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Abstract

The distribution semantics is one of the most prominent approaches for the combination
of logic programming and probability theory. Many languages follow this semantics, such
as Independent Choice Logic, PRISM, pD, Logic Programs with Annotated Disjunctions
(LPADs) and ProbLog.

When a program contains functions symbols, the distribution semantics is well-defined
only if the set of explanations for a query is finite and so is each explanation. Well-
definedness is usually either explicitly imposed or is achieved by severely limiting the class
of allowed programs. In this paper we identify a larger class of programs for which the
semantics is well-defined together with an efficient procedure for computing the probability
of queries. Since LPADs offer the most general syntax, we present our results for them,
but our results are applicable to all languages under the distribution semantics.

We present the algorithm “Probabilistic Inference with Tabling and Answer subsump-
tion” (PITA) that computes the probability of queries by transforming a probabilistic
program into a normal program and then applying SLG resolution with answer subsump-
tion. PITA has been implemented in XSB and tested on six domains: two with function
symbols and four without. The execution times are compared with those of ProbLog,
cplint and CVE. PITA was almost always able to solve larger problems in a shorter time,
on domains with and without function symbols.

KEYWORDS: Probabilistic Logic Programming, Tabling, Answer Subsumption, Logic
Programs with Annotated Disjunction, Program Transformation

1 Introduction

Many real world domains can only be represented effectively if we are able to model

uncertainty. Accordingly, there has been an increased interest in logic languages

representing probabilistic information, stemming in part from their successful use

in Machine Learning. In particular, languages that follow the distribution semantics
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(Sato 1995) have received much attention in the last few years. In these languages a

theory defines a probability distribution over logic programs, which is extended to

a joint distribution over programs and queries. The probability of a query is then

obtained by marginalizing out the programs.

Examples of languages that follow the distribution semantics are Independent

Choice Logic (Poole 1997), PRISM (Sato and Kameya 1997), pD (Fuhr 2000),

Logic Programs with Annotated Disjunctions (LPADs) (Vennekens et al. 2004)

and ProbLog (De Raedt et al. 2007). All these languages have the same expressive

power as a theory in one language can be translated into another (Vennekens and

Verbaeten 2003; De Raedt et al. 2008). LPADs offer the most general syntax as the

constructs of all the other languages can be directly encoded in LPADs.

When programs contain functions symbols, the distribution semantics has to be

defined in a slightly different way: as proposed in (Sato 1995) and (Poole 1997):

the probability of a query is defined with reference to a covering set of explanations

for the query. For the semantics to be well-defined, both the covering set and each

explanation it contains must be finite. To ensure that the semantics is well-defined,

(Poole 1997) requires programs to be acyclic, while (Sato and Kameya 1997) di-

rectly imposes the condition that queries must have a finite covering set of finite

explanations.

Since acyclicity is a strong requirement ruling out many interesting programs, in

this paper we propose a looser requirement to ensure the well-definedness of the

semantics. We introduce a definition of bounded term-size programs and queries,

which are based on a characterization of the Well-Founded Semantics in terms of an

iterated fixpoint (Przymusinski 1989). A bounded term-size program is such that

in each iteration of the fixpoint the size of true atoms does not grow indefinitely.

A bounded term-size query is such that the portion of the program relevant to

the query is bounded term-size. We show that if a query is bounded term-size,

then it has a finite set of finite explanations that are covering, so the semantics is

well-defined.

We also present the algorithm “Probabilistic Inference with Tabling and An-

swer subsumption” (PITA) that builds explanations for every subgoal encountered

during a derivation of a query. The explanations are compactly represented us-

ing Binary Decision Diagrams (BDDs) that also allow an efficient computation of

the probability. Specifically, PITA transforms the input LPAD into a normal logic

program in which the subgoals have an extra argument storing a BDD that rep-

resents the explanations for its answers. As its name implies, PITA uses tabling

to store explanations for a goal. Tabling has already been shown useful for proba-

bilistic logic programming in (Kameya and Sato 2000; Riguzzi 2008; Kimmig et al.

2009; Mantadelis and Janssens 2010; Riguzzi and Swift 2011). However, PITA is

novel in its exploitation of a tabling feature called answer subsumption to combine

explanations coming from different clauses.

PITA draws inspiration from (De Raedt et al. 2007), which first proposed to use

BDDs for computing the probability of queries for the ProbLog language, a mini-

malistic probabilistic extension of Prolog; and from (Riguzzi 2007) which applied

BDDs to the more general LPAD syntax. Other approaches for reasoning on LPADs
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include (Riguzzi 2008), where SLG resolution is extended by repeatedly branching

on disjunctive clauses, and the CVE system (Meert et al. 2009) which transforms

LPADs into an equivalent Bayesian network and then performs inference on the

network using the variable elimination algorithm.

PITA was tested on a number of datasets, both with and without function sym-

bols, in order to evaluate its efficiency. The execution times of PITA were compared

with those of cplint (Riguzzi 2007), CVE (Meert et al. 2009) and ProbLog (Kim-

mig et al. 2011). PITA was able to solve successfully more complex queries than

the other algorithms in most cases and it was also almost always faster both on

datasets with and without function symbols.

The paper is organized as follows. Section 2 illustrates the syntax and semantics

of LPADs over finite universes. Section 3 discusses the semantics of LPADs with

function symbols. Section 4 defines dynamic stratification for LPADs, provides con-

ditions for the well-definedness of the LPAD semantics with function symbols, and

discusses related work on termination of normal programs. Section 5 gives an intro-

duction to BDDs. Section 6 briefly recalls tabling and answer subsumption. Section

7 presents PITA and Section 8 shows its correctness. Section 9 discusses related

work. Section 10 describes the experiments and Section 11 discusses the results and

presents directions for future works.

2 The Distribution Semantics for Function-free Programs

In this section we illustrate the distribution semantics for function-free program

using LPADs as the prototype of the languages following this semantics.

A Logic Program with Annotated Disjunctions (Vennekens et al. 2004) consists

of a finite set of annotated disjunctive clauses of the form

H1 : α1 ∨ . . . ∨Hn : αn ← L1, . . . , Lm.

In such a clause H1, . . .Hn are logical atoms, B1, . . . , Bm logical literals, and α1,

. . . , αn real numbers in the interval [0, 1] such that
∑n

j=1 αj ≤ 1. The term H1 :

α1 ∨ . . . ∨Hn : αn is called the head and L1, . . . , Lm is called the body. Note that

if n = 1 and α1 = 1 a clause corresponds to a normal program clause, also called

a non-disjunctive clause. If
∑n

j=1 αj < 1, the head of the clause implicitly contains

an extra atom null that does not appear in the body of any clause and whose

annotation is 1−
∑n

j=1 αj . For a clause C, we define head(C) as {(Hi : αi)|1 ≤ i ≤

n} if
∑n

i=1 αi = 1; and as {(Hi : αi)|1 ≤ i ≤ n} ∪ {(null : 1−
∑n

i=1 αi)} otherwise.

Moreover, we define body(C) as {Li|1 ≤ i ≤ m}, Hi(C) as Hi and αi(C) as αi.

If the LPAD is ground, a clause represents a probabilistic choice between the

non-disjunctive clauses obtained by selecting only one atom in the head. As usual,

if the LPAD T is not ground, T is assigned a meaning by computing its grounding,

ground(T ).

By choosing a head atom for each ground clause of an LPAD we get a normal logic

program called a world of the LPAD (an instance of the LPAD in (Vennekens et al.

2004)). A probability distribution is defined over the space of worlds by assuming

independence between the choices made for each clause.
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More specifically, an atomic choice is a triple (C, θ, i) where C ∈ T , θ is a minimal

substitution that grounds C and i ∈ {1, . . . , |head(C)|}. (C, θ, i) means that, for

the ground clause Cθ, the head Hi(C) was chosen. A set of atomic choices κ is

consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈ κ ⇒ i = j, i.e., only one head is selected for

a ground clause. A composite choice κ is a consistent set of atomic choices. The

probability P (κ) of a composite choice κ is the product of the probabilities of the

individual atomic choices, i.e. P (κ) =
∏

(C,θ,i)∈κ αi(C).

A selection σ is a composite choice that, for each clause Cθ in ground(T ), con-

tains an atomic choice (C, θ, i) in σ. Since T does not contain function symbols,

ground(T ) is finite and so is each σ. We denote the set of all selections σ of a pro-

gram T by ST . A selection σ identifies a normal logic program wσ, called a world of

T , defined as: wσ = {(Hi(C)θ ← body(C))θ|(C, θ, i) ∈ σ}.WT denotes the set of all

the worlds of T . Since selections are composite choices, we can assign a probability

to worlds: P (wσ) = P (σ) =
∏

(C,θ,i)∈σ αi(C).

Throughout this paper, we consider only sound LPADs, in which every world has

a total model according to the Well-Founded Semantics (WFS) (Van Gelder et al.

1991). In this way, uncertainty is modeled only by means of the disjunctions in the

head and not by the semantics of negation. Thus in the following, wσ |= A means

that the ground atom A is true in the well-founded model of the program wσ
1.

In order to define the probability of an atomA being true in an LPAD T , note that

the probability distribution over possible worlds induces a probability distribution

over Herbrand interpretations by assuming P (I|w) = 1 if I is the well-founded

model of w (I = WFM(w)) and 0 otherwise. We can thus compute the probability

of an interpretation I as

P (I) =
∑

w∈WT

P (I, w) =
∑

w∈WT

P (I|w)P (w) =
∑

w∈WT ,I=WFM(w)

P (w).

We can extend the probability distribution on interpretation to ground atoms by

assuming P (aj|I) = 1 if Aj belongs to I and 0 otherwise, where Aj is a ground

atom of the Herbrand base HT and aj stands for Aj = true. Thus the probability

of a ground atom Aj being true, according to an LPAD T can be obtained as

P (aj) =
∑

I

P (aj , I) =
∑

I

P (aj |I)P (I) =
∑

I⊆HT ,Aj∈I

P (I).

Alternatively, we can extend the probability distribution on programs to ground

atoms by assuming P (aj |w) = 1 if Aj is true in w and 0 otherwise. Thus the

probability of Aj being true is

P (aj) =
∑

w∈WT

P (aj , w) =
∑

w∈WT

P (aj |w)P (w) =
∑

w∈WT ,w|=Aj

P (w).

The probability of Aj being false is defined similarly.

1 We sometimes abuse notation slightly by saying that an atom A is true in a world w to indicate
that A is true in the (unique) well-founded model of w.
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Example 1

Consider the dependency of sneezing on having the flu or hay fever:
C1 = strong sneezing(X) : 0.3 ∨moderate sneezing(X) : 0.5 ← flu(X).
C2 = strong sneezing(X) : 0.2 ∨moderate sneezing(X) : 0.6 ← hay fever(X).
C3 = flu(david).
C4 = hay fever(david).

This program models the fact that sneezing can be caused by flu or hay fever. The

query moderate sneezing(david) is true in 5 of the 9 worlds of the program and

its probability of being true is

PT (moderate sneezing(david)) = 0.5·0.2+0.5·0.6+0.5·0.2+0.3·0.6+0.2·0.6 = 0.8

Even if we assumed independence between the choices for individual ground clauses,

this does not represents a restriction, in the sense that this still allows to represent

all the joint distributions of atoms of the Herbrand base that are representable with

a Bayesian network over those variables. Details of the proof are omitted for lack

of space.

3 The Distribution Semantics for Programs with Function Symbols

If a non-ground LPAD T contains function symbols, then the semantics given in

the previous section is not well-defined. In this case, each world wσ is the result of

an infinite number of choices and the probability P (wσ) is 0 since it is given by the

product of an infinite number of factors all smaller than 1. Thus, the probability

of a formula is 0 as well, since it is a sum of terms all equal to 0. The distribution

semantics with function symbols was defined in (Sato 1995) and (Poole 2000). Here

we follow the approach of (Poole 2000).

A composite choice κ identifies a set of worlds ωκ that contains all the worlds

associated to a selection that is a superset of κ: i.e., ωκ = {wσ|σ ∈ ST , σ ⊇ κ} We

define the set of worlds identified by a set of composite choices K as ωK =
⋃

κ∈K ωκ

Given a ground atom A, we define the notion of explanation, covering set of com-

posite choices and mutually incompatible set of explanations. A composite choice

κ is an explanation for A if A is true in every world of ωκ. In Example 1, the com-

posite choice {(C1, {X/david}, 1)} is an explanation for strong sneezing(david). A

set of composite choices K is covering with respect to A if every world wσ in which

A is true is such that wσ ∈ ωK . In Example 1, the set of composite choices

K1 = {{(C1, {X/david}, 2)}, {(C2, {X/david}, 2)}} (1)

is covering for moderate sneezing(david). Two composite choices κ1 and κ2 are

incompatible if their union is inconsistent, i.e., if there exists a clause C and a

substitution θ grounding C such that (C, θ, j) ∈ κ1, (C, θ, k) ∈ κ2 and j 6= k. A

set K of composite choices is mutually incompatible if for all κ1 ∈ K,κ2 ∈ K,κ1 6=

κ2 ⇒ κ1 and κ2 are incompatible. As illustration, the set of composite choices

K2 = {{(C1, {X/david}, 2), (C2, {X/david}, 1)},

{(C1, {X/david}, 2), (C2, {X/david}, 3)}, (2)

{(C2, {X/david}, 2)}}
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is mutually incompatible for the theory of Example 1. (Poole 2000) proved the

following results

• Given a finite set K of finite composite choices, there exists a finite set K ′ of

mutually incompatible finite composite choices such that ωK = ωK′ .
• If K1 and K2 are both mutually incompatible finite sets of finite composite

choices such that ωK1
= ωK2

then
∑

κ∈K1
P (κ) =

∑
κ∈K2

P (κ)

Thus, we can define a unique probability measure µ : ΩT → [0, 1] where ΩT is

defined as the set of sets of worlds identified by finite sets of finite composite choices:

ΩT = {ωK |K is a finite set of finite composite choices}. It is easy to see that ΩT

is an algebra over WT . Then µ is defined by µ(ωK) =
∑

κ∈K′ P (κ) where K ′ is a

finite mutually incompatible set of finite composite choices such that ωK = ωK′ .

As is the case for ICL, 〈WT ,ΩT , µ〉 is a probability space (Kolmogorov 1950).

Definition 1
The probability of a ground atom A is given by P (A) = µ({w|w ∈ WT ∧w |= A}

If A has a finite set K of finite explanations such that K is covering then {w|w ∈

WT ∧w |= A} = ωK and µ({w|w ∈ WT ∧w |= A} = µ(ωK) so P (A) is well-defined.

In the case of Example 1, K2 shown in equation 2 is a finite covering set of finite

explanations for moderate sneezing(david) that is mutually incompatible, so

P (moderate sneezing(david)) = 0.5 · 0.2 + 0.5 · 0.2 + 0.6 = 0.8.

4 Dynamic Stratification of LPADs

One of the most important formulations of stratification is that of dynamic strat-

ification. (Przymusinski 1989) shows that a program has a 2-valued well-founded

model iff it is dynamically stratified, so that it is the weakest notion of stratifica-

tion that is consistent with the WFS. As presented in (Przymusinski 1989), dynamic

stratification computes strata via operators on 3-valued interpretations – pairs of

the form 〈Tr;Fa〉, where Tr and Fa are subsets of the Herbrand base HP of a

normal program P .

Definition 2
For a normal program P , sets Tr and Fa of ground atoms, and a 3-valued inter-

pretation I we define

TruePI (Tr) = {A|A is not true in I; and there is a clause B ← L1, ..., Ln in P , a

ground substitution θ such that A = Bθ and for every 1 ≤ i ≤ n either Liθ is

true in I, or Liθ ∈ Tr};
FalsePI (Fa) = {A|A is not false in I; and for every clause B ← L1, ..., Ln in P and

ground substitution θ such that A = Bθ there is some i (1 ≤ i ≤ n) such that

Liθ is false in I or Liθ ∈ Fa}.

(Przymusinski 1989) shows that TruePI and FalsePI are both monotonic, and defines

T P
I as the least fixed point of TruePI (∅) and FP

I as the greatest fixed point of

FalsePI (HP )
2. In words, the operator TI extends the interpretation I to add the

2 Below, we will sometimes omit the program P in these operators when the context is clear.
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new atomic facts that can be derived from P knowing I; FI adds the new negations

of atomic facts that can be shown false in P by knowing I (via the uncovering of

unfounded sets). An iterated fixed point operator builds up dynamic strata by

constructing successive partial interpretations as follows.

Definition 3 (Iterated Fixed Point and Dynamic Strata)

For a normal program P let

WFM0 = 〈∅; ∅〉;

WFMα+1 = WFMα ∪ 〈TWFMα
;FWFMα

〉;

WFMα =
⋃

β<α WFMβ, for limit ordinal α.

Let WFM(P ) denote the fixed point interpretation WFMδ, where δ is the smallest

(countable) ordinal such that both sets TWFMδ
and FWFMδ

are empty. We refer to

δ as the depth of program P . The stratum of atom A, is the least ordinal β such that

A ∈WFMβ (where A may be either in the true or false component of WFMβ).

(Przymusinski 1989) shows that the iterated fixed point WFM(P ) is in fact the

well-founded model and that any undefined atoms of the well-founded model do

not belong to any stratum – i.e. they are not added to WFMδ for any ordinal δ.

Thus, a program is dynamically stratified if every atom belongs to a stratum.

Dynamic stratification captures the order in which recursive components of a

program must be evaluated. Because of this, dynamic stratification is useful for

modeling operational aspects of program evaluation. Fixed-order dynamic stratifi-

cation (Sagonas et al. 2000), used in Section 7, models programs whose well-founded

model can be evaluated using a fixed literal selection strategy. In this class, the def-

inition of FalsePI (Fa) in Definition 2 is replaced by3:

FalsePI (F ) = {A|A is not false in I; and for every clause B ← L1, ..., Ln in P and

ground substitution θ such that A = Bθ there is some i (1 ≤ i ≤ n) such that

Liθ is false in I or Liθ ∈ Fa, and for all j (1 ≤ j ≤ i− 1), Ljθ is true in I}.

(Sagonas et al. 2000) describes how fixed-order dynamic stratification captures those

programs that a tabled evaluation can evaluate with a fixed literal selection strategy

(i.e. without the SLG operations of simplification and delay).

Example 2

The following program has a 2-valued well-founded model and so is dynamically

stratified, but does not belong to other stratification classes in the literature, such

as local, modular, or weak stratification.

s ← ¬s. s ← ¬p, ¬q, ¬r.

p ← q, ¬r, ¬s. q ← r, ¬p. r ← p, ¬q.

p, q, and r all belong to stratum 0, while s belongs to stratum 1. Note that the above

program also meets the definition of fixed-order dynamically stratified as does the

simple program

3 Without loss of generality, we assume throughout that the fixed literal selection strategy is
left-to-right as in Prolog.
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p ← ¬ p. p.

which is not locally, modularly, or weakly stratified. Fixed-order stratification is

more general than local stratification, and than modular stratification (since mod-

ular stratified programs can be decidably rearranged so that they have failing pre-

fixes). It is neither more nor less general than weak stratification.

As seen by the above examples, fixed-order dynamic stratification is a fairly weak

property for a program to have. The above definitions of (fixed-order) dynamic

stratification for normal programs can be straightforwardly adapted to LPADs –

an LPAD T is (fixed-order) dynamically stratified if each w ∈ WT is (fixed-order)

dynamically stratified.

4.1 Conditions for Well-Definedness of the Distribution Semantics

When a given LPAD T contains function symbols there are two reasons why the

distribution semantics may not be well-defined for T . First, a world of T may not

have a two-valued well-founded model; and second, HT may contain an atom that

does not have a finite set of finite explanations that is covering (cf. Section 3). As

noted in Section 2, we consider only sound LPADs in this paper and in this section

address the problem of determining whether HT may contain a atom that does not

have a finite set of finite explanations that is covering.

As is usual in logic programming, we assume that a program P is defined over

a language with a finite number of function and constant symbols. Given such an

assumption, placing an upper bound on the size of terms in a derivation implies

that the number of different terms in a derivation must be finite – and for certain

methods of derivation, such as tabled or bottom-up evaluations, that the derivation

itself is finite.

To motivate our definitions, consider the normal program Tinf :

p(s(X)) ← p(X). p(0).

This program does not have a model with a finite number of true or undefined

atoms, and accordingly, there is no upper limit on the size of atoms produced

either in a bottom-up derivation of the program (e.g. using the fixed-point charac-

terization of Definition 3), or in a top-down evaluation of the query p(Y). However,

the superficially similar program, Tfin :

p(X) ← p(f(X)). p(0).

does have a model with a finite number of true and undefined atoms. Of course, the

model for the program does not have a finite number of false atoms, but (default)

false atoms are generally not explicitly represented in derivations. The model can

in fact be produced by various derivation techniques, such as an alternating fixed

point computation (van Gelder 1989) based on sets of true and of true or undefined

atoms; or by tabling with term depth abstraction (Tamaki and Sato 1986).

From the perspective of the distribution semantics consider T ′
fin , the extension

of Tfin with the clause
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q : 0.5 ← p(X).

and T ′
inf , the similar extension of Tinf . Recall from Definition 1 that the probability

of an atom A in an LPAD is defined as a probability measure that is constructed

from finite sets of finite composite choices: accordingly, the distribution semantics

for A is well-defined if and only if it has a finite set of finite explanations that is

covering. In T ′
fin , q has such a finite set of finite explanations that is covering, and

so its distribution semantics is well-defined. However, in T ′
inf , q does not have a

finite set of finite explanations that is covering, and so the distribution semantics

is not well-defined for q, even though every world of T ′
inf has a total well-founded

model.

The following definition captures these intuitions, basing the notion of bounded

term-size on the preceding definition of dynamic stratification.

Definition 4 (Bounded Term-size Programs)

Let P be the ground instantiation of a normal program. and I, T r ⊆ HP . Then an

application of TruePI (Tr) (Definition 2) has the bounded term-size property if there

is a integer L such that the size of every ground substitution θ used to produce an

atom in TruePI (Tr) is less than L. P itself has the bounded term-size property if

every application of TruePI used to construct WFM(P ) has the bounded term-size

property with the same bound L. Finally, an LPAD T has the bounded term-size

property if each world of T has the bounded term-size property.

Note that Tinf does not have the bounded term-size property, but Tfin does.

While determining whether a program P is bounded term-size is clearly undecidable

in general, Tfin shows that ground(P ) need not be finite if P is bounded term-size.

However, the model of P may be characterized as follows4.

Theorem 1

Let P be a normal program. Then WFM(P ) has a finite number of true atoms iff

P has the bounded term-size property.

Theorem 1 gives a clear model-theoretic characterization of bounded term-size nor-

mal programs: note that if ground(P ) is infinite, then WFM(P ) may have an

infinite number of false or undefined atoms. In the context of LPADs, the bounded

term-size property ensures the well-definedness of the distribution semantics.

Theorem 2

Let T be a sound bounded term-size LPAD, and let A ∈ HT . Then A has a finite

set of finite explanations that is covering.

The proof of Theorem 2 is presented in the online Appendix; here we indicate the

intuition behind the proof. First, we note that it is straightforward to show that

since each world of an LPAD T has a finite number of true atoms by Theorem 1,

explanations are finite. On the other hand, showing that a query has a finite covering

set of explanations is less obvious, as T could have an infinite number of worlds.

4 The proof of this and other theorems is given in the online Appendix to this paper.
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The proof addresses this by showing that T has a finite number of models, in turn

shown by demonstrating the existence of a bound LT on the maximal size of any

true atom in any world of T . The existence of LT is shown by contradiction by

demonstrating that if no bound existed, a world could be constructed that was not

bounded term-size. The idea is explained in the following example.

Example 3

Consider the program

q : 0.5 ∨ p(f(X)) : 0.5← p(X). p(0).

This program has an infinite number of finite models, which consist of true atoms

{q, p(0)}, {q, p(0), p(f(0))}, {q, p(0), p(f(0)), p(f(f(0)))}, . . .

depending on the selections made for instantiations of the first clause, and so no

finite bound LT exists for this program. However such a program also has a selection

that gives rise to an infinite model

{p(0), p(f(0)), p(f(f(0))), p(f(f(f(0)))), . . .}

and so is not bounded term-size.

Although bounded term-size programs have appealing properties, such programs

can make only weak use of function symbols. For instance, a program containing

the Prolog predicate member/2 would not be bounded term-size, although as any

Prolog programmer knows, a query tomember/2 will terminate whenever the second

argument of the query is ground. We capture this intuition with bounded term-size

queries. The definition of such queries relies on the notion of an atom dependency

graph, whose definition we state for LPADs.

Definition 5 (Atom Dependency Graph)

Let T be a ground LPAD. Then the atom dependency graph of T is a graph (V,E)

such that V = HT and an edge (v1, v2) ∈ E iff there is a clause C ∈ T such that

1. (v1 : α1) ∈ head(C) and if v2 or ¬v2 ∈ body(C); or

2. (v1 : α1), (v2 : α2) ∈ head(C).

Definition 5 includes dependencies among atoms in the head of a disjunctive LPAD

clause, similar to how dependencies are defined in disjunctive logic programs. Given

a ground LPAD T , the atom dependency graph of T is used to bound the search

space of a (relevant) derivation in a world of T under the WFS.

Definition 6 (Bounded Term-size Queries)

Let T be a ground LPAD, and Q an atomic query to T (not necessarily ground).

Then the atomic search space of Q consists of the union of all ground instantiations

of Q in HT together with all atoms reachable in the atom dependency graph of T

from any ground instantiation of Q. Let

TQ = {C|C ∈ T and a head atom of C is in the atomic search space of Q}

The query Q is bounded term-size if TQ is a bounded term-size program.
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The notion of a bounded-term size query will be used in Section 6 to characterize

termination of the SLG tabling approach, and in Section 8 to characterize correct-

ness and termination of our tabled PITA implementation.

4.2 Comparisons of Termination Properties

We next consider how the concepts of bounded term-size programs and queries

relate to some other classes of programs for which termination has been studied.

Since the definitions of the previous section are based on LPADs, and other work in

the literature is often based on disjunctive logic programs, we restrict our attention

to normal programs, for which the semantics coincide.

(Baselice et al. 2009) studies the class of finitely recursive programs, which is

a superset of finitary programs previously introduced into the literature by the

authors. The paper first defines a dependency graph, which for normal programs

is essentially the same as Definition 5. A finitely recursive normal program, then,

is one for which in its atom dependency graph, only a finite number of vertices are

reachable from any vertex. It is easy to see that neither bounded term-size programs

nor finitely recursive programs are a subclass of each other. A program containing

simply member/2 (and a constant) is finitely recursive, but is not bounded term-

size. However, the program

p(X) ← p(f(X)).

has bounded term-size, as does the program

p(s(X)) ← q(X),p(X). p(0).

although neither is finitely recursive (for the last program, the failure of q(X) means

that all applications of TrueI have bounded term-size). However, note that for

any program P that is finitely recursive, all ground atomic queries to P will have

bounded term-size. Therefore, if P is finitely recursive, every ground atomic query

to P will be bounded term-size, even if P itself isn’t bounded term-size.

Another recent work (Calimeri et al. 2008) defines the class finitely-ground pro-

grams. We do not present its formalism here, but Corollary 1 of (Calimeri et al.

2008) states that if a program is finitely-ground, it will have a finite number of an-

swer sets and each answer set will be finite (as represented by the set of true atoms

in the model). By Theorem 1 of this paper, such a program will have bounded term-

size, so that finitely-ground programs may be co-extensive with bounded term-size

programs. On the other hand, (Calimeri et al. 2008) notes that finitely-ground

programs and finitely recursive programs are incompatible. Non-range restricted

programs are not finitely-ground, although they can be finitely recursive. As dis-

cussed above, any ground atomic query to a finitely recursive program will have

bounded term-size, so that finitely-ground programs must be a proper subclass of

those programs for which all ground atomic queries have bounded term-size.

To summarize for normal programs:

• Finitely recursive and bounded term-size programs are incompatible, but
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Fig. 1. Decision diagrams for Example 1.

finitely recursive programs are a proper subclass of those programs for which

all ground atomic queries are bounded term-size.

• Finitely-ground and bounded term-size programs appear to be co-extensive,

but finitely-ground programs are a proper subclass of those programs for

which all ground atomic queries are bounded term-size.

5 Representing Explanations by Means of Decision Diagrams

In order to represent explanations we can use Multivalued Decision Diagrams

(MDDs) (Thayse et al. 1978). An MDD represents a function f(X) taking Boolean

values on a set of multivalued variables X by means of a rooted graph that has one

level for each variable. Each node N has one child for each possible value of the

multivalued variable associated to N . The leaves store either 0 or 1. Given values

for all the variables X, an MDD can be used to compute the value of f(X) by

traversing the graph starting from the root and returning the value associated to

the leaf that is reached.

Given a set of explanations K, we obtain a Boolean function fK in the following

way. Each ground clause Cθ appearing in K is associated to a multivalued variable

XCθ with as many values as atoms in the head of C. In other words, each atomic

choice (C, θ, i) is represented by the propositional equationXCθ = i. Equations for a

single explanation are conjoined and the conjunctions for the different explanations

are disjoined. The set of explanations in Equation (1) can be represented by the

function fK1
(X) = (XC1{X/david} = 2) ∨ (XC2{X/david} = 2). The MDD shown in

Figure 1(a) represents fK1
(X).

Given a MDD M , we can identify a set of explanations KM associated to M that

is obtained by considering each path from the root to a 1 leaf as an explanation. It

is easy to see that if K is a set of explanations and M is obtained from fK , K and

KM represent the same set of worlds, i.e., that ωK = ωKM
.

Note that KM is mutually incompatible because at each level we branch on a
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variable so that the explanations associated to the leaves that are descendants of a

child of a node N are incompatible with those of any other children of N .

By converting a set of explanations into a mutually incompatible set of expla-

nations, MDDs allow the computation of µ(ωK) (Section 3) given any K. This is

equivalent to computing the probability of a DNF formula which is #P-complete

(?). Decision diagrams offer a practical solution for this problem and were shown

better than other methods (De Raedt et al. 2007).

Decision diagrams can be built with various software packages that provide highly

efficient implementation of Boolean operations. However, most packages are re-

stricted to work with Binary Decision Diagrams, i.e., decision diagrams where all

the variables are Boolean. To manipulate MDDs with a BDD package, we must

represent multivalued variables by means of binary variables. Various options are

possible, we found that the following, proposed in (De Raedt et al. 2008), gives the

best performance. For a variable X having n values, we use n− 1 Boolean variables

X1, . . . , Xn−1 and we represent the equation X = i for i = 1, . . . n− 1 by means of

the conjunction

X1 ∧X2 ∧ . . . ∧Xi−1 ∧Xi

and the equation X = n by means of the conjunction

X1 ∧X2 ∧ . . . ∧Xn−1

The BDD representation of the function fK1
is given in Figure 1(b). The Boolean

variables are associated with the following parameters:

P (X1) = P (X = 1)

. . .

P (Xi) =
P (X=i)∏

i−1

j=1
(1−P (Xj−1))

.

6 Tabling and Answer Subsumption

The idea behind tabling is to maintain in a table both subgoals encountered in

a query evaluation and answers to these subgoals. If a subgoal is encountered

more than once, the evaluation reuses information from the table rather than re-

performing resolution against program clauses. Although the idea is simple, it has

important consequences. First, tabling ensures termination for a wide class of pro-

grams, and it is often easier to reason about termination in programs using tabling

than in basic Prolog. Second, tabling can be used to evaluate programs with nega-

tion according to the WFS. Third, for queries to wide classes of programs, such

as datalog programs with negation, tabling can achieve the optimal complexity for

query evaluation. And finally, tabling integrates closely with Prolog, so that Prolog’s

familiar programming environment can be used, and no other language is required

to build complete systems. As a result, a number of Prologs now support tabling

including XSB, YAP, B-Prolog, ALS, and Ciao. In these systems, a predicate p/n

is evaluated using SLDNF by default: the predicate is made to use tabling by a

declaration such as table p/n that is added by the user or compiler.
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This paper makes use of a tabling feature called answer subsumption. Most for-

mulations of tabling add an answer A to a table for a subgoal S only if A is a not

a variant (as a term) of any other answer for S. However, in many applications it

may be useful to order answers according to a partial order or (upper semi-)lattice.

As an example, consider the case of a lattice on the values of the second argument

of a binary predicate p/2. Answer subsumption may be specified by a declaration

such as table p( ,or/3 - zero/1). where zero/1 is the bottom element of the lattice

and or/3 is the join operation of the lattice. For example, if a table had an answer

p(a, b1) and a new answer p(a, b2) were derived, the answer p(a, b1) is replaced by

p(a, b3), where b3 is the join of b1 and b2 obtained by calling or(b1, b2, b3). In the

PITA algorithm for LPADs presented in Section 7 the last argument of an atom is

used to store explanations for the atom in the form of BDDs and the or/3 operation

is the logical disjunction of two explanations 5. Answer subsumption over arbitrary

upper semi-lattices is implemented in XSB for stratified programs (Swift 1999b).

For formal results in this section and Section 8 we use SLG resolution (Chen and

Warren 1996), under the forest-of-trees representation (Swift 1999a); this framework

is extended with answer subsumption in the proof of Theorem 4. However, first we

present a theorem stating that bounded term-size queries (Definition 6) to normal

programs are amenable to top-down evaluation using tabling. Although SLG has

been shown to finitely terminate for other notions of bounded term-size queries, the

concept as presented in Definition 6 is based on a bottom-up fixed-point definition

of WFS, and only bounds the size of substitutions used in TruePI of Definition 2,

but not of FalsePI . In fact, to prove termination of SLG with respect to bounded

term-size queries, SLG must be extended so that its New Subgoal operation

performs what is called term-depth abstraction (Tamaki and Sato 1986), explained

informally as follows. An SLG evaluation can be formalized as a forest of trees in

which each tree corresponds to a unique (up to variance) subgoal. The SLG New

Subgoal operation checks to see if a given selected subgoal S is the root of any

tree in the current forest. If not, then a new tree with root S is added to the

forest. Without term-depth abstraction, an SLG evaluation of the query p(a) and

the program consisting of the single clause

p(X) ← p(f(X)).

would create an infinite number of trees. However, if the New Subgoal operation

uses term-depth abstraction, any subterm in S over a pre-specified maximal depth

would be replaced by a new variable. For example, in the above program if the

maximal depth were specified as 3, the subgoal p(f(f(f(a)))) would be rewritten

to p(f(f(f(X)))) for the purposes of creating a new tree. The subgoal p(f(f(f(a))))

would consume any answer from the tree for p(f(f(f(X)))) where the binding for

X unified with a. In this manner it can be ensured that only a finite number

of trees were created in the forest. This fact, together with the size bound on the

derivation of answers provided by Definition 6 ensures the following theorem, where

5 The logical disjunction b3 can be seen as subsuming b1 and b2 over the partial order af impli-
cation defined on propositional formulas that represent explanations.
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a finitely terminating evaluation may terminate normally or may terminate through

floundering.

Theorem 3

Let P be fixed-order dynamically stratified normal program, and Q a bounded

term-size query to P . Then there is an SLG evaluation of Q to P using term-depth

abstraction that finitely terminates.

By the discussion of Section 4.2, Theorem 3 shows that there is an SLG evaluation

with term-depth abstraction will finitely terminate on any ground query to a finitely

recursive (Baselice et al. 2009) or finitely-ground (Calimeri et al. 2008) program

that is fixed-order stratified 6. While SLG itself is ideally complete for all normal

programs, the PITA implementation is restricted to fixed-order stratified programs,

so that Theorem 3 is used in the proof of the termination results of Section 8.

7 Program Transformation

The first step of the PITA algorithm is to apply a program transformation to an

LPAD to create a normal program that contains calls for manipulating BDDs. In

our implementation, these calls provide a Prolog interface to the CUDD7 C library

and use the following predicates8

• init, end : for allocation and deallocation of a BDD manager, a data structure

used to keep track of the memory for storing BDD nodes;

• zero(-BDD), one(-BDD), and(+BDD1,+BDD2,-BDDO), or(+BDD1,+BDD2,

-BDDO), not(+BDDI,-BDDO): Boolean operations between BDDs;

• add var(+N Val,+Probs,-Var): addition of a new multi-valued variable with

N Val values and parameters Probs ;

• equality(+Var,+Value,-BDD): BDD represents Var=Value, i.e. that the ran-

dom variable Var is assigned Value in the BDD;

• ret prob(+BDD,-P): returns the probability of the formula encoded by BDD.

add var(+N Val,+Probs,-Var) adds a new random variable associated to a new

instantiation of a rule with N Val head atoms and parameters list Probs. The

PITA transformation uses the auxiliary predicate get var n(+R,+S,+Probs,-Var)

to wrap add var/3 and avoid adding a new variable when one already exists for

an instantiation. As shown below, a new fact var(R,S,Var) is asserted each time

a new random variable is created, where R is an identifier for the LPAD clause,

S is a list of constants, one for each variable of the clause, and Var is an integer

that identifies the random variable associated with clause R under the grounding

represented by S. The auxiliary predicate has the following definition

6 The proof of Theorem 3 relies on a delay-minimal evaluation of Q that does not produced any
conditional answers – that is, an evaluation that does not explore the space of atoms that are
undefined in WFM(P ).

7 http://vlsi.colorado.edu/~fabio/
8 BDDs are represented in CUDD as pointers to their root node.
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get var n(R,S, Probs, V ar)←

(var(R,S, V ar)→ true;

length(Probs, L), add var(L, Probs, V ar), assert(var(R,S, V ar))).

The PITA transformation applies to atoms, literals and clauses. If H is an atom,

PITAH(H) is H with the variable BDD added as the last argument. If Aj is an

atom, PITAB(Aj) is Aj with the variable Bj added as the last argument. In either

case for an atom A, BDD(PITA(A)) is the value of the last argument of PITA(A),

If Lj is negative literal ¬Aj , PITAB(Lj) is the conditional

(PITA′
B(Aj)→ not(BNj , Bj); one(Bj)),

where PITA′
B(Aj) is Aj with the variable BNj added as the last argument. In

other words the input BDD, BNj , is negated if it exists; otherwise the BDD for the

constant function 1 is returned.

A non-disjunctive fact Cr = H is transformed into the clause

PITA(Cr) = PITAH(H)← one(BDD).

A disjunctive fact Cr = H1 : α1 ∨ . . . ∨Hn : αn. where the parameters sum to 1, is

transformed into the set of clauses PITA(Cr)
9

PITA(Cr, 1) = PITAH(H1)← get var n(r, [], [α1, . . . , αn], V ar),

equality(V ar, 1, BDD).

. . .

P ITA(Cr, n) = PITAH(Hn)← get var n(r, [], [α1, . . . , αn], V ar),

equality(V ar, n,BDD).

In the case where the parameters do not sum to one, the clause is first transformed

into H1 : α1 ∨ . . . ∨ Hn : αn ∨ null : 1 −
∑n

1 αi. and then into the clauses above,

where the list of parameters is [α1, . . . , αn, 1−
∑n

1 αi] but the (n+1)-th clause (the

one for null) is not generated.

The definite clause Cr = H ← L1, . . . , Lm. is transformed into the clause

PITA(Cr) = PITAH(H)← one(BB0),

P ITAB(L1), and(BB0, B1, BB1),

. . . ,

P ITAB(Lm), and(BBm−1, Bm, BDD).

The disjunctive clause

Cr = H1 : α1 ∨ . . . ∨Hn : αn ← L1, . . . , Lm.

where the parameters sum to 1, is transformed into the set of clauses PITA(Cr)

9 The second argument of get var n is the empty list because a fact does not contain variables
since the program is bounded term-size.
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PITA(Cr, 1) = PITAH(H1)← one(BB0),

P ITAB(L1), and(BB0, B1, BB1),

. . . ,

P ITAB(Lm), and(BBm−1, Bm, BBm),

get var n(r, V C, [α1, . . . , αn], V ar),

equality(V ar, 1, B), and(BBm, B,BDD).

. . .

P ITA(Cr, n) = PITAH(Hn)← one(BB0),

P ITAB(L1), and(BB0, B1, BB1),

. . . ,

P ITAB(Lm), and(BBm−1, Bm, BBm),

get var n(r, V C, [α1, . . . , αn], V ar),

equality(V ar, n,B), and(BBm, B,BDD).

where V C is a list containing each variable appearing in Cr. If the parameters do

not sum to 1, the same technique used for disjunctive facts is used.

Example 4

Clause C1 from the LPAD of Example 1 is translated into

strong sneezing(X,BDD) ← one(BB0),flu(X,B1), and(BB0, B1, BB1),

get var n(1, [X ], [0.3, 0.5, 0.2], V ar),

equality(V ar, 1, B), and(BB1, B,BDD).

moderate sneezing(X,BDD) ← one(BB0),flu(X,B1), and(BB0, B1, BB1),

get var n(1, [X ], [0.3, 0.5, 0.2], V ar),

equality(V ar, 2, B), and(BB1, B,BDD).

while clause C3 is translated into

flu(david,BDD) ← one(BDD).

In order to answer queries, the goal prob(Goal,P) is used, which is defined by

prob(Goal, P ) ← init, retractall(var( , , )),

add bdd arg(Goal, BDD,GoalBDD),

(call(GoalBDD)→ ret prob(BDD,P );P = 0.0),

end.

where add bdd arg(Goal, BDD,GoalBDD) implements PITAH(Goal). Moreover,

various predicates of the LPAD should be declared as tabled. For a predicate p/n,

the declaration is table p( 1,..., n,or/3-zero/1), which indicates that answer sub-

sumption is used to form the disjunct of multiple explanations. At a minimum, the

predicate of the goal and all the predicates appearing in negative literals should

be tabled with answer subsumption. As shown in Section 10, it is usually better to

table every predicate whose answers have multiple explanations and are going to

be reused often.
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8 Correctness of PITA Evaluation

In this section we show a result regarding the PITA transformation and its tabled

evaluation on bounded term-size queries: this result takes as a starting point the

well-definedness result of Theorem 2.

The main result of this section, Theorem 4, makes explicit mention of BDD data

structures, which are considered to be ground terms for the purposes of formaliza-

tion and are not specified further. Accordingly, the BDD operations used in the

PITA transformation: and/3, or/3, not/2, one/1, zero/1, and equality/3, are all

taken as (infinite) relations on terms, so that these predicates can be made part of

a program’s ground instantiation in the normal way. As a result, the ground instan-

tiation of PITA(T ) instantiates all variables in T with all BDD terms. Similarly, for

the purposes of proving correctness, a ground program is assumed to be extended

with the relation var(RuleName,[],Var) to associate a random variable with the

identifier of each clause (see Appendix C for more details). Note that since Theo-

rem 4 assumes a bounded term-size query, the semantics is well-defined so the BDD

and var/3 terms are finite. In other words, the representation of each explanation

of each atom are finite, and each atom has a finite covering set of explanations.

Lemma 1 shows that the PITA transformation does not affect the property of a

query being bounded term-size. a result that is used in the proof of Theorem 4.

Lemma 1

Let T be an LPAD and Q a bounded term-size query to T . Then the query

PITAH(Q) to PITA(T ) has bounded term-size.

Theorem 4 below states the correctness of the tabling implementation of PITA,

since the BDD returned for a tabled query is the disjunction of a covering set of

explanations for that query. The proof uses an extension of SLG evaluation that

includes answer subsumption to collect explanations by disjoining BDDs, but that

is restricted to the fixed-order dynamically stratified programs of Section 4. This

formalism models the programs and implementation tested in Section 10.

Theorem 4 (Correctness of PITA Evaluation)

Let T be a fixed-order dynamically stratified LPAD and Q a ground bounded

term-size atomic query. Then there is an SLG evaluation E of PITAH(Q) against

PITA(TQ), such that answer subsumption is declared on PITAH(Q) using BDD-

disjunction where E finitely terminates with an answer Ans for PITAH(Q) and

BDD(Ans) represents a covering set of explanations for Q.

9 Related Work

(Mantadelis and Janssens 2010) presented an algorithm for answering queries to

ProbLog programs that uses tabling. Our work differs from this in two important

ways. The first is that we use directly XSB tabling with answer subsumption while

(Mantadelis and Janssens 2010) use some user-defined predicates that manipulate

extra tabling data structures. The second difference is that in (Mantadelis and
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Janssens 2010) explanations are stored in trie data structures that are then trans-

lated into BDDs. When translating the tries into BDDs, the algorithm of (Man-

tadelis and Janssens 2010) finds shared substructures, i.e., sub-explanations shared

by many explanations. By identifying shared structures the construction of BDDs

is sped up since sub-explanations are transformed into BDD only once. In our ap-

proach, we similarly exploit the repetition of structures but we do it while finding

explanations: by storing in the table the BDD representation of the explanations of

each answer, every time the answer is reused its BDD does not have to be rebuilt.

Thus our optimization is guided by the derivation of the query. Moreover, if a BDD

is combined with another BDD that already contains the first as a subgraph, we

rely on the highly optmized CUDD functions for the identification of the repetition

and the simplification of the combining operation. In this way we exploit structure

sharing as well without the intermediate pass over the trie data strucutres.

10 Experiments

PITA was tested on two datasets that contain function symbols: the first is taken

from (Vennekens et al. 2004) and encodes a Hidden MarkovModel (HMM) while the

second from (De Raedt et al. 2007) encodes biological networks. Moreover, it was

also tested on the four testbeds of (Meert et al. 2009) that do not contain function

symbols. PITA was compared with the exact version of ProbLog (De Raedt et al.

2007) available in the git version of Yap as of 10 November 2010, with the version

of cplint (Riguzzi 2007) available in Yap 6.0 and with the version of CVE (Meert

et al. 2009) available in ACE-ilProlog 1.2.2010.

The first problem models a hidden Markov model with states 1, 2 and 3, of which

3 is an end state. This problem is encoded by the program

s(0,1):1/3 ∨ s(0,2):1/3 ∨ s(0,3):1/3.

s(T,1):1/3 ∨ s(T,2):1/3 ∨ s(T,3):1/3 ←

T1 is T-1, T1>=0, s(T1,F), \+ s(T1,3).

For this experiment, we query the probability of the HMM being in state 1 at

time N for increasing values of N, i.e., we query the probability of s(N,1). In PITA

and ProbLog, we did not use reordering of BDDs variables11. In PITA we tabled

on/2 and in ProbLog we tabled the same predicate using the technique described

in (Mantadelis and Janssens 2010). The execution times of PITA, ProbLog, CVE

and cplint are shown in Figure 2. In this problem tabling provides an impressive

speedup, since computations can be reused often.

The biological network programs compute the probability of a path in a large

graph in which the nodes encode biological entities and the links represents concep-

tual relations among them. Each program in this dataset contains a non-probabilistic

10 All experiments were performed on Linux machines with an Intel Core 2 Duo E6550 (2333 MHz)
processor and 4 GB of RAM.

11 For each experiment with PITA and ProbLog, we used either group sift automatic reordering
or no reordering of BDDs variables depending on which gave the best results.
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Fig. 2. Hidden Markov model.

definition of path plus a number of links represented by probabilistic facts. The pro-

grams have been sampled from a very large graph and contain 200, 400, . . ., 10000

edges. Sampling was repeated ten times, to obtain ten series of programs of increas-

ing size. In each program we query the probability that the two genes HGNC 620

and HGNC 983 are related. We used two definitions of path. The first, from (Kim-

mig et al. 2011), performs loop checking explicitly by keeping the list of visited

nodes:

path(X,Y ) ← path(X,Y, [X ], Z).

path(X,Y, V, [Y |V ]) ← arc(X,Y ).

path(X,Y, V 0, V 1) ← arc(X,Z), append(V 0, S, V 1),

\+member(Z, V 0), path(Z, Y, [Z|V 0], V 1).

arc(X,Y ) ← edge(X,Y ).

arc(X,Y ) ← edge(Y,X).

(3)

The second exploits tabling for performing loop checking:

path(X,X).

path(X,Y, ) ← path(X,Z), arc(Z, Y ).

arc(X,Y ) ← edge(X,Y ).

arc(X,Y ) ← edge(Y,X).

(4)

The possibility of using lists (that require function symbols) allowed in this case

more modeling freedom. In PITA, the predicates path/2, edge/2 and arc/2 are

tabled in both cases. For ProbLog we used its implementation of tabling for loop

checking in the second program. As in PITA, path/2, edge/2 and arc/2 are tabled.

We ran PITA, ProbLog and cplint on the graphs starting from the smallest

program. In each series we stopped after one day or at the first graph for which the

program ended for lack of memory12. In cplint, PITA and ProbLog we used group

sift reordering of BDDs variables. Figure 3(a) shows the number of subgraphs for

12 CVE was not applied to this dataset because the current version can not handle graph cycles.
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(b) Average execution times on the graphs on
which all the algorithm succeeded.

Fig. 3. Biological graph experiments.
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Fig. 4. Average exection times on the biological graph experiments.

which each algorithm was able to answer the query as a function of the size of the

subgraphs, while Figure 3(b) shows the execution time averaged over all and only

the subgraphs for which all the algorithms succeeded. Figure 4 alternately shows

the execution times averaged, for each algorithm, over all the graphs on which the

algorithm succeeded. In these Figures PITA and PITAt refers to PITA applied to

path programs (3) and (4) respectively and similarly for ProbLog and ProbLogt.

PITA applied to program (3) was able to solve more subgraphs and in a shorter

time than cplint and all cases of ProbLog. On path definition (4), on the other
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(a) bloodtype.
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(b) growingbody.

Fig. 5. Datasets from (Meert et al. 2009).



22 F. Riguzzi and T. Swift

5 10 15 20
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
i
m
e
 
(
s
)

 

 

PITA
PITAdr
ProbLog
ProbLogdr
cplint
CVE

(a) growinghead.

0 5 10 15
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
i
m
e
 
(
s
)

 

 

PITA
PITAdr
ProbLog
ProbLogdr
cplint
CVE

(b) uwcse.

Fig. 6. Datasets from (Meert et al. 2009).

hand, ProbLogt was able to solve a larger number of problems than PITAt and in

a shorter time. For PITA the vast majority of time for larger graphs was spent on

BDD maintenance. This shows that, even if tabling consumes more memory when

finding the explanations, BDDs are built faster and use less memory, probably

due to the fact that tabling allows less redundancy (only one BDD is stored for

an answer) and supports a bottom-up construction of the BDDs, which is usually

better.

The four datasets of (Meert et al. 2009), served as a final suite of benchmarks.

bloodtype encodes the genetic inheritance of blood type, growingbody contains

programs with growing bodies, growinghead contains programs with growing heads

and uwcse encodes a university domain. The best results for ProbLog were obtained

by using ProbLog’s tabling in all experiments except growinghead. The execution

times of cplint, ProbLog, CVE and PITA are shown in Figures 5(a) and 5(b),

6(a) and 6(b)13. In the legend PITA means that dynamic BDD variable reordering

was disabled, while PITAdr has group sift automatic reordering enabled. Similarly

for ProbLog and ProbLogdr.

In bloodtype, growingbody and growinghead PITA without variable reordering

was the fastest, while in uwcse PITA with group sift automatic reordering was the

fastest. These results show that variable reordering has a strong impact on per-

formances: if the variable order that is obtained as a consequence of the sequence

of BDD operations is already good, automatic reordering severely hinders perfor-

mances. Fully understanding the effect of variable reordering on performances is

subject of future work.

11 Conclusion and Future Works

This paper has made two main contributions. The first is the identification of

bounded term-size programs and queries as conditions for the distribution semantics

to be well-defined when LPADs contain function symbols. As shown in Section 4.2,

13 For the missing points at the beginning of the lines a time smaller than 10−6 was recorded. For
the missing points at the end of the lines the algorithm exhausted the available memory.
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bounded-term-size programs and queries sometimes include programs that other

termination classes do not. Given the transformational equivalence of LPADs and

other probabilistic logic programming formalisms that use the distribution seman-

tics, these results may form a basis for determining well-definedness beyond LPADs.

As a second contribution, the PITA transformation provides a practical reasoning

algorithm that was directly used in the experiments of Section 10. The experiments

substantiate the PITA approach. Accordingly, PITA should be easily portable to

other tabling engines such as that of YAP, Ciao and B Prolog if they support

answer subsumption over general semi-lattices. PITA is available in XSB Version

3.3 and later, downloadable from http://xsb.sourceforge.net. A user manual

is included in XSB manual and can also be found at http://sites.unife.it/ml/

pita.

In the future, we plan to extend PITA to the whole class of sound LPADs by

implementing the SLG delaying and simplification operations for answer sub-

sumption; an implementation of tabling with term-depth abstraction (Section 6) is

also underway. Finally, we are developing a version of PITA that is able to answer

queries in an approximate way, similarly to (Kimmig et al. 2011).
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