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ABSTRACT D)
A graph G is well-covered (or w-c) if every maximal independent set of points in

G is also maximum. Clearly, this is equivalent to the property that the greedy algorithm

for constructing a maximal independent set always results in a maximum independent set.

Although the problem of independence number is well-known to be NP-complete, it is

trivially polynomial for well-covered graphs.

The concept of well-coveredness was introduced by the author in [P1] and was first

discussed therein with respect to its relationship to a number of other properties involving

the independence number.

Since then, a number of results about well-covered graphs have been obtained. It is

our purpose in this paper to survey these results for the first time. As the reader will see,

many of the results we will discuss are quite recent and have not as yet appeared in print.

1. Background, Terminology and an Updated Lattice of Implications

In this paper, all graphs will be assumed to be connected. A set of points is indepen-

dent if no two of its members are joined by a line. The size of a largest (i.e., maximum)

independent set will be denoted by a(G) and this number will be called the independence

number of G. A point cover for a graph G is a set S C V(G) such that every line of

G has at least one endpoint in S. Let us denote the size of a smallest point cover in a

graph G by r(G). It is clear that the complement of a point cover is an independent set

(and vice-versa) and that in fact, the complement of a minimum point cover is a maximum
.a independent set (and vice-versa). Thus we always have that a(G) + r(G) = IV(G)i. We
a.-ithus have the option of adopting the point of view of independent sets or of point covers.

oId Historically, well-covered graphs (the subject of this paper) were defined in terms of point

covers (hence the name), but more recently, most researchers in the area have converted

to the independent set point of view. We too will follow this more recent trend.

In 1972, Karp [K] showed that the independence number problem for graphs in general

is NP-complete. Thus it is considered most unlikely that a polynomial algorithm will ever

5.u.2 be found to compute a(G).

." It is natural, therefore, to look for interesting families of graphs for which this parame-

er is polynomially computable. A number of such families have been found. For example,
0.t has long been known that bipartite graphs have polynomially computable independence
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number. The reason is that in a bipartite graph G, we always have v(G) = i(G) by the

well-known minimax theorem of K~nig (Cf. Theorem 1.1.1 of [LP].) Here V(G) denotes

the size of a largest matching in G. But matching is well-known to be polynomial in all

graphs by a famous result of Edmonds (cf. Theorem 9.1.8 of [LP].) Hence it immediately

follows that the independence number is polynomially computable as well.

Graphs invkhich v(G) = r(G) are said to have the Kbnig Property. We have just

observed that every bipartite graph has the K6nig Property. However, so do a number

of non-bipartite graphs. It has been shown independently by Deming [De], Sterboul [Ste]

and Lovasz [Lo] that graphs with the K~nig Property are polynomially recognizable.

For a more comprehensive list of other graph families with polynomially computable

independence number, we refer the reader to [GJ] and [LP].

Well-covered graphs are, in a sense, the most trivial family of graphs having poly-

nomial independence number. Consider the so-called greedy algorithm for constructing a

maximal independent set in a graph. Namely, begin by choosing any point vl in graph

G, put it in a set I and delete it and its neighbors from G to obtain a graph Gv,,. Now

select any point v2 in G,,, put it into set I also, delete it and its neighbors from Gu,, to

obtain a yet smaller graph (Gu1 ) Continue this procedure until all points have either

been chosen for membership in I or deleted. Clearly, the set I which we have obtained

in polynomial time is a maximal independent set in G. However, it may be far from a

maximum independent set! But let us call a graph G well-covered if no matter which

point in G we start with, the above greedy procedure always results in an independent set

which is maximum. Note that this property is clearly equivalent to demanding that every

maximal independent set in G is also maximum.

Intuitively speaking, the property of being well-covered would appear to be quite

strong and hence perhaps it is not unreasonable to hope that a good characterization

and/or a polynomial recognition algorithm can be found for this class of graphs. Alas, as

we shall see in Section 2, it is unlikely that this will ever be the case.

We now proceed to several other definitions with which we shall deal in this paper.

A line in a graph G is said to be a-critical (or simply critical) if a(G - e) > a(G). If

every line of G is critical, G is called a-critical. A point v of graph G is called essential

if v lies in every minimum point cover of G. Denote the set of essential points of G by
Ve(G). Note that if Ve(G) = 0 then each point of G lies in some maximum independent

set, and vice-versa. Graphs exhibiting this property have been christened B-graphs by
Parthasarathy and Ravindra [PR]. Clearly, every well-covered graph is a B-graph, as is

every a-critical graph. (It is an easy exercise for the reader to show that the converse

assertions are false in both cases.) A point v E G is said to be -critical If (G-v) < r(G).

If every point v E G is r-critical, we say that G is -point-critical. This notion seems

to have first been studied by Erd6s and Gallai in their 1961 paper [EG]. It is easily seen

that a graph G is -point-critical if and only if for all points v E G, there is a maximum

independent set which does not contain v. Again it is immediate that every B-graph is r-
point-critical, but again the interested reader can easily show that the converse implication

fails.

A 2-matching in graph G is an assignment of integer weights 0, 1 or 2 to the lines

of G such that the sum of the weights of the lines incident with each point is at most
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2. If the sum at each point is exactly 2, we say that the 2-matching is perfect. One

can view a perfect 2-matching as a spanning subgraph consisting of point-disjoint cycles

some of which are odd and some of which are even. However, for all perfect 2-matchings

containing an even cycle, one can find another perfect 2-matching which does not contain

that cycle merely by taking every second line of the even cycle with weight 2 and discarding

the remaining lines of the cycle. One then has a perfect 2-matching which is a spanning

subgraph consisting of the union of a matching and a collection of odd cycles, all of which

are line-disjoint. Such a perfect 2-matching was originally called a q-factor by Tutte [Tu].

In the same paper, Tutte also proved that any graph has a perfect 2-matching if and only if

for each independent set X in V(G), lr(x) I xi, where r(X) denotes the neighborhood

of X, i.e., the set of all points adjacent to at least one point in X.

In the middle 1970's, Berge introduced two new properties which tie in with those

mentioned above and which we shall now define. Let G be a graph, e a line in G and

k a non-negative integer. Multiplication of line e by k signifies replacing line e with

k parallel copies of e. (Note that multiplication of line e by 0 means the removal of line

e.) A graph G is regularizable if one can multiply each line of G by an integer > 1
so as to produce a regular multigraph of degree # 0. More generally, we say that G is

quasi-regularizable if one can multiply each line of G by an integer > 0 so as to obtain a

regular multigraph of degree # 0. (Clearly, every regularizable graph is quasi-regularizable

by definit-in. Once again it is left to the reader to verify that the converse implication

is false.) Jerge proved in [B21 and [B3] that a graph is quasi-regularizable if and only if

[r(x)l > IXI, for all independent sets of points X in the graph. Combining the results of

Tutte and Berge, we also have that a graph is quasi-regularizable if and only if it has a

perfect 2-matching. In the same paper, Berge also proved that every a-critical graph must

be regularizable and that every r-point-critical graph is quasi-regularizable.

Let us now return to the property of well-coveredness. Let us denote by W,, the class

of all graphs G with the property that given any collection of n point-disjoint independent

sets {I1,...), I} in G, there is a set {J 1 ,..., J.} of n point-disjoint maximum independent

sets in G such that for each i = 1,... ,n, Ii g Ji. Thus, in particular, class W, is just the

class of well-covered graphs. Clearly, these classes are nested: W, D W 2 D ..

The graph classes {W 1 ,W 2 , ... .} were introduced by Staples in her Ph.D. thesis [Stal]

in 1975. (See also [Sta2].) In [Stall, Staples also began the study of n-well-covered graphs,

where n > 1. A graph G is said to be n-well-covered if for all sets S C V(G) such that ' .

IS= = n and a(G- S) = a(G), G- S is also well-covered. Thus 0-well-covered is equivalent

to being well-covered. Staples proved that for any n > 1, graph G is (n - 1)-well-covered

if and only if G E Wn..

Pinter, in his 1991 Ph.D. thesis [Pi], focused on deriving further properties of the class

W 2; that is, the class of 1-well-covered graphs. We shall present a number of his results

for this class in Section 6.

One of the nicest early results about a-critical graphs was obtained by Hajnal [Haj] .................

in 1965. He showed that for every a-critical graph G, maxdeg (G) <_ IV(G)I - 2a(G) + 1.

The right hand side of this inequality is called the Hajnal bound. Ten years later, Staples

[Stal, Sta2] proved that all W 2 graphs also satisfy the Hajnal bound. Twelve years after

that, Staples' Hajnal bound result for W 2 graphs was improved by Campbell [Cal. Let
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us say that a graph G is in class A. if it is well-covered and for all points v E V(G), the

graph Gu, = G - ({v} U r(v)) has no isolates. Campbell showed that the class A, properly

contains the class W 2 and that the graphs in the larger class A, also satisfy the Hajnal

degree bound.

It is interesting to note at this point that we have established that the properties of

being a-critical and belonging to class W 2 separately imply a number of weaker properties

concerning independence number. However, it is easy to see that in general, the a-critical

and W 2 properties are independent. On the other hand, Staples obtained the only non-

trivial condition known to date which connects the two properties when she proved that

if G is a triangle-free member of class W 2 , then G is also a-critical.

Next, I t us define a well-covered graph G to be strongly well-covered if G - e is also

well-covere, for all lines e E E(G). Pinter [Pi has shown that no line in a strongly well-

covered graph is a-critical. Earlier, Staples [Stall showed that if a well-covered graph has

no a-critical lines, then it has the property that G - v is not well-covered, for all points

v E V(G). (Grephs with this latter property are called well-covered point-critical

graphs.)

We close this section with the diagram on the following page which summarizes most

of the implications we have discussed in this section.
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2. Complexity Issues for Well4Covered Graphs

Can we recognize a well-covered graph in polynomial time? Although this basic algo-

rithmic question remains unanswered, it seems likely that the answer will turn out to be
"no". But more about that below.

First let us point out that the property of being not well-covered is easily seen to be

in NP. In order to see this, one need only exhibit two maximal independent sets of the

graph G under consideration which have different cardinalities.

What is not so apparent is tha the property of being not well-covered is NP-hard.

Proofs of this result have recently reached the writer from three different sources. Chvtal

and Slater independently proved it and have now co-authored a joint paper [CS] containing

their proof. Independently, Sankaranarayana and Stewart [SS] have produced a virtually

identical proof. The only difference is that Chvftal and Slater use reduction from 3SAT

while Sankaranarayana and Stewart reduce from SAT. We will outline the proof as given

by Sankaranarayana and Stewart.

Theorem 2.1. ([CS;SS]) The property of being well-covered is co-NP-complete.

Outline of Proof. Let ISAT be any instance of SAT. That is to say, ISAT is a

conjunction of m clauses cl,..., Cm where each clause is itself a disjunction of a subset of

boolean variables ul,..., u, (and their complements). Given ISAT, we now build a graph

G with point set V(G) = {ci,...,cm} U {U1,1,...,u, ,n}. The lines of graph G are

defined as follows. Every pair of distinct clause points are joined. Each literal ui is joined

to its negation Ui. Finally, each clause point ci is joined to literal uj (resp. Vj) if uj (resp.

Vj) is contained in clause ci. (Note that it is assumed here that no clause contains both a

literal and its negation, for such a clause is always satisfiable and can hence be eliminated.)

It is now straightforward to prove that ISAT is satisfiable if and only if graph G is

not well-covered.

First suppose that ISAT is satisfiable. Suppose an assignment of values to the literals

is made which makes ISAT true. Then the set of those literals which are true in this

assignment clearly form an independent set of size n which is maximal. Moreover, this set

is not maximum, for one can easily find an independent set in G of size n+1; namely, choose

one point corresponding to a clause and then add n additional literal points obtained by

choosing from each literal pair {uj,j} that one literal which is not in the chosen clause.

Thus G is not well-covered.

Conversely, suppose G is not well-covered. It is easy to see that all maximal indepen-

dent sets in G of size n + 1 must contain a clause point. Now construct an independent

set S1 of size n by choosing exactly one of the two literals ui, Vi in such a way that S

is maximal. But we have maximality only if each clause point ci is adjacent to (at least)

one of the literals chosen for set S 1 . Thus if one assigns the value true to each literal in

S, each clause will be satisfied and hence so will ISAT.

Thus any polynomial recognition algorithm for non-well-covered graphs could be used

to find an assignment of truth values which makes ISAT true. It thus follows that the

property of not being well-covered is at least as hard as SAT and hence is NP-hard.

5
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Now l,-t us return to the question of whether the property of being well-covered is also
in NP. It is NP-hard, since its negation is NP-hard. Thus if it were in NP, it would follow
that NP = co-NP! Although this could conceivably be true without having P = NP, it too

is considered highly uxlikely by the vast majority of complexity theorists.
In a different direction, Sankaranarayana and Stewart [SS] have investigated a number

of other known NP-complete properties, but limited to the class of well-covered graphs. To

mention only several of their results, they have shown that the Hamilton cycle Oroblem,
the dominating cycle problem, the chromatic number problem, the max cut problem and
the dominating set problem all remain NP-complete even when restricted to the class of

well-covered graphs. Moreover, the graph isomorphism problem for well-covered graphs is

equivalent to the general graph isomorphism problem-a problem the complexity of which

remains unknown.

Let us close this section with a remark about the matching-analogue of the well-covered
property. A graph G is said to equi-matchable if every maximal matching is maximum.

The problem of characterizing this family of graphs was first posed by Griinbaum in 1974
[G]. Lesk, Plummer and Pulleyblank [LPP] solved this problem in 1983 when they obtained

a characterization of such graphs which leads to a polynomial recognition algorithm.

3. Well-Covered Bipartite Graphs and Very Well-Covered Graphs

We now begin our survey of the well-covered property with respect to various special

classes of graphs. Let us start with bipartite graphs.

If G is a bipartite graph and e = uv is a line in G, let G, denote the subgraph of G

induced by [(u) u r(v). The following was proved by Ravindra in 1977 [Rall.

Theorem 3.1. Let G be a connected bipartite graph. Then G is well-covered if and
only if G contains a perfect matching F such that for every line e = uv in F, Ge is a

complete bipartite graph.

A characterization of well-covered trees follows as an easy corollary of this result.

Corollary 3.2. A tree T is well-covered if and only if it is K 1 or its pendant lines

form a perfect matching.

Notice that if G is any well-covered graph, then a(G) _ IV(G)I/2. This is easy to

see, for if G contained a maximum independent set of size greater than IV (G)[/2, then no

point in the complement of the maximum independent set could itself lie in a maximum
independent set. The family of well-covered graphs in which equality is attained in the

above inequality, namely, those for which a(G) = IV(G) 1/2, were characterized by Nelson
and Staples [Stal in 1975 and independently by Favaron in 1982 [Fa].

Let us define a graph G to be very well-covered if it is well-covered and has a(G) =

IV (G) [/2. For the sake of conciseness, let us use the following terminology. Suppose a graph

G has a perfect matching F. Then the matching F = {aibi,...,a, ,b, has property P

if (a) no point w E G satisfies w - a1 and w , bi where aibi E F and (b) no set of two

independent points {u,v} C V(G) satisfies u - a, and v - b, where aib, E F.
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Parts (i) and (ii) of the following theorem are proved in [Stal] while the equivalence

of all three statements is proved in [Fa 1.

Theorem 3.3. For any graph G the following are equivalent:

(i) G is very well-covered,

(ii) there exists a perfect matching in G which satisfies property P,
(iii) G contains a perfect matching and every perfect matching in G satisfies property

P.

Of course, if G is well-covered and, in addition, bipartite with point bipartition A U B
it follows immediately that both A and B are maximal independent sets. (Remember: we

are not allowing our graphs to have isolated points.) Thus JAI = IBI and a(G) = IAI =

IV(G) 1/2. But by the well-known minimax theorem of K~nig for bipartite graphs, graph G
must then have a perfect matching. In fact, it is easy to characterize bipartite well-covered

graphs and, in particular, trees, as corollaries of the preceding theorem. These corollaries
was first proved by Ravindra in 1977 [Rail. To the best of the author's knowledge, Staples

and Ravindra were unaware of each other's work at the time.

From part (iii) of Theorem 3.3 it follows that since matching is polynomial, there

is thus a polynomial algorithm for recognizing very well-covered graphs and hence also
well-covered bipartite graphs.

We now turn to the two areas of well-covered graph research which seem to have

produced the bulk of results to date.

4. The Well-Covered Property versus Girth

The girth of a graph G is the length of any shortest cycle in G. Substantial contri-

butions to the theory of well-covered graphs dealing with their girth are due to Finbow,

Hartnell and Nowakowski. In particular, Finbow and Hartnell [FiH] introduced the idea

of studying well-covered grapths from the point of view of girth in the context of analysis

of a certain two-person game. In particular, they obtained the following result. Note that
a pendant line in a graph is any line incident with a point of degree 1.

Theorem 4.1. Let G be a graph with girth at least 8. Then G is well-covered if and
only if its pendant lines form a perfect matching in G.

In cooperation with Nowakowski, in 1987 these same two authors [FHN2] generalized

the above result to obtain a characterization of all well-covered graphs having girth at least
5. (This paper has not yet appeared at the time of this writing.) In order to state their

result, we must first introduce some new terminology.

A 5-cycle C5 of a graph G is called basic if cycle C5 does not contain two adjacent
points of degree 3 or more. In a given graph G let C(G) denote the set of all points which
belong to basic 5-cycles. Denote by P(G) the set of points in G which are incident with

pendant lines in G. Then G is said to belong to the class PC if V(G) can be expressed

as P(G) U C(G), where P(G) n C(G) = 0 and the subgraph of G induced by P(G) is a

matching.
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The main result of [FHN2] can now be stated.

Theorem 4.2. Let G be a graph with girth at least 5. Then G is well-covered if and
only if G belongs to the class PC or is one of the six exceptions shown in Figure 1.

Outline of Proof. It is straightforward to show that all graphs in class PC are
well-covered. In fact, every maximal independent set in a graph G in class PC has size

IP(G)1/2 + 21C(G)1/5. That the six exceptional graphs are well-covered can be easily
checked.

The hard work lies in showing that the converse holds; namely, that the PC graphs
and the six exceptions are the only well-covered graphs of girth at least 5.

The key to the rest of the proof lies in the concept of an extendable point. A point v
in a well-covered graph G is extendable if G - v is also well-covered and a(G - v) = a(G).

Assume, now, that G is a well-covered graph with girth at least 5. It is shown next
that this is equivalent to the following condition: if u and v are adjacent points with
deg (u) > 3, then if v is extendable, so is u. Next it is shown that if v is an extendable
point in such a graph, then either v is incident with exactly one pendant line or else v lies
on a basic 5-cycle C and the neighbors of v on C are of degree 2 in G. The authors then
prove that if v is an extendable point and lies on a basic 5-cycle then all neighbors of v
not on this basic 5-cycle are also extendable. Moreover, if v is incident with a pendant line
then any neighbor of v which is not of degree 1 is also extendable. Finally, these results
are used to show that no two basic 5-cycles can have a point in common.

The authors now use these preliminary results to show that a well-covered graph of
girth at least 5 belongs to class PC if and only if G contains at least one extendable point.

The most difficult-and most lengthy-part of the characterization is now to prove
that if G is well-covered and has girth at least 5 and has no extendable point, then it must
be one of the exceptional graphs shown in Figure 1. The proof proceeds by considering
the maximum degree. It is easy to see that K 1 (an exceptional graph) and K 2 (a member
of class PC) are the unique well-covered girth at least 5 graphs with maxdeg (G) < 1. The
authors then proceed to show that C 7 is the only exceptional graph with maxdeg (G) = 2,
that P 10 , P13 and P 14 are the only exceptions having maxdeg (G) = 3, that Q13 is the sole
exception with maxdeg (G) = 4 and finally, that there are no exceptional graphs having

maximum degree greater than 4.
|

-PLACE FIGURE 1 ABOUT HERE-

By inspecting the exceptional graphs, the following corollary is immediate.

Corollary 4.3. Let G # K 1 , C7 have girth at least 6. Then G is well-covered if and
only if its pendant lines form a perfect matching of G.

We observe that the characterization given in Theorem 4.2 immediately gives an
obvious polynomial algorithm for recognizing well-covered graphs with girth at least 5.
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So what about well-covered graphs with girth 3 or 4? It seems safe to say that those

of us who have worked in the field of well-covered graphs have long felt that triangles are

the real heart of the difficulty. Finbow, Hartnell and Nowakowski, however, in a second
paper in 1989 [FHN3] characterized well-covered graphs in which triangles are allowed, but

which have no 4-cycles nor 5-cycles. (Note that in particular, in st ch graphs no cliques of

size greater than 3 can exist.)

In order to state this characterization, the concept of a 8implial point must be

introduced. Let r[v] denote the "closed" neighborhood of point v; that is, let r[v] =
r(v) U {v}. A point v E G is said to be simplicial if r[v] is a complete graph. Now,

following [FHN3], let us define a family .7 to be that class of graphs G in which there

exists a point set {VIV2 ,... ,Vk} _ V(G) where for each i = 1,. .. ,k, point vi is simplicial,

ir[v]li <3 and r[vl u r[V2] u... u r[vkl is a partition of V(G).
The characterization can now be stated as follows.

Theorem 4.4. G is a well-covered graph containing no 4-cycles nor 5-cycles if and

only if G E I or G is one of the two exceptional graphs shown in Figure 2.

It is easy to see that in any well-covered graph if u and v are two simplicial points,

then either r[u] n r[vJ = 0 or r[ui = r[v4. Clearly, then, the graphs characterized in

Theorem 4.4 can also be recognized in polynomial time.

-FIGURE 2 GOES ABOUT HERE-

5. The Well-Covered Property versus Degrees

The second of the two primary directions of research on well-covered graphs to date is

the study of well-coveredness versus degree properties. One such result has already been

mentioned in Section 2. We refer to the theorem which states that all graphs in W2 satisfy

the Hajnal degree bound.
Staples also realized that a 1972 result (.f Meyer [Me] has, as a corollary, a result

relating well-covered graphs to their degree sequence. Let us state his theorem and then

its implication for well-covered graphs as a corollary.

Theorem 5.1. Let G be a graph with point set V(G) = {vl,...,vn} where 1 <
deg (v) _< deg (v2) <. deg (v,,). If k is any integer, 2 < k < n such that deg (vn) +

.. +deg (vn-k+2) < n-k, then every independent set with fewer than k points is contained

in an independent set with k points.

If we set k = a(G) in the above theorem we get the following.

Corollary 5.2. If the sum of the degrees of the a(G) - 1 points of G of largest degree

does not exceed IV(G) - ct(G), then G is well-covered.
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Before proceeding further, we present a result which, although easily obtained, turns

out to be extremely useful in the proofs of most of the theorems of this section.

Theorem 5.3. If G is a well-covered graph which is not complete, then for each

v E V(G), the graph G, = G - flv] is also well-covered.

Note that the graph G,, may be disconnected. However, it is trivial from the definition that

a disconnected graph is well-covered if and only if each of its components are well-covered.

Campbell [Ca] and Campbell and Plummer 1CPJ took yet another approach when they

began the study of well-covered cubic (i.e., 3-regular) graphs. The three graph "fragments"

A, B and C shown in Figure 3 below will be important in this context. Our studies

proceeded via increasing values of point-connectivity.

-PUT FIGURE 3 ABOUT HERE-

Theorem 5.4. Let G be a cubic well-covered graph with K(G) = 1. Then G is

obtained by joining a finite number of the three fragments A, B and C in a "path"

containing at least one A.

Let us denote the class of well-covered graphs characterized in Theorem 5.4 as 91.

Clearly, the smallest member of class .91 has 18 points. It is also clear, but perhaps

something of a surprise, that all the graphs in class g, are planar.

In characterizing the cubic well-covered graphs with n = 2, it is useful to subdivide

this class into two subclasses. Denote by .921 the subclass of these graphs in which each

cutset of size 2 is independent and let .92A denote the rest; i.e., those cubic well-covered

graphs having r. = 2 and having at least one cutset of two adjacent points.

Theorem 5.5. Let G be a cubic well-covered graph having rc(G) = 2. Then if G

belongs to class 921, G arises by joining a sequence of fragments of type A and B in a cyclic

configuration. Moreover, such a configuration must contain at least two type A fragments.

The planar members of 921 are precisely those cyclic configurations obtained using

only fragments of type A.

On the other hand, if G belongs to class 92A, G arises by joining a sequence of

fragments of tvpe B or C in a path-like configuration of the form CBB... BC, in which

there may be no fragments at all of type B.

All members of class .
9

2A are planar.

Now we deal with the remaining class of cubic well-covered graphs; namely those with

connectivity 3. The sequence of results leading up to the (very recent) final resolution of

this case is quite interesting, and we shall therefore describe them.

After a notable lack of success on attacking the family in its complete generality, it

was decided to try to investigate those which are planar. The motivation to do so lay in
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the realization that we might make some progress on what appeared to be an impossible

case-by-case analysis through the use of what has come to be called the Theory of Euler

Contributions.

This technique applicable to planar graphs was first introduced by Lebesgue [Leb] in

1940. It was then further developed by Ore [O] in his work on the 4-color problem, by Ore

and Plummer [OP] and by Plummer and Toft [PT] to treat another type of graph coloring

(called cyclic coloration).

Suppose connected graph G is embedded in the plane. Let v be any point in G. We

define the Euler contribution of point v to be

deg (v) + E --

2 X

where th. sum is taken over all faces Fi incident with v and xi denotes the number of lines

in the boundary of face I'-. Using Euler's Formula, it is easy to see that F, t(v) = 2. But

it then follows that for at least one point v in graph G, we must have b(v) > 0. (We have

christened such points control points.) Now suppose graph G is cubic. It then follows

that for any control point v,

-1 + - 0

2 Xi

This diophantine inequality has infinitely many solutions, but they can be classified

into a number of finite families and dealt with a family at a time. For example, one family

can be denoted by (3,3,z), where x = 3,4,.... In other words, the three faces at the

control point are two triangles and a third one of arbitrarily large size.

This, then, was the approach taken to characterize all cubic 3-connected planar well-

covered graphs. Whereas there are infinitely many well-covercd cubic graphs with con-

nectivity 1 and 2, somewhat surprisingly, in the 3-connected planar case, there are only

four!

Theorem 5.6. There are precisely four cubic 3-connected planar well-covered graphs.

They are snown in Figure 4.

-FIGURE 4 GOES ABOUT HERE-

The proof of Theorem 5.6 required over 60 pages of computation and made repeated

use of Theorem 5.3 applied to the many solution classes for control points referred to

above.

But what about those cubic 3-connected well-covered graphs which are not planar?

A bit of history is again in order. In 1989-91, M. Ellingham and G. Royle were both

participants in the graph theory seminar at Vanderbilt University and during that time,

several talks were given on well-covered graphs, including most of the results mentioned

above. In view of the paucity of planar 3-connected cubic well-covered graphs as shown in
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Theorem 5.6 above, Royle decided to conduct a computer search on all cubic graphs on a

maximum of 18 points, seeking all those which were not planar.

So far in this paper, the cubic well-covered graphs mentioned are those in classes .9,

921, 92A, the one exceptional 14-point (non-planar) graph found by Finbow, Hatnell and
Nowakowski and called by them P1 4 and the four planar graphs K 4 , R 3 , C5 x K 2 and E 12

in Theorem 5.6.
In his computer search, Royle found precisely two additional graphs. They are K 3,3

and K*, 3 where the latter is the 8-point cubic graph obtained from K 3 ,3 by replacing

one point with a triangle. (It should be remarked that both these graphs were known by
Campbell to be well-covered and indeed appear in his thesis.)

This motivated Ellingham and Royle to attempt to prove that indeed all cubic well-
covered graphs were accounted for in the above results. This they succeeded in doing and
we close with the theorem which completely settles the problem of identifying all cubic
well-covered graphs. These results have just been written up [CER1; CER2] and submitted

while the present paper was being written.

Theorem 5.7. The cubic well-covered graphs are precisely those graphs belonging to
graph families 91, 921, 9

2A, together with the exceptional graphs K 4 , R 3 , C 5 x K 2 , E 12 ,

P 14 , K 3 ,3 aid K*,3.

Outline of Proof. This proof, too, is quite long, but the main steps are the following.

By the results of Finbow, Hartnell and Nowakowski, we can reduce the problem to graphs
having girth 3 or 4. Then by the results of Campbell, we can restrict our considerations to

the 3-connected case. Finally-and herein lies the crucial new insight of the authors-one
can reduce the 3-connected girth 3 and 4 cases to the connectivity 1 and 2 cases and then,

once again, use Campbell's results.
I

In closing this section, it is important to mention that it now follows easily that all

cubic well-covered graphs are recognizable in polynomial time.

6. Results for Graphs in Class W2

In this section, we present some known results about the subclass of well-covered
graphs defined earlier in this paper and denoted by W2 . Recall from Section 2 that the

class W 2 can also be defined as the class of 1-well-covered graphs and these graphs are

precisely those with the property that they are well-covered and if any point is deleted the

resulting graph remains well-covered.

We remark that the W2 property is in co-NP. For suppose G is not in W2 . Then
either it is not well-covered, and-as remarked in our section on complexity-this is easily

exhibited by giving two maximal independent sets which have differing cardinality; or for
some point v E V(G), graph G - v is not well-covered. But the latter situation can again

be certified by giving two independent sets (this time maximal in G - v) of differing sizes.

There is an additional point of concern to be dealt with here, however. If we again
consider the definition of n-well-covered graphs given above-and in particular, the defi-

nition of 1-well-covered graphs-it seems, at first thought, that a graph G could fail to be

12



1-well-covered in the following way: it is well-covered and for each point v E V (G), G - v

is also well-covered, but a(G - v) < a(G), for some point v E V(G). However, this is
impossible, for all well-covered graphs are -point-critical and hence a(G - v) = a(G) for

all v E V(G).

The relationship of the property of being in class W 2 to a number of other properties
was studied in Section 2. In this section we proceed to investigate certain special classes

of W 2 graphs and the structure of their members.

First we remark that Staples [Stall was the first to construct infinite families of graphs

in WV2 . Although the number of both well-covered and W 2 graphs on a given number of
points is not known in general, Royle [Ro] gives us some feeling for their frequency by
means of his computer search on all graphs with no more than 9 points. He found that
among the 273,191 possible graphs, 9968 are well-covered and 558 are in WV2 . (The reader
is referred to open question 11 at the end of this paper.)

Next we state a result due to Staples [Stall which relates the W 2 property to that

of having critical lines. (Recall that we defined a line e in a graph G to be critical if

a (G - e) > a (G).)

Theorem 6.1. If graph G is in class W 2, then V(G) is spanned by critical lines.

The rest of the results in this section, unless otherwise specified, are due to Pinter in

his 1991 thesis [Pi]. 7o begin with, we have a theorem for W 2 graphs which is analogous
to Campbell's result (Theorem 5.3 of the present paper). This theorem turns out to be

extremely useful in the study of W2 graphs, much as Theorem 5.3 is for well-covered graphs

in general.

Theorem 6.2. If G is a W2 graph which is not complete, then for each v E V(G),
the graph G - 1[v] is also in W 2 .

As was the case with well-covered graphs in general, we will group the W 2 results in
this section in two main categories. First, we will address girth and then deal with degree

results.

It is reasonably straightforward to show that with two small exceptions, graphs in W2

have girth no more than 4. The two exceptions are K 2 and C5.

Theorem 6.3. If G is a graph in W 2 and G 54 K 2 or C5 , then girth (G) _< 4.

Outline of Proof. Recall the family PC of Finbow, Hartnell and Nowakowski intro-
duced earlier. First it is shown that if G is in PC and has girth at least 5 (G # K 2 or C5),

then G is not in W 2 .

It is then routine to check that the six exceptional graphs of Figure 1 are not in class

W2.

In view of Theorem 6.3, it is natural to group W 2 graphs into two categories: those

containing triangles and those having girth exactly four. It is the girth 4 graphs which will
occupy our attention.

13



It is reasonably easy to prove that no W 2 graph of girth 4 can have a cutpoint. Since

we are considering only connected graphs in this paper, it then follows that, with the

singular exception of K 2 , the minimum degree in any girth 4 graph in class W 2 is at least

2.

Although cutpoints are forbidden, infinite families of girth 4 graphs in W2 having

connectivity 2 can be constructed. It is known, however, that these families do not account

for all such graphs. At the moment, it is also an open question as to whether or not there

exist such graphs having connectivity greater than 4.

Pinter's main result on girth 4 graphs in class W 2 is a characterization of those which

are planar. We can begin by showing that every such graph must have points of degree

2. This is proved by once again invoking the Theory of Euler Contributions and is rather

lengthy. We can then show that points of degree 2 cannot exist "in isolation"; namely, at

least one of their neighbors also has degree 2.

Now consider a recursive construction procedure described as follows. Begin with the

8-point graph shown in Figure 5. Call it G 3 .

-FIGURE 5 GOES ABOUT HERE-

Now given any graph G in the construction, let x and y be two adjacent points of

degree 2 in G. Let u be the neighbor of x such that u : y. Then construct a new graph

G' with precisely three more points than G as follows. Let the three new points be a, b

and c. Now join a to x and b, b to a and c and c to b, u and y. Let us denote this infinite

family of graphs by 9C. Pinter proved the following.

Theorem 6.4. A graph G is a girth 4 planar member of class W 2 if and only if G is

a member of the family 9.

Now let us turn our attention to relationships between membership in class W 2 and

degree. In particular, following the line of enquiry pursued in the case of general well-

covered graphs in Section 5, we will deal with regular graphs.

Of course, the complete graph K 2 is a member of class W 2 . On the other hand, Staples

[Stal] proved the following result.

Theorem 6.5. If G E W,, and G is not complete, then mindeg (G) _ n.

Thus we may begin our study of regular graphs versus membership in W 2 with degree

2; that is, with cycles. But it is trivial to see that the only cycles which are in W 2 are C 3

and C5 .

Hence we may move on to cubic W 2 graphs. But recall that by the very recent theorem

of Campbell, Ellingham and Royle (Theorem 5.7 above), we have a nice characterization

of the cubic well-covered graphs. Armed with this characterization, Pinter proved the next

result.

Theorem 6.6. The only cubic graphs in class W 2 are K 4 and R 3 , the triangular

prism.
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Thus we may now move up to 4-regular W2 graphs. But here, the story seems far from
complete. It is straightforward to show that no such graph can contain a cutpoint. It is

known that there exist such graphs with ic = 2, but knowledge is meager here; for example,

no infinite families have even been constructed. An infinite family of 4-regular W2 graphs
having r. = 4 is known. Beyond that, the principal result known is the following.

Theorem 6.7. The only graph in W2 which is 3-connected, 4-regular and planar is
the 8-point graph shown in Figure 6.

The proof is yet another long struggle using the Theory of Euler Contributions.

-PUT FIGURE 6 ABOUT HERE-

7. Strongly Well-Covered Graphs

Recall that a well-covered graph is said to be strongly well-covered if G - e is also
well-covered for each line e E E(G). To the best of our knowledge, Pinter is the first

to undertake the study of this subfamily of well-covered graphs. Staples [Stall, however,

initiated the study of a related subfamily-the so-called well-covered point-critical graphs.
A well-covered graph G is said to be well-covered point-critical if G - v is not well-

covered, for all points v E V(G). She constructed infinite families of such graphs and
showed that no such graph can have a cutpoint. She also showed that if G is a bipartite
well-covered graph, other than K 2, then G is well-covered point-critical if and only if it is

2-connected. Finally, she showed that if G is well-covered and has no critical lines, then G

is well-covered point-critical.

What have these graphs to do with strongly well-covered graphs? Except for two

trivial exceptions, every strongly well-covered is well-covered point-critical.

Theorem 7.1. If G is strongly well-covered and G 5 KI, K 2, then G is well-covered

point-critical.

We immediately have the following somewhat surprising result.

Corollary 7.2. The only strongly well-covered graphs which are also in class W2 are
K 1 and K 2 .

Of course it now also follows from Staples' result that all strongly well-covered graphs,
except K, and K 2 , are 2-connected. We will see in a moment that this result can be

sharpened.

Let us once again recall the Hajnal bound encountered in Sections 1 and 2. In partic-
ular, it was mentioned there that both a-critical and W 2 graphs satisfy this upper bound

on the maximum degree. It is known, however, that the same cannot be said for strongly

well-covered graphs. However, Pinter showed that the latter class indeed "comes close".

Theorem 7.3. If G is a connected strongly well-covered graph, then deg (v) <

IV(G)I - 2a(G) + 2, for all v E V(G).
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The bound in Theorem 7.3 is known to be sharp.
On the other hand, we have a non-trivial lower bound on the degree for strongly

well-covered graphs.

Theorem 7.4. If G is strongly well-covered and G 5 K 1 , K 2 , C4 , then mindeg (G) _

4.

It is not known whether or not the bound in Theorem 7.4 is sharp. (See problem 7 in
Section 9.)

Appealing to the main result of Finbow, Hartnell and Nowakowski (See Theorem 4.2),
we can inspect the well-covered graphs with girth at least 5 and see that each has a point

of degree at most 3. This observation, combined with Theorem 7.4, yields the next result.

Corollary 7.5. If G is strongly well-covered and G 0 K 1 , K 2, C4 , then girth (G) :_ 4.

We remarked above that, with the exception of K, and K 2 , all strongly well-covered

graphs are 2-connected. In fact, we can say more.

Theorem 7.6. If G is strongly well-covered and G 0 K 1, K 2 , C4 , then G is 3-
connected.

The proof of this result is interesting for its own sake, as it is one of the few known to
the author which proceeds by induction on the independence number a. The basis step for
the induction-namely, the case when a(G) = 2-follows from a characterization of such
strongly well-covered graphs obtained by Pinter. Namely, the class of strongly well-covered

graphs G with a(G) = 2 is precisely the class of all graphs H 2 , obtained from the complete
graphs K 2 , on an even number of points by deleting a perfect matching. Since we know

the minimum degree of any strongly well-covered graph (with the exception of the three
graphs listed in the hypothesis of this theorem) is at least 4, it follows that n > 6 and

hence H 2 n is 3-connected. The basis step of the induction is thus verified.

Is 3-connectivity the best that we can hope for here? The answer is unknown. (See

Section 9.)
The final result we will mention for strongly well-covered graphs is consistent with

the method of attack upon well-covered graphs in general and W2 graphs in particular as

previously outlined in this paper. Namely, what can be said in the planar case?

Here, fortunately, we have a complete answer.

Theorem 7.7. The only planar strongly well-covered graphs are K1 , K 2 , C4 and the
octahedron.

The octahedron is shown in Figure 7. It is not surprising that in the proof of Theorem
7.7, once again use is made of the Theory of Euler Contributions.

-Figure 7 GOES ABOUT HERE-
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Let us close this section with a comment on the abundance of strongly well-covered

graphs. Recall that in his computer search through the class of 273,191 graphs having at

most nine points, Royle [Ro] found that 9968 of them were well-covered. Upon further

checking, he found that only 4 of these are strongly well-covered! This leads one to be

more hopeful, perhaps, that a characterization of this class will be found in the not too

distant future. On the other side of the coin, however, using the idea of lexicographic

product, Pinter has constructed infinite families of strongly well-covered graphs.

8. Other Results on Well-Covered Graphs

Staples [Stal; Sta2 discovered a number of constructions for families of well-covered

graphs. Further constructions have been provided by Campbell [Cal and Pinter [Pi]. One
of the more general construction procedures developed to date involves the concept of

lexicographic product. Suppose H is a graph with n points and let {Gi}_ 1 be a family

of n graphs. Suppose V(H) = {vl,.. .,v} and let us implicitly associate with point

vi the graph Gi for each i = 1,...,n. Define the lexicographic product of H and
{Gi,...,G,}, written Ho (G1,...,G,), as follows: V(Ho(G,,...,G)) =V(Gl)u...u

V(Gn) and E(Ho(G,,...,G,)) = E(G,)u.. .uE(G,)u{xy Ix E V(G,), y E V(Gj) and vi -

vj in graph H}.

The following result is essentially due to Topp and Volkman [TV2].

Theorem 8.1. If H is well-covered and each G1 , for i = 1,..., IV(H)I is a family of

well-covered graphs with a(G,) = a(Gj) for all i and j, then the lexicographic product

H o (G1,..., Gv(H)I) is well-covered and has independence number a(H)a(Gi).

Pinter was able to employ the lexicographic product in a similar way to obtain infinite
classes of W 2 graphs and also strongly well-covered graphs. We mention one of his results

in this direction.

Theorem 8.2. If H is well-covered and each Gi, for i = 1,..., IV(H)I is a family

of W 2 graphs with a(G,) = a(Gi) for all i and j, then the lexicographic product H o
(G 1 ,... ,GIv(u) 1) is a W 2 graph with independence number a(H)a(G).

Topp and Volkman have also studied various other types of graph products with

respect to the well-covered and the very well-covered properties. The interested reader is

again referred to [TV2].

We will now give the briefest of summaries of several other papers which deal directly

or indirectly with the well-covered property. In [To] and [TV1], Topp and Volkmann study

the well-covered property for some very special classes of graphs: the so-called k-trees,
C(n)-trees, block graphs and unicyclic graphs.

Hartnell [Har] has introduced a more restricted variation of the well-covered property
with his radius £ independent set concept. A set of points S in a graph G is said to be

radius 2 independent if for every two points in S have disjoint closed neighborhoods.

That is, for every pair of points u and v in S, r[x] n r[y] = 0. He then characterizes those
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trees which have the property that every maximal radius 2 independent set is maximum.

These graphs arise in considering a certain 2-person game.

Dean and Zito [DZ] have begun to study yet another variant of the well-covered

property. They define a graph G to be k-extendable if every independent set of size k

is contained in a maximum independent set. A graph is thus well-covered if and only if it

is k-extendable for all k, 1 < k < a(G). At the other extreme, the 1-extendable graphs

are just those graphs for which Ve(G) = 0; i.e., the so-called B-graphs. (See Section 1.)
The authors use the concept of k-extendability to show that two types of perfect graphs-

namely, those with bounded clique size and those which contain no induced 4-cycle--can

be checked for well-coveredness in polynomial time.

Note that a graph may be 2-extendable without being 1-extendable. However, Dean

and Zito are able to show that every 2-extendable graph which is not also 1-extendable

must be the join of a complete graph and another graph which is both 1-extendable and

2-extendable.

(The choice of terminology "k-extendable" is somewhat unfortunate since there are a

number of papers in print in which this term is applied to matchings rather than indepen-

dent sets of points.)

Finbow, Hartnell and Nowakowski [FHN1] and Finbow and Hartnell [FiH2] have also

introduced several new properties related to, but different from, well-coveredness.

In [FHN1I a graph G is defined to be well-dominated if every minimal dominating

set is of the same cardinality. It is very easy to see that a well-dominated graph must

be well-covered, but not conversely. Motivated by their girth 5 theorem for well-covered

graphs (cf. Theorem 4.2 above), the three authors observe that among the six exceptional

graphs of Theorem 4.2, precisely four are also well-dominated. They then determine which

graphs in class PC are well-dominated in terms of how their basic 5-cycles are joined. As

a corollary of this work, the authors then are able to show that for graphs of girth at least

6, the concepts of well-dominated and well-covered coincide.

In [FiH2], the authors define two additional subclasses of well-covered graphs, the

so-called EIDL graphs and a subclass of these called EDL graphs. The reader is referred

to the paper for the details.

Now let us define a set of points S in a graph G to be k-independent if each point in

S is adjacent to no more than k- 1 other points in S. (Thus a set of points is 1-independent

if and only if it is independent.) Favaron and Hartnell [FaHJ define a graph G to be well-

k-covered if every maximal k-independent set is maximum. They then characterize those

trees which are well-k-covered (not to be confused with the well-covered k trees of Topp

[To]!) as well as those well-2-covered graphs of girth at least 8.

One can view well-covered graphs as those having precisely one size of maximal in-

dependent set. With this perspective in mind, Finbow, Hartnell and Whitehead [FHW]

relax the definition of well-covered graphs and say that a graph is in class M 2 if it has

precisely two sizes of maximal independent sets. They then obtain a very complicated

characterization of such graphs having girth at least 8.

Finally, we close with a class of well-covered graphs of quite a different nature. Call

a function w which associates with each point of a graph G a non-negative real number a

weighting of V(G). For any set S C V(G), denote the sum of the weights of the points
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in G by W(S; w). In particular, W(G; w) is called the graph weight. Call a weighting

w a fractional cover if W(r[v]; w) > 1 holds for all points in G. A fractional cover is

minimal if no point can have its weight reduced and have the corresponding weighting

remain a fractional cover. A graph G is then said to be fractionally well-covered if

W(G; w) is the same for all minimal fractional covers.

It is easy to show that fractionally well-covered graphs are also well-dominated and

hence, well-covered by Lemma 1 of [FHN1]. On the other hand, there are well-covered

graphs which are not fractionally well-covered. As an example, the authors offer a 5-cycle

with a weight of 1/3 on each point. Clearly, this is a minimal fractional cover having

weight 5/3. On the other hand, if one assigns a weight of 1 to two non-adjacent points of

the 5-cycle and 0 to the remaining three points, one has another minimal fractional cover

the weight of which is 2.

Recall that we defined a point v E G to be simplicial if the closed neighborhood r[v]
is a complete graph. A graph G will then be called simplicial if it can be partitioned

into point-disjoint maximal complete subgraphs H1 , H 2 ,..., Hk where each Hi contains at

least one simplicial point. The authors then obtain the following tidy characterization of

fractionally well-covered graphs.

Theorem 8.4. A graph is fractionally well-covered if and only if it is simplicial.

It is now obvious via this characterization that the property of being fractionally

well-covered is in NP.

9. Some Open Questions

As we have previously remarked, it is considered unlikely that a polynomial verification

algorithm will be found for graphs which are well-covered. As we stated before, that would

mean that the well-covered property is an NP-property and that, in turn, would imply that

NP = co-NP, an equation thought highly unlikely by the vast majority of those working

in complexity theory.

In light of the girth results of Finbow, Hartnell and Nowakowski [FHN2], it is the

presence of short cycles-that is, triangles and quadrilaterals-which is causing the diffi-

culty. We feel that the first two unsolved problems in the following list are likely the most

difficult. Problems 3 through 12 may prove to be more tractable.

1. Characterize w-c graphs which contain C 3 's, but no C4 's.

2. Characterize w-c graphs of girth 4.

3. Characterize w-c graphs with maxdeg (G) _ 3.

4. Characterize w-c graphs which are r-regular, for any r > 4.

5. Characterize W 2 graphs with are 3-connected, 5-regular and planar.
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6. All known examples of girth 4 W 2 graphs have rc(G) < 4. Is there an upper bound

for x(G) for girth 4 W 2 graphs?

7. It is known that G strongly w-c and IV(G) I 4 implies G is 3-connected. Can we

strengthen the conclusion to 4-connected?

8. Characterize girth 4 strongly w-c graphs.

9. Characterize those graphs which are (a) both a-critical and w-c; or (b) both a-

critical and W 2 .

10. What about graphs G which are w-c, but G - e is not w-c, for all e E E(G)?

11. (a) Does # w-c C's/# G's -- 0 as IV(C)I -) oo?

(b) Does # W 2 G'sl# G's -- 0 as IV(C)I -- oo?

And finally, although the last problem we pose does not directly deal with well-covered

graphs, we remind the reader of the common implications discussed in Section 1 for the

properties of being a-critical and belonging to class W 2 .

12. Does # a-critical G's/# G's -) 0 as IV(G)I -- oo?
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