx U xS U {x} c SxS u SxH 

u HxS U {x} = SxS U {x} . 

11. THEOREM. Let (G,S) be a well-bounded semi~roup with connected 

G , l e t  H = BS , and le t  M = Core (H) . The equivalence relat ions 

D m D and jm = on G coincide. In ~eneral, D is coarser than j1 

and J is coarser than D , even when restr icted to S , namely 

in the case that G/M-= SL2(IR)~ o __If S = HC in the usual notation 

then x ~ HxHC : SxS induces a b i jec t ive  map from S/J onto the 

set o f  a l l  open two-sided ideals in S . The proper closed two-sided 

ideals in S are precisely the closures of the proper open two-sided 

ideals. I f  G/M "- R , then there is a b i jec t ive map from S/J onto 

[o,®) . I f  dim G/M = 2 , then S/J reduces to one point. I f  
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G/M ~ SL2(IR)~ then 5/d i s  countable and HxH ~ HxHC = SxS defin~ 

a b i ject ive map from S/D onto the set of a l l  two-sided ideals in S; 

i n  part icular this set is countable. 

Proof. Clearly, i t  suffices to prove the statements of the theorem 

in the reduced cases ( I ) ,  (2), (3) (see 4.). 

(1): Obviously, D = j1 = j = j *  = equality. The open ideals in 

S = (o,~) are the intervals {(x,~) I x ~ o} and the closed proper 

ideals are the intervals {[x,~) I R > o} . 

(2): The D-equivalence classes are S, H, S -1 . Using 10. one sees 

that there are two J-equivalence classes S and S -1 ( i f  x E 5 

then SxS = S , i f  x E S -1 then SxS = G) , that there are three 

J*-equivalence classes S, H, S - I  ( i f  x E S then S-xS= S , i f  
w 

x E H then SxS = S , and i f  x E S "I then SxS = G) , and that 

there are i n f i n i t e l y  many j1-equivalence classes S, S "1 and {h} , 

h E H , ( i f  x E S then SIxs I = S , i f  x E S - I  then slxs I = G , 

and i f  x E H then slxs I = S 0 {x}) . The rest is clear because 

S is a simple semigroup (SxS = S i f  x E S) . 

(3): Here, we use the notations of 6. By 9., the D-equivalence 

classes are o(k~)H, k EZ , and M k = H ~(~k + ~)H : 

= o((~k, ~k + ~))H , k E~ . Using I0. ,  one gets 

and 

SxS : HxHC = ~((~k,®))H i f  x E o(k~)H or x E M k , 

SxS = HxHC = ~([,k,~))H i f  x E o(k~)H , 

and SxS : HxH~ : o((xk,~))H i f  x E M k , 

and slxs I = SxS U {x} = ~((xk,~))H i f  x E M k 

and slxs I = ~((~k,~))H 0 {x} i f  x E ~(k~)H 

In part icular ,  D = J* , and the D-equivalence classes o(k~)H 

and M k are ident i f ied  under J , and for a f ixed k E Z the 

j l-equivalence classes {o(~k)h} , h E H , are ident i f ied under D . 

To prove the rest of the theorem we compute the ideals in S and 

. Let I be a proper ideal in S , and le t  k be the smallest 

165  



POGUNTKE 

posit ive integer k such that I n (M k u ~(xk)H) ~ ~ , and le t  

A := I N o(xk)H . The computation of the J-equivalence classes shows 

that I = A U ~((~k,~))H , and indeed for any posit ive integer k 

and any subset A of o(~k)H the union A u ~((~k,~))H is a proper 

ideal in S . The closed (open) ideals correspond to the cases 

A = o(~k)H (A = 0) , i . e .  the ~([~k,~))H are the proper closed 

ideals, and the o((~k,~))H are the proper open ideals. Now le t  K 

be an ideal in S . I f  K n H ¢ 0 then K = S . Thus we assume 

that K is a subset of S . Then K = S or K = A U ~((xk,~))H 

for some positive integer k and a subset A of ~(~k)H . But A 

has to be invariant under translations with elements of H , and 

hence A = ~ or A = o(~k)H . Therefore a l l  ideals in S have the 

form ~( [~k,~))H or a( (~k,~))H fo r  some nonnegative in teger  k . 
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