
 Open access  Book Chapter  DOI:10.1007/11779148_19

Well-Founded semantics for boolean grammars — Source link 

Vassilis Kountouriotis, Christos Nomikos, Panos Rondogiannis

Institutions: National and Kapodistrian University of Athens, University of Ioannina

Published on: 26 Jun 2006 - Developments in Language Theory

Topics: Boolean grammar, Context-sensitive grammar, Tree-adjoining grammar, L-attributed grammar and
Indexed grammar

Related papers:

 Time-bounded controlled bidirectional grammars

 Boolean grammars

 Two Level Grammars: CF-Grammars with Equation Schemes

 Generalized P-Systems

 Expressive power of LL(k) Boolean grammars

Share this paper:    

View more about this paper here: https://typeset.io/papers/well-founded-semantics-for-boolean-grammars-
56v4b1cfxq

https://typeset.io/
https://www.doi.org/10.1007/11779148_19
https://typeset.io/papers/well-founded-semantics-for-boolean-grammars-56v4b1cfxq
https://typeset.io/authors/vassilis-kountouriotis-30cmjykzqh
https://typeset.io/authors/christos-nomikos-24qssaw2ae
https://typeset.io/authors/panos-rondogiannis-2pf0fbfcmb
https://typeset.io/institutions/national-and-kapodistrian-university-of-athens-10fq6463
https://typeset.io/institutions/university-of-ioannina-3e1sq16y
https://typeset.io/conferences/developments-in-language-theory-2p7gq21v
https://typeset.io/topics/boolean-grammar-11x6eeij
https://typeset.io/topics/context-sensitive-grammar-2agnjee9
https://typeset.io/topics/tree-adjoining-grammar-1vueo6lz
https://typeset.io/topics/l-attributed-grammar-2yvluio5
https://typeset.io/topics/indexed-grammar-3k5127yl
https://typeset.io/papers/time-bounded-controlled-bidirectional-grammars-3l85o9y72g
https://typeset.io/papers/boolean-grammars-t79wztj5a7
https://typeset.io/papers/two-level-grammars-cf-grammars-with-equation-schemes-1iojl3ci74
https://typeset.io/papers/generalized-p-systems-47shbbufy4
https://typeset.io/papers/expressive-power-of-ll-k-boolean-grammars-42njeaio0i
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/well-founded-semantics-for-boolean-grammars-56v4b1cfxq
https://twitter.com/intent/tweet?text=Well-Founded%20semantics%20for%20boolean%20grammars&url=https://typeset.io/papers/well-founded-semantics-for-boolean-grammars-56v4b1cfxq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/well-founded-semantics-for-boolean-grammars-56v4b1cfxq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/well-founded-semantics-for-boolean-grammars-56v4b1cfxq
https://typeset.io/papers/well-founded-semantics-for-boolean-grammars-56v4b1cfxq


Information and Computation 207 (2009)945–967

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Well-founded semantics for Boolean grammars�

Vassilis Kountouriotis a, Christos Nomikos b, Panos Rondogiannis a,∗

a Department of Informatics & Telecommunications, University of Athens, Panepistimiopolis, 157 84 Athens, Greece
b Department of Computer Science, University of Ioannina, P.O. Box 1186, 45 110 Ioannina, Greece

A R T I C L E I N F O A B S T R A C T

Article history:
Received 1 August 2007

Revised 27 May 2009

Available online 9 June 2009

Boolean grammars [A. Okhotin, Boolean grammars, Information and Computation 194 (1)

(2004) 19–48] are a promising extension of context-free grammars that supports con-

junction and negation in rule bodies. In this paper, we give a novel semantics for Boolean

grammars which applies to all such grammars, independently of their syntax. The key idea

of our proposal comes from the area of negation in logic programming, and in particular

from the so-called well-founded semantics which is widely accepted in this area to be the

“correct” approach to negation. We show that for every Boolean grammar there exists a

distinguished (three-valued) interpretation of the non-terminal symbols, which satisfies

all the rules of the grammar and at the same time is the least fixed-point of an operator

associated with the grammar. Then, we demonstrate that every Boolean grammar can be

transformed into an equivalent (under the new semantics) grammar in normal form. Based

on this normal form, we propose an O(n3) algorithm for parsing that applies to any such

normalizedBooleangrammar. In summary, themain contributionof this paper is to provide

a semantics which applies to all Boolean grammars while at the same time retaining the

complexity of parsing associated with this type of grammars.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Boolean grammars constitute a new and promising formalism, proposed by Okhotin in [8], which extends the class of
conjunctive grammars introduced by the same author in [7]. The basic idea behind this new formalism is to augment context-
free rules by allowing intersection and negation to appear in their right-hand sides. It is immediately obvious that the class
of languages that can be produced by Boolean grammars is a proper superset of the class of context-free languages.

Despite their syntactical simplicity, Boolean grammars appear to be non-trivial from a semantical point of view. As we
are going to see in the next section, the existing approaches for assigning meaning to Boolean grammars suffer from certain
shortcomings (one of which is that they do not give a meaning to all such grammars).

In this paper, we propose a new semantics (the well-founded semantics) which applies to all Boolean grammars. More
specifically, we demonstrate that for every Boolean grammar there exists a distinguished (three-valued, see below) inter-
pretation of the non-terminal symbols, which satisfies all the rules of the grammar. This interpretation is the unique least
fixed-point of an appropriate operator associatedwith the grammar. The language assigned by this interpretation to the start
symbol of the grammar, can be taken as the intended meaning of the grammar.

�
This work is supported by the 03E� 330 research project, implemented within the framework of the “Reinforcement Programme of Human Research

Manpower” (�ENE�) and co-financed by National and Community Funds (75% from E.U.-European Social Fund and 25% from the Greek Ministry of

Development–General Secretariat of Research and Technology and from the private sector).
∗

Corresponding author.

E-mail addresses: bk@di.uoa.gr (V. Kountouriotis), cnomikos@cs.uoi.gr (C. Nomikos), prondo@di.uoa.gr (P. Rondogiannis).

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2009.05.002

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic


946 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

Our ideas originate from an important area of research in the theory of logic programming, that has been very active for
more than two decades (references such as [1,9] provide nice surveys). In this area, there is nowadays an almost unanimous
agreement that if we seek a uniquemodel of a logic programwith negation, thenwe have to search for a three-valued one. In
other words, classical two-valued logic is not sufficient in order to assign a proper meaning to arbitrary logic programs with
negation. Actually, it can be demonstrated that every logic program with negation has a distinguished three-valued model,
which is usually termed the well-founded model [13].

We follow the same ideas here: we consider three-valued languages, namely languages in which the membership of
strings may be characterized as true, false, or unknown. As we will see, this simple extension solves the semantic problems
associated with negation in Boolean grammars. Actually we show that this extension to three values is in some sense
necessary: we prove that the problem of whether a Boolean grammar defines under the well-founded semantics a classical
(that is, two-valued) language, is undecidable. We then proceed by demonstrating that under this new semantics, every
Boolean grammar has an equivalent grammar in normal form (similar to that of [8]). Finally, we show that for every such
normalized grammar, there is an O(n3) parsing algorithm under our new semantics. Our results indicate that there may be
other fruitful connections between formal language theory and the theory of logic programming.

The rest of thepaper is organized as follows: Section2presents the basic issues regardingBoolean grammars anddiscusses
the existing approaches to their semantics. In Section 3 the notion of a three-valued formal language is proposed and the basic
tools that will be used in our semantic investigations are developed. In Section 4 the well-founded semantics of Boolean
grammars is definedand its basicproperties aredemonstrated. In Section5anormal formforBooleangrammars is introduced
based on thewell-founded semantics. In Section 6 a parsing algorithm for Boolean grammars is derived based on the normal
form introduced in Section 5. Finally, Section 7 concludes the paper giving pointers to future work.

2. Why an alternative semantics for Boolean grammars?

In [8] Okhotin proposed the class of Boolean grammars. Formally:

Definition 1 [8]. A Boolean grammar is a quadruple G = (�,N, P, S), where � and N are disjoint finite non-empty sets of
terminal and non-terminal symbols, respectively, P is a finite set of rules, each of the form

A → α1& · · ·&αm&¬β1& · · ·&¬βn (m + n ≥ 1, αi, βj ∈ (� ∪ N)∗),

and S ∈ N is the start symbol of the grammar. We will call the non-terminal A the head of the rule, the αi’s positive conjuncts
and the ¬βj ’s negative ones.

We will often use the short notation A → ϕ1| · · · |ϕk to represent k rules of the form A → ϕi.
To illustrate the use of Boolean grammars, consider the following example from [8] (presented here in a slightly modified

form):

Example 2. Let � = {a, b}. We define:

S → ¬(AB) & ¬(BA) & ¬A & ¬B

A → a|CAC
B → b|CBC
C → a|b

The above grammar defines the language Lww = {ww|w ∈ {a, b}∗}, which is well-known to be non-context-free. This can be
justifiedas follows:first, it is easy to see that the language L(A) (respectively, the language L(B)) producedby thenon-terminal
A (respectively, the non-terminal B) contains the strings of odd length inwhich the symbol in themiddle is a (respectively, b).
Consider now any string y of length 2n for some n, that is not in Lww . This implies that there exists some i, 1 ≤ i ≤ n, such that
the ith symbol of y is different from the (n + i)th symbol of y. Suppose that the ith symbol of y is a and the (n + i)th symbol
of y is b (the other case is completely symmetric). Then, y = yayb, where |ya| = 2i − 1, |yb| = 2(n − i) + 1, ya ∈ L(A) and
yb ∈ L(B) (since the ith and the (n + i)th symbol of y are the symbols in the middle of ya and yb, respectively).

Therefore, a string that is not in Lww , belongs to L(A) ∪ L(B) if it has odd length, and belongs to L(A) ◦ L(B) ∪ L(B) ◦ L(A)
if it has even length. Using De Morgan’s law, we obtain the first rule, which defines the language produced by the grammar.

Okhotin proposed two semantics intended to capture themeaning of Boolean grammars. In this section, we demonstrate
some deficiencies of these two approaches, which led us to the definition of the well-founded semantics. Both semantics
proposed in [8] are defined using a system of equations, which is obtained from the given grammar as follows: consider a
Boolean grammar G = (�,N, P, S), where N = {X1, X2, . . . , Xk}. The equation for the non-terminal Xi is

Xi =
⋃

Xi→α1&···&αm&¬β1&···&¬βn∈P

⎛
⎝

m⋂

j=1

αj ∩
n⋂

j=1

βj

⎞
⎠



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 947

We denote the formula in the right-hand side of the above rule (which in general involves the non-terminal symbols in N)
by φi(X1, . . . , Xk). An interpretation I of G (i.e., an assignment of a language from � to every non-terminal symbol in N) is
said to be a solution of the system of equations

X1 = φ1(X1, . . . , Xk)
· · ·

Xk = φk(X1, . . . , Xk)

if for every i, 1 ≤ i ≤ k, it holds I(Xi) = Î(φi(X1, . . . , Xk)), where Î is the extension of I to expressions that may appear in
the right-hand sides of equations, which can be obtained in a straightforward manner (for more details see Definition 7 of
Section 3, where the extension of three-valued interpretations is defined).

In thefirst approachproposed in [8], the semantics of a Booleangrammar is definedonly in the case that the corresponding
system of equations has a unique solution. This is a restrictive choice: actually many interesting grammars do not correspond
to systems of equations having a unique solution. For example, even simple context-free grammars (such as for example the
grammarwith a single rule S → S), may give systems of equationswhich have infinitelymany solutions. For such grammars,
it seems that the desired property is a form of minimality rather than uniqueness of the solution.

Apart from its limited applicability, the unique solution semantics also exhibits a kind of instability. For example, let
� = {0, 1} and consider the Boolean grammar consisting of the two rules A → ¬A&¬B and B → 0&1. The corresponding
system of equations has no solution and therefore the unique solution semantics for this grammar is not defined. Suppose
that we augment the above grammar with the rule B → B. Seen from a constructive point of view, the new rule does not
offer to the grammar any additional information. It is reasonable to expect that such a rule would not change the semantics
of the grammar. However, the augmented grammar has unique solution semantics, namely (A, B) = (∅,�∗). On the other
hand, suppose that we augment the initial grammar with the rule A → A. Then, the unique solution semantics is also
defined, but now the solution is (A, B) = (�∗,∅). Consequently, by adding to an initiallymeaningless grammar two different
information-free rules, we get two grammars defining complementary languages. To put it another way, three grammars
that look equivalent, have completely different semantics.

Let us now turn to the second approach proposed in [8], namely the naturally reachable solution semantics defined as
follows (for convenience, given an interpretation I of G and a finite language M we denote by I∩M the interpretation with
I∩M(A) = I(A) ∩ M for every A ∈ N):

Definition 3. Let X1 = φ1(X1, . . . , Xk), . . . , Xk = φk(X1, . . . , Xk) be a system of equations which corresponds to a Boolean
grammar G = (�,N, P, S), with N = {X1, . . . , Xk}. An interpretation I is called a naturally reachable solution of the system if
for every finite language M closed under substring and for every string u 
∈ M such that all proper substrings of u are in M,

every sequence of interpretations of the form: I(0), I(1), . . . , I(i), . . . which satisfies the properties

• I(0) = I∩M

• I(i+1) /= I(i) and
• there exists some j such that I(i+1)(Xj) = Î(i)(φj(X1, . . . , Xk)) ∩ (M ∪ {u}) and I(i+1)(Xℓ) = I(i)(Xℓ) for all ℓ /= j

converges to I∩(M∪{u}) in finitely many steps.

Contrary to the unique solution semantics, the naturally reachable solution semantics generalizes the semantics of
context-free and conjunctive languages (see [8] [Theorem 3]). However, when negation appears, there are cases that this
approach does not behave in an expected manner. Consider for example the Boolean grammar with rules:

A → ¬B, B → C&¬D, C → D, D → A

This grammar has the naturally reachable solution (A, B, C,D) = (�∗,∅,�∗,�∗). It is reasonable to expect that composing
two rules would not affect the semantics of the grammar. For example, in context-free grammars such a composition is a
natural transformation rule that simply allows to perform two steps of the production in a single step. However, if we add
C → A to the above set of rules, then the naturally reachable solution semantics of the resulting grammar is not defined. On
the other hand, the technique we will define shortly, does not suffer from this shortcoming.

Furthermore, there exist grammars for which the naturally reachable solution semantics is undefined, although theymay
have a clear intuitive meaning. For example, let � = {a} and suppose that the grammar contains the following rules:

A → ¬B|D, B → ¬C|D, C → ¬A|D, D → aD|ǫ

The semantics of this grammar is clearly (A, B, C,D) = (�∗,�∗,�∗,�∗), and actually this iswhat thewell-founded semantics
will produce. On the other hand the naturally reachable solution semantics is undefined.

The problem of giving semantics to recursive formalisms in the presence of negation has been extensively studied in the
context of logic programming. Actually, the unique solution semantics can be paralleled with one of the early attempts to
give semantics to logic programs with negation, namely what is now called the Clark’s completion semantics (which actually
presents similar shortcomings as the unique solution approach). On the other hand, the naturally reachable solution can be
thought of as a first approximation to the procedure of constructing the intended minimal model of a logic program with
negation (see also Theorem 28 that will follow). Since themost broadly accepted semantic approach for logic programswith



948 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

negation is the well-founded semantics, in this paper we investigate the possibility of applying such an approach to Boolean
grammars.

At this point we should alsomention two other recent works on the semantics of Boolean grammars, namely the stratified
semantics [14] and the locally stratifiedone [5,6]. Bothof these approaches alsohave their roots in the theoryof non-monotonic
logic programming. However, these two semantics differ from the well-founded one in the sense that they aim to identify
interesting (syntactic) subclasses of Boolean grammars that have a well-defined meaning (while the present approach aims
at providing a formal framework for the whole class of Boolean grammars).

3. Interpretations and models for Boolean grammars

In this section,we initiate our study of the semantics of Boolean grammars.We begin by defining the notions of interpreta-
tion andmodel for Boolean grammars, two concepts that have been borrowed frommathematical logic (see for example [3]).
In context-free grammars, an interpretation is a function that assigns to each non-terminal symbol of the grammar a set
of strings over the set of terminal symbols of the grammar. An interpretation of a context-free grammar is a model of the
grammar if it satisfies all the rules of the grammar. The usual semantics of context-free grammars dictate that every such
grammar has a minimummodel, which is taken to be as its intended meaning.

Whenone considers Boolean grammars, the situation becomesmuchmore complicated. For example, a grammarwith the
unique rule S → ¬S appears to be meaningless. More generally, in many cases where negation is used in a circular way, the
corresponding grammar looks problematic. These difficulties arise because we are trying to find classicalmodels of Boolean
grammars, which are based on classical two-valued logic. If howeverwe shift to three-valuedmodels, every Boolean grammar
has a well-defined meaning. We need of course to redefine many notions, starting even from the notion of a language:

Definition 4. Let � be a finite non-empty set of symbols. Then, a (three-valued) language over � is a function from �∗ to

the set
{
0, 1

2
, 1

}
.

Intuitively, given a three-valued language L and a string w over the alphabet of L, there are three cases: either w ∈ L (i.e.,
L(w) = 1), or w 
∈ L (i.e., L(w) = 0), or finally, the membership of w in L is unclear (i.e., L(w) = 1

2
). Given this extended

notion of language, it is now possible to interpret the grammar S → ¬S: its meaning is the language which assigns to every
string the value 1

2
.

The following definition, which generalizes the familiar notion of concatenation of languages, will be used in the rest of
the paper:

Definition 5. Let � be a finite non-empty set of symbols and let L1, . . . , Ln be (three-valued) languages over �. We define
the three-valued concatenation of the languages L1, . . . , Ln to be the language L such that for every w ∈ �∗:

L(w) = max
(w1,...,wn):
w=w1 ···wn

(
min
1≤i≤n

Li(wi)

)

The concatenation of L1, . . . , Ln will be denoted by L1 ◦ · · · ◦ Ln.

The above definition can be explained as follows:

• A string belongs to L1 ◦ · · · ◦ Ln (truth value 1) if it can be partitioned into n parts so that for every i ≤ n, the i′th part
belongs to Li.

• A string is excluded from the concatenation (truth value 0) if in every partition, there exists some i such that the i′th part
is excluded from the language Li.

• Themembership of a stringw is undefined in the concatenation (truth value 1
2
) if there exists a partition ofw such that no

part is excluded from the corresponding language, and there does not exist a partition ofw such that every part belongs
to the corresponding language.

It can be easily checked that when the languages involved are total (i.e., with no 1
2
values assigned to strings) then the

above definition reduces to the familiar definition of concatenation.
We can now define the notion of interpretation of a given Boolean grammar:

Definition 6. An interpretation I of a Boolean grammar G = (�,N, P, S) is a function I : N →
(
�∗ →

{
0, 1

2
, 1

})
.

An interpretation I can be recursively extended to apply to expressions that appear in the right-hand sides of Boolean
grammar rules:

Definition 7. Let G = (�,N, P, S) be a Boolean grammar and let I be an interpretation of G. Then, the extension Î of I is
defined as follows:



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 949

• For every w ∈ �∗, it is Î(ǫ)(w) = 1 if w = ǫ, and Î(ǫ)(w) = 0 otherwise.
• Let A ∈ N. Then, for every w ∈ �∗, it is Î(A)(w) = I(A)(w).
• Let a ∈ �. Then, for every w ∈ �∗, it is Î(a)(w) = 1 if w = a, and Î(a)(w) = 0 otherwise.
• Let α = α1 · · · αn, n ≥ 2, αi ∈ � ∪ N. Then, for every w ∈ �∗, it is Î(α)(w) = (̂I(α1) ◦ · · · ◦ Î(αn))(w).
• Let α ∈ (� ∪ N)∗. Then, for every w ∈ �∗, it is Î(¬α)(w) = 1 − Î(α)(w).
• Let l1, . . . , ln be conjuncts. Then, for every w ∈ �∗, it is Î(l1& · · ·&ln)(w) = min{̂I(l1)(w), . . . , Î(ln)(w)}.

We are now in a position to define the notion of a model of a Boolean grammar:

Definition 8. Let G = (�,N, P, S) be a Boolean grammar and I an interpretation of G. Then, I is amodel of G if for every rule
A → l1& · · ·&ln in P and for every w ∈ �∗, it is I(A)(w) ≥ Î(l1& · · ·&ln)(w).

Certain explanations regarding the notion of model are needed, since this concept is not broadly used in formal language
theory – despite its fundamental applicability inmathematical logic. Amodel of a set of formulas in logic, is an interpretation
that satisfies all the formulas in the set. In the context of Boolean grammars, each rule can be thought of as a formula which
states that the membership value of a string in the language that corresponds to the head of the rule, is greater than or
equal to the membership value of the string in the language that corresponds to the body of the rule. This idea restricted to
total languages states that, for every rule, the language that corresponds to the head of a rule is a superset of the language
that corresponds to the body. Clearly, a model of a grammar does not necessarily capture the meaning of a grammar (for
example, an interpretation that assigns �∗ to every non-terminal of a grammar, is a model of the grammar). However, the
interpretation that captures the intended meaning of a grammar, has to be a model of the grammar. In other words, the first
basic property that an interpretation has to satisfy in order to be eligible as a candidate for the correct meaning of a Boolean
grammar, is to be a model of the grammar.1

In the definition of the well-founded model, two orderings on interpretations play a crucial role (see [9] for the corre-
sponding ordering in the case of logic programming). Given two interpretations, the first ordering (usually called the standard
ordering) compares their degree of truth:

Definition 9. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G. Then, we write I � J if for all
A ∈ N and for all w ∈ �∗, I(A)(w) ≤ J(A)(w).

The following lemma is easy to establish:

Lemma 10. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G such that I � J. Then, for all

α ∈ (� ∪ N)∗ and for all w ∈ �∗, Î(α)(w) ≤ Ĵ(α)(w).

Proof. The statement is obvious when α = ǫ or when α ∈ � ∪ N. For α = α1 · · · αn, n ≥ 2, αi ∈ � ∪ N, it is:

Î(α)(w) =
(̂
I(α1) ◦ · · · ◦ Î(αn)

)
(w)

= max (w1,...,wn):
w=w1···wn

(
min1≤i≤n Î(αi)(wi)

)

≤ max (w1,...,wn):
w=w1···wn

(
min1≤i≤n Ĵ(αi)(wi)

)

=
(
Ĵ(α1) ◦ · · · ◦ Ĵ(αn)

)
(w)

= Ĵ(α)(w)

This completes the proof of the lemma. �

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the � ordering and is
denoted by ⊥. That is, for all A and all w, ⊥(A)(w) = 0.

The second ordering (usually called the Fitting ordering) compares the degree of information of two interpretations. We
first need to define the corresponding numerical ordering:

Definition 11. Let v1, v2 ∈ {0, 1
2
, 1}. We write v1 ≤F v2 if and only if either v1 = v2 or v1 = 1

2
.

Definition 12. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G. Then, we write I �F J if for all
A ∈ N and for all w ∈ �∗, I(A)(w) ≤F J(A)(w).

We now establish a lemma regarding �F which is similar to Lemma 10 for �:

1 One could avoid the use of models by first transforming a Boolean grammar into a set of equations (see [8] or the corresponding definition in Section 2),

and then looking for a solution to this set of equations. We prefer to follow the model-based approach, which is closer to the logical background of Boolean

grammars.



950 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

Lemma 13. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G such that I �F J. Then, for any conjunct
l (either positive or negative) and for any w ∈ �∗, Î(l)(w) ≤F Ĵ(l)(w).

Proof. Assume first that l is a positive conjunct.When l = ǫ or l ∈ � ∪ N, the result holds trivially. For l = α1 · · · αn, n ≥ 2,
αi ∈ � ∪ N, we distinguish two cases:

Case 1: Î(l)(w) = 0 or equivalently (̂I(α1) ◦ · · · ◦ Î(αn))(w) = 0. From Definition 5, this means that
max (w1,...,wn):

w=w1 ···wn

(
min1≤i≤n Î(αi)(wi)

)
= 0, or equivalently that for all (w1, . . . ,wn) such thatw = w1 · · ·wn there existsαi such

that Î(αi)(wi) = 0. But for every such αi it is also Ĵ(αi)(wi) = 0, which implies that max (w1,...,wn):
w=w1···wn

(
min1≤i≤n Ĵ(αi)(wi)

)
= 0.

Therefore, (̂J(α1) ◦ · · · ◦ Ĵ(αn))(w) = 0 or equivalently Ĵ(l)(w) = 0.

Case 2: Î(l)(w) = 1 and therefore (̂I(α1) ◦ · · · ◦ Î(αn))(w) = 1. Therefore, fromDefinition 5, there exists (w1, . . . ,wn)with
w = w1 · · ·wn such that for allαi it is Î(αi)(wi) = 1. This implies that for allαi, it is also Ĵ(αi)(wi) = 1, fromwhich it follows
that Ĵ(l)(w) = 1.

When l = ¬α is a negative conjunct the result follows from the fact that Î(¬α)(w) = 1 − Î(α)(w). This completes the
proof of the lemma. �

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the �F ordering and
is denoted by ⊥F . That is, for all A and all w, ⊥F (A)(w) = 1

2
.

Given a set U of interpretations, we will write lub�U for the least upper bound of the members of U under the standard
ordering. Formally:

(lub�U)(A)(w) =

⎧
⎪⎨
⎪⎩

1, if there exists I ∈ U such that I(A)(w) = 1
0, if for all I ∈ U, I(A)(w) = 0
1
2
, otherwise

The situation changes when one wants to define lub�F
U, that is, the least upper bound of the members of U under the

Fitting ordering, since this notion cannot in general be defined for an arbitrary set of interpretations U. However, lub�F
U can

be defined if U is a directed set of interpretations, i.e., if for every I1, I2 ∈ U there exists J ∈ U such that I1 �F J and I2 �F J.
In this case lub�F

U is defined as follows:

(lub�F
U)(A)(w) =

⎧
⎪⎨
⎪⎩

1, if there exists I ∈ U such that I(A)(w) = 1
0, if there exists I ∈ U such that I(A)(w) = 0
1
2
, otherwise

Obviously, an increasing sequence U = I1 �F I2 �F · · · of interpretations constitutes a directed set of interpretations, and
therefore in this case lub�F

U is well-defined.

4. Well-founded semantics for Boolean grammars

In this section, we define the well-founded semantics of Boolean grammars. The basic idea behind the well-founded
semantics is that the intended model of the grammar is constructed in stages that are related to the levels of negation used
by the grammar. At each step of this process and for every non-terminal symbol, the values of certain strings are computed
andfixed (as either true or false); at eachnew level, the values ofmore andmore strings becomefixed (and this is amonotonic
procedure in the sense that values of strings that have been fixed for a given non-terminal in a previous stage, are not altered
by the next stages). At the end of all the stages, certain strings for certain non-terminals may have not managed to get the
status of either true or false (this will be due to circularities through negation in the grammar). Such strings are classified as
unknown (i.e., 1

2
).

Consider the Boolean grammar G = (�,N, P, S). Then, for any interpretation J of Gwe define the operator [�G]J : I → I

on the set I of all three-valued interpretations of G. Intuitively, J represents information that we have already derived and is
considered stable (and therefore it can be safely used to compute the value of negative conjuncts). More specifically, given
I ∈ I, A ∈ N and w ∈ �∗, [�G]J (I)(A)(w) is the value that w gets in one stepwhen using J in order to evaluate the negative
conjuncts in rules defining A in G and I to evaluate the positive ones. More formally:

Definition 14. Let G = (�,N, P, S) be a Boolean grammar, let I be the set of all three-valued interpretations of G and let
J ∈ I. The operator [�G]J : I → I is defined as follows. For every I ∈ I, for all A ∈ N and for all w ∈ �∗:

1. [�G]J (I)(A)(w) = 1, if there exists a rule A → l1& · · ·&lr in P such that for every positive li it is Î(li)(w) = 1, and for

every negative li it is Ĵ(li)(w) = 1;
2. [�G]J (I)(A)(w) = 0, if for every rule A → l1& · · ·&lr in P, either there exists a positive li such that Î(li)(w) = 0, or there

exists a negative li such that Ĵ(li)(w) = 0;
3. [�G]J (I)(A)(w) = 1

2
, otherwise.



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 951

Some remarks are in order. The operator [�G]J is analogous to the ones that have beenused in the logic programming domain,
but has some important differences from them. More specifically, in [10] two operators are used which produce two sets of
atoms corresponding to true and false conclusions of the program, respectively. When applied to arbitrary interpretations,
these operators may produce inconsistent sets of atoms. However, it is demonstrated in [10] that these operators when used
appropriately, never give rise to inconsistent sets of atoms. In [9], one operator �J is introduced whose definition however
is not precise in the sense that it is not truth-functional: given arbitrary interpretations I, J and atom A it is possible that
�J(I)(A) can be assigned both the values 0 and 1. Note however that this problematic case never arises in the construction
of the well-founded model. This imprecise definition was also present in the original conference version of our paper [4].
The above functional definition of [�G]J remedies this deficiency.

An important fact regarding the operator [�G]J is that it is monotonic with respect to the � ordering of interpretations:

Lemma 15. Let G = (�,N, P, S) be a Boolean grammar and let J be an interpretation of G. Then, the operator [�G]J is monotonic

with respect to the � ordering of interpretations.

Proof. Let I1, I2 be interpretations of G such that I1 � I2 and let A ∈ N andw ∈ �∗. We show by a case analysis on the value
of [�G]J (I1)(A)(w) that [�G]J (I1)(A)(w) ≤ [�G]J (I2)(A)(w). The case [�G]J (I1)(A)(w) = 0 is immediate.

Consider now the case [�G]J (I1)(A)(w) = 1. Then, from Definition 14, there is a rule A → l1& · · ·&lr in P such that

for all positive li it is Î1(li)(w) = 1 and for all negative li it is Ĵ(li)(w) = 1. But since I1 � I2, using Lemma 10 we get that
Î2(li)(w) = 1 for all positive li, which implies that [�G]J (I2)(A)(w) = 1.

Consider now the remaining case [�G]J (I1)(A)(w) = 1
2
and assume for the sake of contradiction that [�G]J (I2)(A)(w) =

0. This implies that for every rule A → l1& · · ·&lr in P, either there exists a positive li such that Î2(li)(w) = 0, or there exists
a negative li such that Ĵ(li)(w) = 0. But since I1 � I2, using Lemma 10 we get that [�G]J (I1)(A)(w) = 0 (contradiction).
Therefore, in any case [�G]J (I1)(A)(w) ≤ [�G]J (I2)(A)(w). �

The following definition will be useful in the subsequent discussion:

Definition 16. Let G = (�,N, P, S) be a Boolean grammar, let I be an interpretation of G and letw ∈ �∗. We denote by I/w
the interpretation defined as follows:

(I/w)(A)(u) =

{
I(A)(u), if u is a substring of w
0, otherwise

We now have the following lemmata:

Lemma 17. Let G = (�,N, P, S) be a Boolean grammar, w be a string in �∗, and {In}n<ω be an increasing sequence of in-

terpretations with respect to the ordering � (respectively, �F). Then there exists some m such that (lub�{In}n<ω)/w = Im/w
(respectively, (lub�F

{In}n<ω)/w = Im/w).

Proof. We give the proof for �; the proof for �F is similar.
Let J = lub�{In}n<ω . It is easy to verify that the sequence {In/w}n<ω is also increasing with respect to � and that

lub�{In/w}n<ω = J/w.Moreover, the set {I/w|I is an interpretation of G} is finite, sinceN is finite and there is afinitenumber
of substrings ofw. The above facts imply that there exists somem < ω such that Ii/w � Im/w for every i < ω, that is, Im/w
is an upper bound for {In/w}n<ω . Since J/w is the least upper bound of this sequence, we obtain that J/w � Im/w, and since
Im/w belongs to the sequence it holds Im/w � J/w. The last two inequalities imply that J/w = Im/w. �

Lemma 18. Let G = (�,N, P, S) be a Boolean grammar and let I1, I2, J1, J2 be interpretations of G. Let w ∈ �∗ and assume that

I1/w = I2/w and J1/w = J2/w. Then, for every A ∈ N, [�G]J1 (I1)(A)(w) = [�G]J2 (I2)(A)(w).

Proof. We perform a case analysis on the value of [�G]J1 (I1)(A)(w).

Case 1: [�G]J1 (I1)(A)(w) = 0. But this is equivalent to saying that for every rule A → l1& · · ·&lr in P, either there exists a

positive li such that Î1(li)(w) = 0, or there exists a negative li such that Ĵ1(li)(w) = 0. But using the fact that I1/w = I2/w
and J1/w = J2/w, this again is equivalent to the statement that for every rule A → l1& · · ·&lr in P, either there exists a
positive li such that Î2(li)(w) = 0, or there exists a negative li such that Ĵ2(li)(w) = 0. Equivalently, [�G]J2 (I2)(A)(w) = 0.

Case 2: [�G]J1 (I1)(A)(w) = 1. Entirely analogous to the proof of Case 1. �

The next definition and theorem demonstrate that in addition, [�G]J has a unique least fixed-point:

Definition 19. Let G = (�,N, P, S) be a Boolean grammar and let J be an interpretation of G. Define:



952 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

[�G]
↑0
J = ⊥

[�G]
↑n+1
J = [�G]J

(
[�G]

↑n
J

)

[�G]
↑ω
J = lub�

{
[�G]

↑n
J |n < ω

}
.

Theorem 20. Let G = (�,N, P, S) be a Boolean grammar and let J be an interpretation of G. Then, the sequence {[�G]
↑n
J }n<ω is

increasing with respect to � and [�G]
↑ω
J is the unique least fixed-point of the operator [�G]J with respect to � .

Proof. Wefirst show by induction that the sequence {[�G]
↑n
J }n<ω is increasingwith respect to�. Obviously [�G]

↑0
J = ⊥ �

[�G]
↑1
J . Moreover, assuming that [�G]

↑k
J � [�G]

↑k+1
J and using the monotonicity of [�G]J with respect to � (Lemma 15),

we get that [�G]
↑k+1
J � [�G]

↑k+2
J .

Next we show that [�G]
↑ω
J is a fixed-point of [�G]J , i.e., that [�G]J ([�G]

↑ω
J ) = [�G]

↑ω
J . We first demonstrate that

[�G]
↑ω
J � [�G]J ([�G]

↑ω
J ). Since [�G]

↑ω
J is the least upper bound of the sequence {[�G]

↑n
J }n<ω , we have that for every

n ≥ 0, [�G]
↑n
J � [�G]

↑ω
J . Using the monotonicity of [�G]J with respect to �, we get that for every n ≥ 0, [�G]

↑n+1
J =

[�G]J ([�G]
↑n
J ) � [�G]J ([�G]

↑ω
J ), or equivalently that [�G]J ([�G]

↑ω
J ) is an upper bound of the sequence {[�G]

↑n+1
J }n<ω .

Then [�G]J ([�G]
↑ω
J ) is also an upper bound of the sequence {[�G]

↑n
J }n<ω = {⊥} ∪ {[�G]

↑n+1
J }n<ω . But we know that

[�G]
↑ω
J is the least upper bound of this sequence, and therefore [�G]

↑ω
J � [�G]J ([�G]

↑ω
J ).

We now demonstrate that [�G]J ([�G]
↑ω
J ) � [�G]

↑ω
J , or equivalently that for all A ∈ N and for every w ∈ �∗,

[�G]J ([�G]
↑ω
J )(A)(w) ≤ [�G]

↑ω
J (A)(w). Consider arbitrary A ∈ N and w ∈ �∗. Since the sequence {[�G]

↑n
J }n<ω is in-

creasing with respect to � from Lemma 17 there exists some m < ω such that [�G]
↑ω
J /w = [�G]

↑m
J /w. From Lemma 18,

it is [�G]J ([�G]
↑ω
J )(A)(w) = [�G]J ([�G]

↑m
J )(A)(w) = [�G]

↑m+1
J (A)(w) ≤ [�G]

↑ω
J (A)(w). Therefore, it holds that [�G]J

([�G]
↑ω
J ) � [�G]

↑ω
J .

It remains to show that [�G]
↑ω
J is the least fixed-point of [�G]J with respect to �. Suppose that Q is another fixed-

point of [�G]J . It suffices to show that [�G]
↑ω
J � Q . We show by induction that [�G]

↑n
J � Q for every n ≥ 0. Obviously,

⊥ = [�G]
↑0
J � Q . Assume that [�G]

↑n
J � Q . Then, [�G]

↑n+1
J � [�G]J (Q) = Q , since we have assumed that Q is a fixed-

point of [�G]J . Consequently, [�G]
↑n
J � Q for every n ≥ 0, i.e.,Q is an upper bound of the sequence {[�G]

↑n
J }n<ω . Now, since

[�G]
↑ω
J is the least upper bound of the sequence {[�G]

↑n
J }n<ω , we get that [�G]

↑ω
J � Q , which proves [�G]

↑ω
J to be the least

fixed-point of [�G]J . �

Wewill denote byG(J) the least fixed-point [�G]
↑ω
J of [�G]J . Given a grammarG, we canuse theG operator to construct

a sequence of interpretations whose least upper boundMG (with respect to �F ) will prove to be a distinguished model of G.
Notice that here we have an essential difference with respect to the well-founded semantics of logic programming: there,
the construction of the well-founded model may require a transfinite number of iterations which is greater than ω. An
undesirable consequence of this fact is that the well-founded semantics of logic programs is not computable in the general
case. However, in the case of Boolean grammars, the model is constructed in at most ω iterations. Intuitively, this is due to
the following reasons: (i) Boolean grammars are finite, and (ii) the membership of a string w in the language defined by a
non-terminal, depends only on the memberships of a finite number of strings (namely the substrings of w) in finitely many
languages (corresponding to the non-terminal symbols of the grammar).

The definition of MG has as follows:

Definition 21. Let G = (�,N, P, S) be a Boolean grammar. Define:

MG,0 = ⊥F

MG,n+1 = G(MG,n)
MG = lub�F

{MG,n|n < ω}

From the above definition, it is not immediately obvious that MG is well-defined (since as we have remarked at the end of
Section 3, lub�F

is not always well-defined). However, as we are going to see shortly, the operator G is monotonic with
respect to �F and this ensures that the sequence {MG,n}n<ω is increasing (which ensures that lub�F

is well-defined).

Lemma 22. Let G = (�,N, P, S) be a Boolean grammar. Then,G ismonotonicwith respect to the�F ordering of interpretations.



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 953

Proof. Let J1, J2 be two interpretations of G such that J1 �F J2. We show that G(J1) �F G(J2), or equivalently that

[�G]
↑ω
J1

�F [�G]
↑ω
J2

. We first prove that for all n ≥ 0, [�G]
↑n
J1

�F [�G]
↑n
J2

. The proof is by induction on n. The basis case
obviously holds. Assume the statement holds for n; we demonstrate the case n + 1. Let A ∈ N and w ∈ �∗. We distinguish

two cases regarding the value of [�G]
↑n+1
J1

(A)(w).

Case 1: [�G]
↑n+1
J1

(A)(w) = 0, or equivalently [�G]J1 ([�G]
↑n
J1

)(A)(w) = 0. From Definition 14, this implies that for every

rule A → l1& · · ·&lr in P, either there exists a positive li such that
̂

([�G]
↑n
J1

)(li)(w) = 0, or there exists a negative li such that

Ĵ1(li)(w) = 0. In the former case, from Lemma 13 and the induction hypothesis, we obtain that there exists a positive li such

that
̂

([�G]
↑n
J2

)(li)(w) = 0. In the latter case, from Lemma 13 and the fact that J1 �F J2, we obtain that there exists a negative

li such that Ĵ2(li)(w) = 0. Therefore, [�G]
↑n+1
J2

(A)(w) = 0.

Case 2: Entirely analogous to the proof of Case 1.

We can now prove that [�G]
↑ω
J1

�F [�G]
↑ω
J2

. Suppose first that [�G]
↑ω
J1

(A)(w) = 1. Then there exists some m such

that [�G]
↑m
J1

(A)(w) = 1. Thus, it is also [�G]
↑m
J2

(A)(w) = 1, which implies that [�G]
↑ω
J2

(A)(w) = 1. Suppose now that

[�G]
↑ω
J1

(A)(w) = 0. Then [�G]
↑n
J1

(A)(w) = 0 for every n. Thus, it is also [�G]
↑n
J2

(A)(w) = 0 for every n, which implies that

[�G]
↑ω
J2

(A)(w) = 0. �

Apart fromitsmonotonicity,G hasanother importantproperty (which is theanalogueof thepropertydescribed inLemma18
for the [�G] operator):

Lemma 23. Let G = (�,N, P, S) be a Boolean grammar and let J1, J2 be interpretations of G. Let w ∈ �∗ and assume that

J1/w = J2/w. Then, for every A ∈ N, G(J1)(A)(w) = G(J2)(A)(w).

Proof. We first prove by induction on n that for every n ≥ 0, [�G]
↑n
J1

/w = [�G]
↑n
J2

/w.

Thebasis case is trivial. For the inductionhypothesis, let us assume that [�G]
↑n
J1

/w = [�G]
↑n
J2

/w. This implies that for every

substring u ofw, it is also [�G]
↑n
J1

/u = [�G]
↑n
J2

/u. Moreover, J1/u = J2/u. From Lemma18we obtain that [�G]
↑n+1
J1

(A)(u) =

[�G]
↑n+1
J2

(A)(u), for every A ∈ N and every substring u of w. Thus, [�G]
↑n+1
J1

/w = [�G]
↑n+1
J2

/w, which completes the
inductive proof.

Therefore, for every n and every A ∈ N, [�G]
↑n
J1

(A)(w) = [�G]
↑n
J2

(A)(w). The lemma follows from the definition of G .

�

Theorem 24. Let G = (�,N, P, S) be a Boolean grammar. Then, the sequence {MG,n}n<ω is increasing with respect to the �F

ordering of interpretations. Moreover,MG is the least fixed-point of the operator G.

Proof. Using the monotonicity of G with respect to the �F (Lemma 22), it can be proved (by similar arguments as in
Theorem 20) that the sequence {MG,n}n<ω is increasing with respect to �F and that MG �F G(MG).

In order to prove that MG is a fixed-point, it remains to prove that G(MG) �F MG . Consider arbitrary A ∈ N and w ∈
�∗. Since the sequence {MG,n}n<ω is increasing with respect to �F from Lemma 17 there exists some m < ω such that
MG/w = MG,m/w. From Lemma 23, G(MG)(A)(w) = G(MG,m)(A)(w) = MG,m+1(A)(w) ≤F MG(A)(w). In other words,
G(MG) �F MG .

Therefore, MG is a fixed-point of G . Using a similar reasoning as in Theorem 20, we can show that MG is actually the
least fixed-point of G with respect to the �F ordering. �

The above results lead to the following theorem, which demonstrates that MG satisfies all the rules of the grammar G:

Theorem 25. Let G = (�,N, P, S) be a Boolean grammar. Then,MG is a model of G (which will be called the well-founded model

of G).

Proof. It suffices to demonstrate that for every rule A→ l1& · · ·&lr in P and for every w∈�∗ it is MG(A)(w) ≥
M̂G(l1& · · ·&lr)(w). Let v = min{M̂G(l1)(w), . . . , M̂G(lr)(w)}. Then, for every li it is M̂G(li)(w) ≥ v. Now, since from The-
orem 24 it isMG = G(MG), for every li it is

̂(G(MG))(li)(w) ≥ v. This implies that there exists k ≥ 0 such that for all n ≥ k

and for every positive li,
̂

([�G]
↑n
MG

)(li)(w)≥v. ApplyingDefinition 14weget that for everyn≥k, ([�G]
↑n+1
MG

)(A)(w)≥v, which

implies that G(MG)(A)(w) ≥ v. But then from Theorem 24 we get thatMG(A)(w) ≥ v. Therefore,MG is a model of G. �

We now give an example that illustrates the well-founded construction as this has been defined above:

Example 26. Let G be the grammar given in Example 2. We will demonstrate that MG = M2, i.e., that in order to converge
to the well-founded model of G we need exactly two iterations of G .



954 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

First, recall that M0 =⊥F and M1 = G(M0) = [�G]
↑ω
⊥F

. Since C is defined by C → a|b, we easily obtain that for every

n ≥ 1 it holds [�G]
↑n

⊥F
(C)(a) = [�G]

↑n

⊥F
(C)(b) = 1 and [�G]

↑n

⊥F
(C)(w) = 0, for everyw ∈ �∗ − {a, b}. Moreover, for every

n ≥ 1 it holds

[�G]
↑n

⊥F
(A)(w) =

{
1, w = u1au2 where u1, u2 ∈ {a, b}∗ , |u1| = |u2| < n

0, otherwise

This can be proved by an easy induction on n. For the basis case (n = 1), it is [�G]
↑n

⊥F
(A)(a) = 1, which is derived from the

rule A → a. Suppose that the claim holds for n and consider a string w = c1u1au2c2, where u1, u2 ∈ {a, b}∗, c1, c2 ∈ {a, b},

|c1u1| = |c2u2| < n + 1. From the induction hypothesis it is [�G]
↑n

⊥F
(A)(u1au2) = 1 and since it is also [�G]

↑n

⊥F
(C)(a) =

[�G]
↑n

⊥F
(C)(b) = 1, from the rule A → CAC we obtain that [�G]

↑n+1

⊥F
(A)(w) = 1.

Therefore:

M1(A)(w) =

{
1, w = u1au2 where u1, u2 ∈ {a, b}∗, |u1| = |u2|
0, otherwise

and similarly:

M1(B)(w) =

{
1, w = u1bu2 where u1, u2 ∈ {a, b}∗, |u1| = |u2|
0, otherwise

Notice that the languages assigned byM1 to the non-terminalsA, B and C, which are defined by rules that are actually context-
free, coincide with the languages that would be assigned to these symbols by the standard derivation-based semantics of
context-free grammars.

On theotherhand, thedenotationof S remains completelyundefined inM1: since in theunique ruledefining S all conjuncts

are negative, in order to compute the value of [�G]
↑n

⊥F
(S)(w) for any n ≥ 1 and for any w ∈ �∗, we must use (according to

Definition 14) the interpretation⊥F in order to evaluate these conjuncts. Therefore, in all cases it is [�G]
↑n

⊥F
(S)(w) = 1

2
, and

therefore:

M1(S)(w) =
1

2

However, the situation regarding S changeswhenwe proceed to computeM2: it isM2 = G(M1) = [�G]
↑ω
M1

, and nowM1

contains all the information we need regarding the non-terminals A, B and C. Consider any stringw = uu, where u ∈ {a, b}∗.
Since w has an even length, it isM1(A)(w) = M1(B)(w) = 0, which implies M̂1(¬A)(w) = M̂1(¬B)(w) = 1. Moreover, for
every pair of odd length strings v1, v2 ∈ {a, b}∗ such that v1v2 = w, the symbols in the middle of v1 and v2 are identical (as
they are the ith and (i + |w|)th symbols of w, for some i). Therefore, if M1(A)(v1) = 1, then M1(B)(v2) = 0, which implies
that M̂1(AB)(w) = 0, or equivalently M̂1(¬AB)(w) = 1. Similarly we obtain that M̂1(¬BA)(w) = 1. Thus, from the rule

S → ¬(AB) & ¬(BA) & ¬A & ¬B we derive [�G]
↑n
M1

(S)(w) = 1, for every n ≥ 1. On the other hand, for any string w that is

not of the form uu, one of M̂1(¬A)(w), M̂1(¬B)(w), M̂1(¬AB)(w), M̂1(¬BA)(w) is 0, which implies that [�G]
↑n
M1

(S)(w) = 0.
In short,

[�G]
↑n
M1

(S)(w) =

{
1, w ∈ {uu|u ∈ �∗}
0, otherwise

Moreover, it holds that M2(V) = M1(V), for every V ∈ {A, B, C}, since the rules defining these symbols are negation-free.
Additionally,Mk = M2, for all k ≥ 2. Therefore,MG = M2. Notice that the language produced by this grammar is two-valued.

At this point we examine a natural question that springs to mind after the introduction of the three-valued well-founded
model. Sincemost of the currentwork in formal language theory is based on two-valued languages, it is reasonable towonder
whether the problem “Given a Boolean grammar G, is MG two-valued?” is decidable. The following theorem demonstrates
that this is not the case.

Theorem 27. The following problem is undecidable: “Given a Boolean grammar G = (�,N, P, S), decide whether for all w ∈ �∗,
MG(S)(w) ∈ {0, 1}”.

Proof. We present a reduction from the following well-known undecidable problem: “Given a context-free grammar over
an alphabet �, decide whether the language defined by this grammar is �∗”. Let G1 = (�,N1, P1, S1) be a context-free
grammar. Consider the Boolean grammar G = (�,N, P, S) where:

• N = N1 ∪ {S}, where S 
∈ N1,
• P = P1 ∪ {S → S1, S → ¬S}.



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 955

Suppose first that the language defined by G1 is �∗. We easily obtain thatMG(S1)(w) = 1 for everyw ∈ �∗, since the well-
founded semantics extends the standard semantics of context-free grammars. Since we also have the rule S → S1 in P, it
will also be the case that MG(S)(w) = 1 for every w ∈ �∗ (and thereforeMG is trivially two-valued).

For the other direction, suppose that for everyw ∈ �∗, it isMG(S)(w) ∈ {0, 1}. Since P contains the rule S → ¬S it cannot
beMG(S)(w) = 0 for anyw. Therefore, for everyw it holds thatMG(S)(w) = 1,which implies thatMG(S1)(w) = 1. Since the
well-founded semantics extends the standard semantics of context-free grammars, we get that w belongs to the language
defined by G1. �

Closing this section, we can now state the relationship between the well-founded semantics and the naturally reachable
semantics of Boolean grammars. For the definition of the naturally reachable solution and the related terminology the reader
is referred to [8] or the definition given in Section 2.

Theorem 28. Suppose that a Boolean grammar G has a two-valued (i.e.,with values 0 and 1) well-founded semantics. Then the

naturally reachable solution for this grammar either coincides with the well-founded semantics or is undefined.

Proof. We present an outline of the proof.
Let {X1, . . . , Xn} be the set of non-terminal symbols in G and assume that G has a two-valued well-founded model MG .

Then,MG(Xi) can be thought of as a two-valued language, i.e., as a set of strings.Moreover, let X1 = φ1(X1, . . . , Xn), . . . , Xn =
φn(X1, . . . , Xn) be the system of equations that corresponds to G and assume that it has a naturally reachable solution
L = (L1, . . . , Ln).

Suppose for the sake of contradiction that L /= (MG(X1), . . . ,MG(Xn)). Let w be a string of minimum length for which
there exists an index j such that w belongs to exactly one of MG(Xj) and Lj . Consider the modulus M that consists of all
the proper substrings ofw. From the definition ofw, we have (L1 ∩ M, . . . , Ln ∩ M) = (MG(X1) ∩ M, . . . ,MG(Xn) ∩ M) and
(L1 ∩ (M ∪ {w}), . . . , Ln ∩ (M ∪ {w})) /= (MG(X1) ∩ (M ∪ {w}), . . . ,MG(Xn) ∩ (M ∪ {w})).

DefineQ ={Xi|MG(Xi)(w)=1}. For everyXi ∈Q there exist two integers ni,mi with the following properties:MG,ni(Xi)(w)

=1, MG,ni−1(Xi)(w)= 1
2
, [�G]

↑mi

MG,ni−1
(Xi)(w)=1 and [�G]

↑mi−1
MG,ni−1

(Xi)(w) /=1. Intuitively, ni and mi indicate the point in the

construction ofMG where the fact thatMG(Xi)(w) = 1 is obtained. For every Xi, Xj ∈Q wewrite Xi � Xj if ni < nj or ni = nj
andmi ≤ mj . Informally, Xi � Xj if MG(Xi)(w) takes the value 1 not later than MG(Xj)(w) does in the construction of MG .

Consider now a sequence Xk0 , Xk1 , . . . , Xk|Q |−1
, such that Xkj � Xkj+1

for all j, in which every element of Q appears exactly

once. We construct a specific sequence of vectors of the form L(0), L(1), . . . , L(i), . . . , L(|Q |), where L(0) = (L1 ∩ M, . . . , Ln ∩

M) = (MG(X1) ∩ M, . . . ,MG(Xn) ∩ M) and L(i+1) is obtained from L(i) by substituting the (ki)th componentwithφki(L
(i)) ∩

(M ∪ {w}). It can be proved by induction that before the ith step the (ki)th component of L(i) is MG(Xki) ∩ M and that this
step replaces it with (MG(Xki) ∩ M) ∪ {w} = MG(Xki) ∩ (M ∪ {w}). That is, the result of the ith step is the insertion ofw in
the (ki)th component. The proof is based on two observations: the first is that all the information that was used to decide

that w ∈ MG(Xki), also appears in L(i), which implies that w ∈ φki(L
(i)); the second is that the membership of every string

inM in the (ki)th component remains unchanged after the application of φki , since L is a solution of the system of equations.
Based on the above, it is easy to prove that the selected sequence converges to (MG(X1) ∩ (M ∪ {w}), . . . ,MG(Xn) ∩ (M ∪

{w})). On the other hand, since L is a naturally reachable solution, the sequence converges to (L1 ∩ (M ∪ {w}), . . . , Ln ∩
(M ∪ {w})). Therefore, (L1 ∩ (M ∪ {w}), . . . , Ln ∩ (M ∪ {w})) = (MG(X1) ∩ (M ∪ {w}), . . . ,MG(Xn) ∩ (M ∪ {w})), which
is a contradiction. �

It is easy to see that if a Boolean grammar has a naturally reachable solution semantics, then it is possible that this
semantics differs from the well-founded one. For example, in the four-rule grammar of Section 2 (the one given just after
Definition 3), the well-founded semantics assigns the ⊥F interpretation to all the non-terminal symbols of the grammar.
Notice that although the naturally reachable semantics for this grammar is defined, it appears to be counterintuitive.

5. Normal form

In this section, we demonstrate that every Boolean grammar can be converted into an equivalent one that belongs to a
binary normal form. Based on this normal form, in Section 6 we derive an O(n3) parsing algorithm for Boolean grammars.
The binary normal form is defined as follows:

Definition 29. A Boolean grammar G = (�,N ∪ {U, T}, P, S) is said to be in binary normal form if P contains the rules
U → ¬U and T → ¬ǫ, where U and T are two special symbols not in N, and every other rule in P is of the form:

A → B1C1& · · ·&BmCm&¬D1E1& · · ·&¬DnEn&TT[&U] (m, n ≥ 0)
A → a[&U]
S → ǫ[&U] (only if S does not appear in right-hand sides of rules)

where A, Bi, Ci,Dj , Ej ∈ N, a ∈ �, and the brackets denote an optional part.



956 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

The main theorem of this section is the following:

Theorem 30. Let G = (�,N, P, S) be a Boolean grammar. Then there exists a grammar G′ = (�,N′, P′, S) in binary normal form

such that MG(S) = MG′(S).

The proof of Theorem 30 is based on the definition of certain meaning-preserving grammar transformations. It can be easily
checked that each transformation step can be effectively performed; in other words, the normal form of a given grammar G
can be constructed from G in an algorithmic way.

The normal formwe derive, generalizes the well-known Chomsky normal form for context-free grammars as-well-as the
binary normal form for Boolean grammars introduced in [8]. Actually, certain of the steps we adopt, were initially proposed
in [8], themain difference being that the binary normal formobtained there, always produces two-valued Boolean languages.

The steps of the proposed procedure, can be summarized as follows:

• The initial Boolean grammar is first brought into pre-normal form. This is just a simpler and more manageable form of
the initial grammar.

• The grammar is then transformed into direct form. This means that if a non-terminal of the previous form of the grammar
could produce a string of length one (possibly through the use of many rules), then this fact is recorded by using a single
rule in the new grammar. The same happens even if the status of the string of length one was undefined in the previous
grammar.

• The next step is to bring the grammar into an ǫ-free form, i.e., a form in which no non-terminal produces the string ǫ.
• Thefinal step is tobring thegrammar intoabinarynormal form, i.e., a form inwhich the “long” rulesof thegrammar contain
conjunctswhichconsist of twonon-terminals (with thepossible exceptionof thenon-terminalU, seeDefinition29above).

In the rest of this section, we will describe one-by-one the above transformation steps.

5.1. Pre-normal form

Consider a Boolean grammar G = (�,N, P, S). Without loss of generality we may assume that S does not appear in the
right-hand side of any rule (otherwise we can replace S with S′ in every rule, and add a rule S → S′). Initially, we bring the
grammar into a form, which we call pre-normal form:

Definition 31. A Boolean grammar G = (�,N, P, S) is said to be in pre-normal form if every rule in P is of the form:

A → B1& · · ·&Bm&¬C1& · · ·&¬Cn (m + n ≥ 1, Bi, Cj ∈ N ∪ {ǫ})
A → BC (B, C ∈ N)
A → a (a ∈ �)

In order to prove that for every Boolean grammar there exists an equivalent one in pre-normal form, we need the following
lemma:

Lemma 32. Let G = (�,N, P, S), G′ = (�,N ∪ {Bβ}, P′ ∪ {Bβ → β}, S) be two Boolean grammars, such that:

• Bβ 
∈ N

• β ∈ (� ∪ N)+

• P is obtained from P′ by replacing in every rule each occurrence of Bβ with β.

Then, for every A ∈ N,MG(A) = MG′(A).

Proof. It suffices to show that for every A ∈ N, MG,n(A) = MG′ ,n(A). In order to establish this fact we will use the following
idea. Let J, J′ be interpretations for G and G′, respectively, such that J(A) = J′(A) for every A ∈ N and Ĵ(β) = J′(Bβ). We will

demonstrate that for every A ∈ N,G(J)(A) = G′(J′)(A). This result will then be used in the inductive proof of the fact that
for all n,MG,n(A) = MG′ ,n(A).

We start by proving some useful facts. First notice that P′ does not contain any rule that defines Bβ , since Bβ 
∈ N.

Thus, the only rule in G′ that defines Bβ is Bβ → β , which from Definition 14 implies that for every n > 0, [�G′ ]
↑n

J′
(Bβ) =

̂
([�G′ ]

↑n−1

J′
)(β). Moreover, since the sequence {[�G]

↑n

J′
}n<ω is increasing with respect to� (Theorem 20) and [�G′ ]

↑0

J′
= ⊥,

we obtain that for every n ≥ 0 and for all w ∈ �∗ it holds [�G′ ]
↑n

J′
(Bβ)(w) ≤

̂
([�G′ ]

↑n

J′
)(β)(w).

In order to show that for all A ∈ N, G(J)(A) = G′(J′)(A), we prove by induction on n that for every A ∈ N and for all

w ∈ �∗ it is [�G′ ]
↑n

J′
(A)(w) ≤ [�G]

↑n
J (A)(w) ≤ [�G′ ]

↑2n

J′
(A)(w).

The basis case is obvious since [�G′ ]
↑0

J′
= [�G]

↑0
J = ⊥. Assume the statement holds for n; we demonstrate that

[�G′ ]
↑n+1

J′
(A)(w) ≤ [�G]

↑n+1
J (A)(w) ≤ [�G′ ]

↑2n+2

J′
(A)(w).



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 957

Define the intermediate interpretation I′:

I′(C) =

⎧
⎨
⎩
[�G′ ]

↑2n

J′
(C), C ∈ N

[�G′ ]
↑2n+1

J′
(C), C = Bβ

Then, [�G′ ]
↑2n

J′
� I′ � [�G′ ]

↑2n+1

J′
. Furthermore, I′(Bβ) = [�G′ ]

↑2n+1

J′
(Bβ) = [�G′ ]

↑2n

J′
(β) = Î′(β).

Consider any ruleA → γ1& · · ·&γm&¬δ1& · · ·&¬δr in P. From the definition ofG andG′, there is a rule A → γ ′
1& · · ·&γ ′

m
&¬δ′

1& · · ·&¬δ′
r in P′, such that each γi (or δj) has resulted by replacing every occurrence of Bβ in γ ′

i (respectively, δ
′
i ) withβ .

Then, it is easy to see that Î′(γi) = Î′(γ ′
i ). From the induction hypothesis, using the fact that [�G′ ]

↑n

J′
(Bβ)(w) ≤

̂
([�G′ ]

↑n

J′
)(β)(w), we get:

̂
([�G′ ]

↑n

J′
)(γ ′

i )(w) ≤
̂

([�G′ ]
↑n

J′
)(γi)(w) ≤

̂
([�G]

↑n
J )(γi)(w) ≤

̂
([�G′ ]

↑2n

J′
)(γi)(w) ≤ Î′(γi)(w) =

Î′(γ ′
i )(w) ≤

̂
([�G′ ]

↑2n+1

J′
)(γ ′

i )(w). Furthermore, from the definition of J, J′ we have that Ĵ(δj) = Ĵ′(δj) = Ĵ′(δ′
j ).

The above facts imply that if there exists a rule A → γ1& · · ·&γm&¬δ1& · · ·&¬δr in P such that
̂

([�G]
↑n
J )(γi)(w) = 1 for

every i and Ĵ(δj)(w) = 0 for every j, then there exists a corresponding rule A → γ ′
1& · · ·&γ ′

m&¬δ′
1& · · ·&¬δ′

r in P′ such that
̂

([�G′ ]
↑2n+1

J′
)(γ ′

i )(w) = 1 for every i and Ĵ′(δ′
j )(w) = 0 for every j. Thus, if [�G]

↑n+1
J (A)(w) = [�G]J([�G]

↑n
J )(A)(w) = 1,

then [�G′ ]
↑2n+2

J′
(A)(w) = [�G′ ]J′([�G′ ]

↑2n+1

J′
)(A)(w) = 1. In the same way we get that, if [�G′ ]

↑2n+2

J′
(A)(w) = 0, then

[�G]
↑n+1
J (A)(w) = 0, which implies that if [�G]

↑n+1
J (A)(w) = 1

2
, then [�G′ ]

↑2n+2

J′
(A)(w) ≥ 1

2
. Therefore, in any case it

holds [�G]
↑n+1
J (A)(w) ≤ [�G′ ]

↑2n+2

J′
(A)(w).

In order to prove that [�G′ ]
↑n+1

J′
(A)(w) ≤ [�G]

↑n+1
J (A)(w), we consider analogous cases as above (using the fact that

̂
([�G′ ]

↑n

J′
)(γ ′

i )(w) ≤
̂

([�G]
↑n
J )(γi)(w) and Ĵ(δj) = Ĵ′(δ′

j )).

Therefore, for all n ≥ 0, [�G′ ]
↑n

J′
(A)(w) ≤ [�G]

↑n
J (A)(w) ≤ [�G′ ]

↑2n

J′
(A)(w).

From thedefinition ofG , the above two inequalities imply thatG(J)(A) = G′(J′)(A), for everyA ∈ N. This implies that,

̂G(J)(β) = ̂G′(J′)(β). Since we have shown that [�G′ ]
↑2n+1

J′
(Bβ) =

̂
([�G′ ]

↑2n

J′
)(β), we have G′(J′)(Bβ) = ̂G′(J′)(β).

Combining the last two equalities we have G′(J′)(Bβ) = ̂G(J)(β).
Using the above facts and an easy induction on n, we can prove that MG,n(A) = MG′ ,n(A) from which the lemma follows.

�

Lemma 33. Let G = (�,N, P, S) be a Boolean grammar. Then, there exists a Boolean grammar G′ = (�,N′, P′, S) in pre-normal

form, such that MG(S) = MG′(S).

Proof. The Boolean grammar G′ is constructed from G, using a transformation that consists of three steps. In the first step,
terminal symbols are eliminated from rules containing Boolean connectives or concatenation. This is obtained by adding
a new rule Aa → a, for every terminal symbol a ∈ �, where Aa is a new non-terminal symbol, and then replacing every
occurrence of a in the rules of the above kind by Aa.

The second step of the transformation eliminates concatenation from the rules of the new grammar containing conjunc-
tion. In order to do this, for every β ∈ N∗ with |β| ≥ 2, such that at least one of the literals β or ¬β appears in the body of
some rule that contains conjunction, we add a new rule Bβ → β , where Bβ is a new non-terminal symbol. Then, we replace
every occurrence of literal β (or ¬β) by Bβ (respectively, ¬Bβ ) in any rule with conjunction.

Finally, the third step of the transformation eliminates long concatenations. More specifically, while there exists a rule
A → B1B2B3 . . . Bk with k ≥ 3 in the current grammar, we pick a new non-terminal D and replace this rule by the rules
A → DB3 . . . Bk and D → B1B2.

It is easy to see that the third step, after finitely many iterations, produces a Boolean grammar G′ in pre-normal form.
Moreover, fromLemma32 (which is applied several times for each stepof the transformation) it follows thatMG(S) = MG′(S).
�

5.2. Direct form

Based on the pre-normal form derived in the previous section, we now construct the direct form of the grammar: if a
string of length one can be produced by a non-terminal in the previous form of the grammar, then a rule expressing directly
this fact is inserted into the grammar.

Definition 34. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form. Then, the direct form of G, denoted by Gδ ,
is the Boolean grammar Gδ = (�,N ∪ {U}, P ∪ R, S), where U /∈ N is a special non-terminal symbol that represents the set



958 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

in which all strings have the value 1
2
and R={U → ¬U} ∪ {A → a|a ∈ �, A ∈ N and MG(A)(a) = 1} ∪ {A → a&U|a∈�,

A ∈ N and MG(A)(a) = 1
2
}.

The proof of the following lemma (as-well-as of Lemma 37 later on) are quite straightforward but rather tedious since
they require lengthy inductions and the analysis of different cases that are quite similar in their treatment. The proof given
below adapts and uses a well-known technique from the theory of programming languages (see for example [12] [pp. 209]):
in order to show that two grammars, say G1 and G2, are equivalent, it suffices to show that the well-founded model of each
grammar is a fixed-point of the  operator of the other grammar. In other words, it suffices to show that MG1

= G2
(MG1

)
and MG2

= G1
(MG2

). Then, since we know that the least fixed-point of G1
is MG1

and the least fixed-point of G2
is MG2

,
we get thatMG1

�F MG2
andMG2

�F MG1
, which implies thatMG1

= MG2
. The proof of the following lemma illustrates in a

more precise way this technique:

Lemma 35. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form, and let Gδ = (�,N ∪ {U}, P ∪ R, S) be its direct

form. Then, for every C ∈ N and for every w ∈ �∗,MG(C)(w) = MGδ
(C)(w).

Proof. We demonstrate that an appropriate extension of MG to N ∪ {U}, which we denote by M∗

G , is a fixed-point of Gδ
.

Similarly, we argue that the restriction of MGδ
to N, which we denote by M

−
Gδ
, is a fixed-point of G . The result then follows

easily.
DefineM∗

G so thatM∗

G(C) = MG(C) for every C ∈ N andM∗

G(U)(w) = 1
2
for everyw ∈ �∗. We claim thatM∗

G = Gδ
(M∗

G).
It suffices to show that for all A ∈ N ∪ {U} and all w ∈ �∗, it is M∗

G(A)(w) = Gδ
(M∗

G)(A)(w).

Suppose first that A = U. Since M∗

G(U)(w) = 1
2
and the only rule in P ∪ R that defines U is U → ¬U, it follows that

[�G]
↑n

M∗

G
(U)(w) = 1

2
, for every w and for every n ≥ 1. Therefore Gδ

(M∗

G)(U)(w) = 1
2

= M∗

G(U)(w).

Consider now the remaining case, namely A ∈ N. We know that M∗

G(A)(w) = MG(A)(w) = G(MG)(A)(w) (from the
definition ofM∗

G and from the fact thatMG is a fixed-point of G). Therefore, it suffices to prove that for every A ∈ N and for
every w ∈ �∗, G(MG)(A)(w) = Gδ

(M∗

G)(A)(w). In order to prove this, we will first show that there exists some integer

constant k such that for every n, [�G]
↑n
MG

(A)(w) ≤
[
�Gδ

]↑n

M∗

G
(A)(w) ≤ [�G]

↑n+k
MG

(A)(w). We select k as follows: consider any

B ∈ N and a ∈ �. Since MG(B)(a) = G(MG)(B)(a) from the definition of the G operator there exists a least integer kB,a

such that MG(B)(a) = [�G]
↑kB,a
MG

(B)(a). We now define k = max{kB,a|B ∈ N, a ∈ �}.

We now prove by induction on n that for every n ≥ 0, for ever A ∈ N and for every w ∈ �∗, [�G]
↑n
MG

(A)(w)

≤
[
�Gδ

]↑n

M∗

G
(A)(w) ≤ [�G]

↑n+k
MG

(A)(w). The basis case is obvious, since [�G]
↑0
MG

(A)(w) =
[
�Gδ

]↑0

M∗

G
(A)(w) = 0. Assume the

statement holds for n; we first demonstrate that
[
�Gδ

]↑n+1

M∗

G
(A)(w) ≤ [�G]

↑n+k+1
MG

(A)(w).

Suppose first that
[
�Gδ

]↑n+1

M∗

G
(A)(w) = 1. If this value is obtained using a rule in P, then using the induction hypothesis

and the relationship between MG and M∗

G , we get that [�G]
↑n+k+1
MG

(A)(w) = 1. On the other hand, if this value is obtained

using a rule A → a in R, then w = a and from the construction of Gδ it is MG(A)(a) = 1. From the definition of k we have

[�G]
↑n+k+1
MG

(A)(w) = 1.

Next, suppose that
[
�Gδ

]↑n+1

M∗

G
(A)(w) = 1

2
. Suppose for the sake of contradiction that [�G]

↑n+k+1
MG

(A)(w) = 0. If w =

α ∈ �, then from the definition of k, it isMG(A)(a) = 0. Therefore, all the rules in Rwith head A are of the form A → b, with

b /= w. Using the inductionhypothesis and the relationshipbetweenMG andM∗

G ,weeasilyobtain that
[
�Gδ

]↑n+1

M∗

G
(A)(w) = 0,

which is a contradiction. Therefore, [�G]
↑n+k+1
MG

(A)(w) ≥ 1
2
.

Finally, thecase inwhich
[
�Gδ

]↑n+1

M∗

G
(A)(w)=0 is trivial. Therefore, inanycase it is

[
�Gδ

]↑n+1

M∗

G
(A)(w)≤[�G]

↑n+k+1
MG

(A)(w).

Now, in order to prove that [�G]
↑n+1
MG

(A)(w) ≤
[
�Gδ

]↑n+1

M∗

G
(A)(w), we observe that the set of rules of G that define A, is a

subset of the corresponding set of rules of Gδ . This implies, using the induction hypothesis and the relationship betweenMG

and M∗

G , that if [�G]
↑n+1
MG

(A)(w) = 1 then
[
�Gδ

]↑n+1

M∗

G
(A)(w) = 1 and if

[
�Gδ

]↑n+1

M∗

G
(A)(w) = 0 then [�G]

↑n+1
MG

(A)(w) = 0

from which our claim follows immediately.
From the definition of the  operator, we get G(MG)(A)(w) = Gδ

(M∗

G)(A)(w). Thus, we have proved that M∗

G =
Gδ

(M∗

G). SinceMGδ
is the least fixed-point of Gδ

with respect to �F , this implies that MGδ
�F M∗

G .

Now, let M
−
Gδ

be the restriction of MGδ
to N. In order to use a similar technique as above, we need to show that for every

A ∈ N and for every a ∈ �, [�G]
↑k

M
−
Gδ

(A)(a) = MG(A)(a).

We first show that MG(A)(a) = M
−
Gδ

(A)(a). From MGδ
�F M∗

G , it follows that M
−
Gδ

(A)(a) ≤F MG(A)(a). Furthermore,

MG(A)(a) ≤F M
−
Gδ

(A)(a) follows from the following two facts:



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 959

• if MG(A)(a) = 1, then R contains the rule A → a and
• if MG(A)(a) = 0, then the rules in R that define A are of the form A → bwith b /= a.

Therefore, for every A ∈ N and for every a ∈ �, MG(A)(a) = M
−
Gδ

(A)(a), which by a simple induction on n, gives that

[�G]
↑n
MG

(A)(a) = [�G]
↑n

M
−
Gδ

(A)(a). In particular [�G]
↑k

M
−
Gδ

(A)(a) = [�G]
↑k
MG

(A)(a) = MG(A)(a).

Now it is easy to prove that for every n, for every A ∈ N and for every w ∈ �∗, [�G]
↑n

M
−
Gδ

(A)(w) ≤
[
�Gδ

]↑n
MGδ

(A)(w) ≤

[�G]
↑n+k

M
−
Gδ

(A)(w). This implies that G(M
−
Gδ

)(A)(w) = Gδ
(MGδ

)(A)(w) = MGδ
(A)(w) = M

−
Gδ

(A)(w), that isM−
Gδ

is a fixed-

point of G . SinceMG is the least fixed-point of G with respect to �F , we obtain thatMG �F M
−
Gδ
. Combining withMGδ

�F

M∗

G , we get that for every A ∈ N and for every w ∈ �∗, it is MG(A)(w) = MGδ
(A)(w). �

5.3. ǫ-Free form

The direct form of the grammar can now be transformed into the ǫ-free form, i.e., a form in which no non-terminal
produces the string ǫ.

Definition 36. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form and let Gδ = (�,N ∪ {U}, Pδ , S) be its direct
form. The ǫ-free version of G, denoted by Gǫ , is the Boolean grammar (�,N ∪ {U}, Pǫ , S) where Pǫ is obtained as follows:

1. For every rule of the form A → B1& · · ·&Bm&¬C1& · · ·&¬Cn, (m + n ≥ 1, Bi, Cj ∈ N ∪ {ǫ}) in Pδ

• If Bi = ǫ for some i, then the rule is ignored in the construction of Pǫ .
• Otherwise, if Ci = ǫ for some i, then the rule is included in Pǫ as it is.
• Otherwise, Pǫ contains the rule A → B1& · · ·&Bm&¬C1& · · ·&¬Cn&¬ǫ.

2. For every rule of the form A → BC (B, C ∈ N) in Pδ

• Pǫ contains the rule A → BC&¬ǫ.
• If MG(B)(ǫ) = 1 (respectively, MG(C)(ǫ) = 1), then Pǫ contains the rule A → C&¬ǫ (respectively, the rule
A → B&¬ǫ).

• If MG(B)(ǫ) = 1
2

(respectively, MG(C)(ǫ) = 1
2
), then Pǫ contains the rule A → C&U&¬ǫ (respectively, the rule

A → B&U&¬ǫ).

3. All the other rules in Pδ (i.e., the rules of the form U → ¬U, A → a, and A → a&U, where a ∈ �) are retained in Pǫ .

Lemma 37. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form, let Gδ = (�,N ∪ {U}, Pδ , S) be its direct form, and
let Gǫ = (�,N ∪ {U}, Pǫ , S) be its ǫ-free version. Then, for every A ∈ N and for every w ∈ �+, MG(A)(w) = MGǫ (A)(w).

Proof. We demonstrate that a slightly modified version of MGδ
, which we denote by M∗

Gδ
, is a fixed-point of Gǫ . Similarly,

we argue that a slightly modified version M
+
Gǫ

of MGǫ is a fixed-point of Gδ
. The result then follows easily.

We start by defining the interpretationM∗

Gδ
:

M∗

Gδ
(A)(w) =

{
MGδ

(A)(w), w /= ǫ
0, otherwise

We claim that M∗

Gδ
= Gǫ (M

∗

Gδ
). It suffices to show that for all A ∈ N and all w ∈ �∗, it is M∗

Gδ
(A)(w) = Gǫ (M

∗

Gδ
)(A)(w).

We distinguish two cases. The first case is for w = ǫ. Since every rule that defines A in Gǫ has a conjunct that is either

¬ǫ or a terminal symbol, by an easy induction on n, we obtain that
[
�Gǫ

]↑n

M∗

Gδ

(A)(ǫ) = 0 for every A ∈ N. Therefore,

Gǫ (M
∗

Gδ
)(A)(ǫ) = 0 = M∗

Gδ
(A)(ǫ).

Consider now the second case, namely w /= ǫ. We know that M∗

Gδ
(A)(w) = MGδ

(A)(w) = Gδ
(MGδ

)(A)(w) (from the

definition of M∗

Gδ
and from the fact that MGδ

is a fixed-point of Gδ
). Thus, it suffices to prove that Gδ

(MGδ
)(A)(w) =

Gǫ (M
∗

Gδ
)(A)(w). In order to prove this it suffices to prove that there exists some constant k such that for every n,

[
�Gδ

]↑n
MGδ

(A)(w) ≤
[
�Gǫ

]↑n

M∗

Gδ

(A)(w) ≤
[
�Gδ

]↑n+k
MGδ

(A)(w). We select k as follows: consider any symbol B ∈ N. Since

MGδ
(B)(ǫ)=Gδ

(MGδ
)(B)(ǫ) from the definition ofGδ

, there exists a least integer kB such thatMGδ
(B)(ǫ)=

[
�Gδ

]↑kB
MGδ

(B)(ǫ).

We define k = max{kB|B ∈ N}.

We will prove by induction on n that for every n ≥ 0, for every A ∈ N and for all w ∈ �+ it is:
[
�Gǫ

]↑n

M∗

Gδ

(A)(w) ≤

[
�Gδ

]↑n+k
MGδ

(A)(w).



960 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

The basis case is obvious, since
[
�Gǫ

]↑0

M∗

Gδ

(A)(w) = 0. Assume the statement holds for n; we demonstrate that

[
�Gǫ

]↑n+1

M∗

Gδ

(A)(w) ≤
[
�Gδ

]↑n+k+1
MGδ

(A)(w). We distinguish three cases:

Case 1:
[
�Gǫ

]↑n+1

M∗

Gδ

(A)(w) = 1. We examine in Pǫ the rule types that may have forced the value of
[
�Gǫ

]↑n+1

M∗

Gδ

(A)(w) to

become equal to 1 (notice that we need to consider only rules that do not have the conjunct U in their bodies):

• A → a. This implies that w = a. Moreover, this rule also appears in Pδ . Therefore,
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

• A → B1& · · ·&Bm&¬C1& · · ·&¬Cr&¬ǫ,whichalso appears inPδ (possiblywithout the¬ǫ at theend). FromDefinition14,

we have that for all Bi it is
[
�Gǫ

]↑n

M∗

Gδ

(Bi)(w) = 1 and for all Cj it is M̂
∗

Gδ
(¬Cj)(w) = 1. From the induction hypothesis, we

have
[
�Gδ

]↑n+k
MGδ

(Bi)(w) = 1 for all Bi, and from the definition of M∗

Gδ
we have M̂Gδ

(¬Cj)(w) = 1 for all Cj . Since Pδ also

contains this rule, we have
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

• A → BC&¬ǫ. Then thereexistw1,w2 ∈ �∗ such thatw1w2 = w andalso
[
�Gǫ

]↑n

M∗

Gδ

(B)(w1) = 1and
[
�Gǫ

]↑n

M∗

Gδ

(C)(w2)=

1. Since
[
�Gǫ

]↑n

M∗

Gδ

(B)(ǫ) =
[
�Gǫ

]↑n

M∗

Gδ

(C)(ǫ) = 0, we have that w1 /= ǫ and w2 /= ǫ. From the induction hypothesis we

have
[
�Gδ

]↑n+k
MGδ

(B)(w1) = 1 and
[
�Gδ

]↑n+k
MGδ

(C)(w2) = 1. Moreover, Pδ contains the rule A → BC, which implies that
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

• A → B&¬ǫ, where Pδ contains the rule A → BC (or the rule A → CB) for some C such that MGδ
(C)(ǫ) = 1. Then, it is

[
�Gǫ

]↑n

M∗

Gδ

(B)(w) = 1. From the induction hypothesis we have
[
�Gδ

]↑n+k
MGδ

(B)(w) = 1. Furthermore, from the selection

of k we have that
[
�Gδ

]↑n+k
MGδ

(C)(ǫ) = 1. Consequently,
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

Case 2:
[
�Gǫ

]↑n+1

M∗

Gδ

(A)(w) = 1
2
. We will show that

[
�Gδ

]↑n+k+1
MGδ

(A)(w) ≥ 1
2
, or equivalently that

[
�Gδ

]↑n+k+1
MGδ

(A)(w) /= 0.

Suppose for the sake of contradiction that
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0. We examine the rules that define A in Pǫ . Each of them

has one of the following types:

• A → a[&U]. But then, this rule also exists in Pδ . Since
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0, we have that a /= w, which implies

̂
(
[
�Gǫ

]↑n

M∗

Gδ

)(a)(w) = 0.

• A → B1& · · ·&Bm&¬C1& · · ·&¬Cr&¬ǫ,whichalso appears inPδ (possiblywithout the¬ǫ at theend). FromDefinition14,[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0 implies that either there exists some Bi such that
[
�Gδ

]↑n+k
MGδ

(Bi)(w) = 0, or there exists some

Cj such that M̂Gδ
(¬Cj)(w) = 0. From the induction hypothesis and the definition ofM∗

Gδ
we have that either there exists

some Bi such that
[
�Gǫ

]↑n

M∗

Gδ

(Bi)(w) = 0, or there exists some Cj such that M̂∗

Gδ
(¬Cj)(w) = 0.

• A → BC&¬ǫ. But then, Pδ contains the rule A → BC. Thus, the fact that
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0 implies that for

every w1,w2 such that w1w2 = w we have that either
[
�Gδ

]↑n+k
MGδ

(B)(w1) = 0 or
[
�Gδ

]↑n+k
MGδ

(C)(w2) = 0. But then,

by the induction hypothesis, together with the fact that
[
�Gǫ

]↑n

M∗

Gδ

(B)(ǫ) =
[
�Gǫ

]↑n

M∗

Gδ

(C)(ǫ) = 0, we have that for

every w1,w2 such that w1w2 = w it will be either
[
�Gǫ

]↑n

M∗

Gδ

(B)(w1) = 0 or
[
�Gǫ

]↑n

M∗

Gδ

(C)(w2) = 0. This implies that

̂
(
[
�Gǫ

]↑n

M∗

Gδ

)(BC)(w) = 0.

• A → B[&U]&¬ǫ. But then, the rule A → BC (or the rule A → CB) belongs to Pδ for some C such that MGδ
(C)(ǫ) ≥ 1

2
.

From the selection of k we have that
[
�Gδ

]↑n+k
MGδ

(C)(ǫ) = MGδ
(C)(ǫ) ≥ 1

2
. Now, since

[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0 it must

be the case that
[
�Gδ

]↑n+k
MGδ

(B)(w) = 0. From the induction hypothesis, this implies that
[
�Gǫ

]↑n

M∗

Gδ

(B)(w) = 0.

Therefore, for each rule that defines A in Pǫ , there either exists a positive li such that
̂

(
[
�Gǫ

]↑n

M∗

Gδ

)(li)(w) = 0 or a negative

li such that M̂∗

Gδ
(li)(w) = 0. FromDefinition 14, this implies that

[
�Gǫ

]↑n+1

M∗

Gδ

(A)(w) = 0, which is a contradiction. Therefore,

[
�Gδ

]↑n+k+1
MGδ

(A)(w) ≥ 1
2
.

Case 3:
[
�Gǫ

]↑n+1

M∗

Gδ

(A)(w) = 0. In this case our claim obviously holds.



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 961

Thus, we have proved that
[
�Gǫ

]↑n

M∗

Gδ

(A)(w) ≤
[
�Gδ

]↑n+k
MGδ

(A)(w). By using a similar inductive proof, we can show that

for every n,
[
�Gδ

]↑n
MGδ

(A)(w) ≤
[
�Gǫ

]↑n

M∗

Gδ

(A)(w).

All the above lead us to the conclusion that M∗

Gδ
= Gǫ (M

∗

Gδ
). Since MGǫ is the least fixed-point of Gǫ with respect to

�F , this implies thatMGǫ �F M∗

Gδ
.

Now, it remains to show that a slightly modified version of MGǫ is a fixed-point of Gδ
. More specifically, define:

M
+
Gǫ

(A)(w) =

{
MGǫ (A)(w), w /= ǫ
MGδ

(A)(w), w = ǫ

We claim that M
+
Gǫ

= Gδ
(M+

Gǫ
). It suffices to show that for all A ∈ N and all w ∈ �∗, it is M

+
Gǫ

(A)(w) = Gδ
(M+

Gǫ
)(A)(w).

For w = ǫ, using the fact that M
+
Gǫ

(A)(ǫ) = MGδ
(A)(ǫ), we can prove by an easy induction on n that

[
�Gδ

]↑n

M
+
Gǫ

(A)(ǫ) =

[
�Gδ

]↑n
MGδ

(A)(ǫ) for every A ∈ N. Therefore, Gδ
(M+

Gǫ
)(A)(ǫ) = Gδ

(MGδ
)(A)(ǫ) = MGδ

(A)(ǫ) = M
+
Gǫ

(A)(ǫ).

For w /= ǫ, it suffices to prove that Gδ
(M+

Gǫ
)(A)(w) = Gǫ (MGǫ )(A)(w). In order to prove this it suffices to prove that

for every n,
[
�Gδ

]↑n

M
+
Gǫ

(A)(w) ≤
[
�Gǫ

]↑n
MGǫ

(A)(w) ≤
[
�Gδ

]↑n+k

M
+
Gǫ

(A)(w). This can be proven in an analogous way as above.

Now, since MGδ
is the least fixed-point of Gδ

with respect to �F , we obtain that MGδ
�F M

+
Gǫ
. Combining with MGǫ �F

M∗

Gδ
, we get that for every A ∈ N and for every w ∈ �+,MGδ

(A)(w) = MGǫ (A)(w).

The lemma then follows from Lemma 35. �

5.4. The final step: binary normal form

In order to obtain a grammar in binary normal form, we need to eliminate rules of the form A → B1& · · ·&Bm&¬C1& · · ·
&¬Cn&¬ǫ. In order to do this we need to somehow pre-compute the effect of such rules. Notice now that the membership
of a string w, where |w| ≥ 2, in MG(A) depends only on the membership of w in each of M̂G(BC), for all BC that appear in
the right-hand sides of rules. We can express this dependency directly by a set of rules. In order to do this we treat each BC

that appears in the right-hand side of a rule as a Boolean variable (see also [8]).
We start by giving a definition that will play an important role in our subsequent development:

Definition 38. Let G be a Boolean grammar in pre-normal form and let Gǫ = (�,N ∪ {U}, P, S) be the ǫ-free version of G.

Let X = {BC|A → BC&¬ǫ ∈ P} and let V be a function from X to
{
0, 1

2
, 1

}
. Then, the extension of Gǫ with respect to V is the

grammar GV
ǫ = (�,N′ ∪ {U}, P′, S), which is defined as follows:

• N′ = N ∪ {Q0,Q1,Q 1
2
}, where each Qi represents the language in which all strings have value i.

• P′ contains the rules Q1 → ¬ǫ,Q1 → ǫ and Q 1
2

→ ¬Q 1
2
.

• Every rule A → BC&¬ǫ in P is replaced in P′ by the rule A → QV(BC)&¬ǫ.

• All the other rules in P are retained in P′.

Intuitively, in the above definition the non-terminals Q0,Q1 and Q 1
2
correspond, respectively, to the constant languages ∅,

�∗ and the language in which all strings get the value 1
2
. Moreover, GV

ǫ is a grammar is which every BC has been replaced by
a non-terminal that corresponds to one of these constant languages.

It is therefore straightforward to see that given any w1,w2 ∈ �∗ with |w1| ≥ 2 and |w2| ≥ 2, and any A ∈ N, it holds
that MGV

ǫ
(A)(w1) = MGV

ǫ
(A)(w2). In other words, for every language generated by a non-terminal symbol in GV

ǫ , one of the

following is true:

• All the strings in �∗ of length at least 2 are included in the language.
• The membership of all strings in �∗ of length at least 2 in the language is undefined.
• All the strings in �∗ of length at least 2 are excluded from the language.

This leads to our next definition:

Definition 39. Let G be a Boolean grammar in pre-normal form and let Gǫ = (�,N ∪ {U}, P, S) be the ǫ-free version of G.

Let X = {BC|A → BC&¬ǫ ∈ P} and let V be a function from X to
{
0, 1

2
, 1

}
. Then, the extension of V to non-terminal symbols

in N is denoted by V̂ and is defined as follows: V̂(A) = MGV
ǫ
(A)(w), for any w ∈ �∗ with |w| ≥ 2.

As we mentioned in the beginning of this subsection, for every stringw with length at least 2, the value inMG(A)(w) can be
computed from the values M̂G(BC)(w) for all BC that appear in the right-hand sides of rules. This is the intuition behind the
following technical lemma that will be used in the proof of correctness of our final transformation step:



962 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

Lemma 40. Let G be a Boolean grammar in pre-normal form and let Gǫ = (�,N ∪ {U}, P, S) be the ǫ-free version of G. Let

X = {BC|A → BC&¬ǫ ∈ P} and let w ∈ �∗ with |w| ≥ 2. Define the function V from X to
{
0, 1

2
, 1

}
such that for all BC ∈ X it

is V(BC) = M̂Gǫ (BC)(w). Then, for all A ∈ N,MGǫ (A)(w) = V̂(A).

Proof. It suffices to show that for all A ∈ N, MGǫ (A)(w) = MGV
ǫ
(A)(w). This fact can be proved in two steps, namely that

MGV
ǫ
(A)(w) ≤F MGǫ (A)(w) and MGǫ (A)(w) ≤F MGV

ǫ
(A)(w). We demonstrate the first direction; the second one is similar

and omitted.
We therefore prove that MGV

ǫ
(A)(w) ≤F MGǫ (A)(w). Suppose for the sake of contradiction that there exists some A ∈ N

such that MGV
ǫ
(A)(w) 
≤F MGǫ (A)(w). Then, there must exist a minimum index k > 0 such that there exists A ∈ N with the

following property:

MGV
ǫ ,k

(A)(w) ∈ {0, 1} and MGV
ǫ ,k

(A)(w) /= MGǫ (A)(w)

Define the following sets:

S1 = {A ∈ N|MGV
ǫ ,k

(A)(w) = 1 /= MGǫ (A)(w)}

S0 = {A ∈ N|MGV
ǫ ,k

(A)(w) = 0 /= MGǫ (A)(w)}

We distinguish the following two cases:

Case 1: S1 /= ∅. Then, for every A ∈ S1 define r(A) to be the index that satisfies the following property:
[
�GV

ǫ

]↑r(A)

M
GVǫ ,k−1

(A)(w) = 1 and
[
�GV

ǫ

]↑r(A)−1

M
GVǫ ,k−1

(A)(w) /= 1

Since
[
�GV

ǫ

]↑0

M
GVǫ ,k−1

(A)(w) = 0 and MGV
ǫ ,k

(A)(w) = 1, r(A) is well-defined. Choose A ∈ S1 such that r(A) is minimum. We

distinguish the following two subcases:

Subcase 1.1: There exists some rule A → Q1&¬ǫ in grammar GV
ǫ . From the definition of GV

ǫ this implies that there exists a

rule of the form A → BC&¬ǫ in grammar Gǫ such that V(BC) = 1. From the definition of V we get that M̂Gǫ (BC)(w) = 1.

This implies that theremust existm, j > 0 such that
[
�Gǫ

]↑j
MGǫ ,m−1

(BC)(w) = 1which implies that
[
�Gǫ

]↑j+1
MGǫ ,m−1

(A)(w) = 1

and therefore MGǫ (A)(w) = 1 (contradiction from our assumption that A ∈ S1).

Subcase 1.2: There exists a rule A → B1& · · ·&Bb&¬C1& · · · ¬Cc&¬ǫ in grammar GV
ǫ such that for all 1 ≤ i ≤ b,

[
�GV

ǫ

]↑r(A)−1

M
GVǫ ,k−1

(Bi)(w) = 1 and for all 1 ≤ j ≤ c, MGV
ǫ ,k−1(Cj)(w) = 0. Then, MGV

ǫ ,k
(Bi)(w) = 1 and from the minimality

of k and of r(A) we have MGǫ (Bi)(w) = 1, for all i. Also, MGV
ǫ
(Cj)(w) = 0 and from the minimality of k we have that

MGǫ (Cj)(w) = 0, for all j. But since MGǫ is a model of Gǫ , this implies that MGǫ (A)(w) = 1 (contradiction).

Case 2: S1 = ∅, which implies that S0 /= ∅. Then, for every A ∈ S0, consider the set of rules {RA1 , . . . , R
A
nA

} in GV
ǫ with head A.

For every such rule RAi there exists a conjunct lAi such that one of the following is true:

• lAi = Q0, or

• lAi = B andMGV
ǫ ,k−1(B)(w) = 0, or

• lAi = ¬C andMGV
ǫ ,k−1(C)(w) = 1, or

• lAi ∈ S0, or

• lAi ∈ �.

In the first of the above cases, there exists at least one rule of the form A → BC&¬ǫ in Gǫ such that V(BC) = 0. From
the definition of V we get that for every such rule it is M̂Gǫ (BC)(w) = 0. This implies that there exists a least integer

mA
BC > 0 such that ̂(MGǫ ,m

A
BC

)(BC)(w) = 0. DefinemA
i = max{mA

BC |A → BC&¬ǫ ∈ P, M̂Gǫ (BC)(w) = 0}. In the second case,

using the minimality of k we get that MGǫ (B)(w) = 0, which implies that there exists a least integer mA
i > 0 such that

MGǫ ,m
A
i
(B)(w) = 0. In the third case, using the minimality of k we get that MGǫ (C)(w) = 1, which implies that there exists

a least integer mA
i > 0 such that MGǫ ,m

A
i
(C)(w) = 1. Finally, in the last two cases, let us take mA

i = 0. Now, define m =

max{mA
i |A ∈ S0, 1 ≤ i ≤ nA} + 1.

We will demonstrate that for every A ∈ S0, it is MGǫ ,m(A)(w) = 0, which will immediately lead us to the contradiction

thatMGǫ (A)(w) = 0. Consider an arbitrary A ∈ S0. Then for every rule R defining A inGǫ , there exists a corresponding rule R
A
i

in GV
ǫ ; moreover R contains a literal lR that corresponds to lAi . More specifically, if R is contained in GV

ǫ , i.e., it is R = RAi , then



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 963

lR = lAi ; otherwise R is of the form A → BC&¬ǫ and lR = BC. We claim that in the latter case M̂Gǫ (BC)(w) = 0. In order to
prove this claim, suppose (for the sake of contradiction) that M̂Gǫ (BC)(w) /= 0. Then, either A → Q1 or A → Q 1

2
is a rule in

GV
ǫ which implies that MGV

ǫ
(A)(w) /= 0 (contradiction). Therefore, in this case the corresponding rule of R in GV

ǫ is A → Q0.

We now show by induction that for every n ≥ 0 and for every A ∈ S0 it is:
[
�Gǫ

]↑n
MGǫ ,m−1

(A)(w) = 0. The basis case

is trivial. Assume the result holds for n; we demonstrate it for n + 1. Consider any rule R in Gǫ with head A. If lR ∈ S0,

then from the induction hypothesis it is
[
�Gǫ

]↑n
MGǫ ,m−1

(lR)(w) = 0. If lR ∈ (N − S0) ∪ � or lR = BC (where B, C ∈ N), then

from the definition ofm it holds M̂Gǫ ,m(lR)(w) = 0,which implies that
̂

(
[
�Gǫ

]↑n
MGǫ ,m−1

)(lR)(w) = 0. Finally, if lR = ¬C (where

C ∈ N), then from the definition ofm it holds ̂MGǫ ,m−1(lR)(w) = 0. Therefore,
[
�Gǫ

]↑n+1
MGǫ ,m−1

(A)(w) = 0,which completes the

inductive step. Therefore,MGǫ ,m(A)(w) = 0 which implies thatMGǫ (A)(w) = 0 (contradicting our assumption that A ∈ S0).
�

Given anon-empty setX , the functions fromX to
{
0, 1

2
, 1

}
canbeorderedby thedegree of information they contain (assuming

that the value 1
2
contains no information). The minimal and maximal functions with respect to this ordering will play an

important role in the construction of the binary normal form of a given grammar G.

Definition 41. LetX beanon-emptysetand letV ,W be functions fromX to
{
0, 1

2
, 1

}
.WedenotebyVi theset {x ∈ X|V(x) = i}.

We write V ⊑F W if V0 ⊆ W0 and V1 ⊆ W1.

The following lemma states that the extensions of functions of the above form to non-terminal symbols, respects the above
ordering. The proof of the lemma is straightforward:

Lemma 42. Let G be a Boolean grammar in pre-normal form and let Gǫ = (�,N, P, S) be its ǫ-free version. Moreover, let
X = {BC|A → BC&¬ǫ ∈ P} and let V ,W be functions from X to {0, 1

2
, 1} such that V ⊑F W . Then, V̂(A) ≤F Ŵ(A) for every

A ∈ N.

Using all the above, we can now define the transformation that brings a Boolean grammar into normal form:

Definition 43. Let G be a Boolean grammar in pre-normal form and let Gǫ = (�,N ∪ {U}, P, S) be the ǫ-free version

of G. Let X = {BC|A → BC&¬ǫ ∈ P} and let V be the set of all functions from X to
{
0, 1

2
, 1

}
. The normal form Gn =

(�,N ∪ {U, T}, P′, S) of G is the grammar obtained from Gǫ as follows:

• P′ contains all the rules in P of the form A → a and A → a&U, where a ∈ �, the ruleU → ¬U in P and the rule T → ¬ǫ,
where T /∈ N is a special symbol which represents the set in which all non-empty strings have value 1.

• For every A ∈ N let TA = {V ∈ V|V̂(A) = 1}. For every minimal (with respect to ⊑F ) element V of TA, P
′ contains the

rule:

A → x1& . . .&xk&¬y1& . . .&¬ym&TT

where {x1, . . . , xk} = V1 and {y1, . . . , ym} = V0.

• For every A ∈ N let UA = {V ∈ V|V̂(A) = 1
2
}. For every maximal (with respect to ⊑F ) element V of UA, P

′ contains the
rule:

A → x1& . . .&xk&¬y1& . . .&¬ym&z1&¬z1& . . .&zr&¬zr&TT&U

where {x1, . . . , xk} = V1, {y1, . . . , ym} = V0 and {z1, . . . , zr} = V 1
2
.

Notice that in the former case we consider only minimal elements, because if V ′ ⊑F V and V̂ ′(A) = 1 then V̂(A) = 1.
Similarly in the latter case we consider only maximal elements, because if V ′ ⊑F V and V̂(A) = 1

2
then V̂ ′(A) = 1

2
. These

ideas are formalized by the proof of the following lemma.

Lemma 44. Let G be a Boolean grammar in pre-normal form, let Gǫ = (�,N ∪ {U}, P, S) be its ǫ-free form and let Gn =
(�,N ∪ {U, T}, P′, S) be its binary normal form. Then, for every A ∈ N and for every w ∈ �+,MG(A)(w) = MGn

(A)(w).

Proof. Let X = {BC|A → BC&¬ǫ ∈ P}.We prove by induction on the length ofw that for every A ∈ N and for everyw ∈ �∗,
MGǫ (A)(w) = MGn

(A)(w). Then, the lemma follows fromLemma37. Forw = ǫ, it holdsMGǫ (A)(w) = MGn
(A)(w) = 0, since

every rule of Gǫ with head in N contains a conjunct that is either a terminal symbol in � or ¬ǫ and every rule of Gn with
head in N contains a conjunct that is either a terminal symbol in � or TT .

Moreover, if |w| = 1 the statement follows easily due to the fact that in Gǫ all the information regarding strings of length
1 is produced by simple rules (i.e., rules that have been introduced during the construction of the direct form ofG);moreover,
Gn contains these same rules regarding strings of length 1 while all its other rules concern strings of length 2 or more, since



964 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

they contain the conjunct TT . Assume now that the statement holds for all w of length less than or equal to n for some
n ≥ 1; we demonstrate the case for n + 1. In particular, we show that for every v ∈ {1, 1

2
}, MGǫ (A)(w) = v if and only if

MGn
(A)(w) = v.
Consider aw ∈ �∗ with |w| ≥ 2 and define function V as follows: V(BC) = MGǫ (BC)(w), for all BC ∈ X . From Lemma 40,

V̂(A) = MGǫ (A)(w).

We first prove thatMGǫ (A)(w) = 1 if and only ifMGn
(A)(w) = 1.We examine the two directions of the statement. For the

left-to-right direction, assume that MGǫ (A)(w) = 1. Then, it is also V̂(A) = 1. Consider a minimal function V ′ with respect

to ⊑F , such that V̂ ′(A) = 1 and V ′ ⊑F V . By construction, in Gn there exists a rule of the form: A → x1& . . .&xk&¬y1& . . .
&¬ym&TT where {x1, . . . , xk} = V ′

1 ⊆ V1 and {y1, . . . , ym} = V ′
0 ⊆ V0. Therefore, for all 1 ≤ i ≤ k, M̂Gǫ (xi)(w) = 1 and for

all 1 ≤ j ≤ m, M̂Gǫ (yj)(w) = 0. From the induction hypothesis and the fact that for all D ∈ N it holds that MGǫ (D)(ǫ) =

MGn
(D)(ǫ) = 0, we get that for all 1 ≤ i ≤ k, M̂Gn

(xi)(w) = 1 and for all 1 ≤ j ≤ m, M̂Gn
(yj)(w) = 0. But this implies that

MGn
(A)(w) = 1 (sinceMGn

is a model of Gn).
In order to prove the right-to-left direction of the statement, assume that MGn

(A)(w) = 1. This implies that in Gn there
exists a rule of the form A → x1& . . .&xk &¬y1& . . .&¬ym&TT such that for all 1 ≤ i ≤ k, M̂Gn

(xi)(w) = 1, and for all
1 ≤ j ≤ m, M̂Gn

(yj)(w) = 0. From the induction hypothesis and the fact thatMGǫ (D)(ǫ) = MGn
(D)(ǫ) = 0 for every D ∈ N,

we get that for all 1 ≤ i ≤ k, M̂Gǫ (xi)(w) = V̂(xi) = 1 and for all 1 ≤ j ≤ m, M̂Gǫ (yj)(w) = V̂(yj) = 0. Notice now that the

existence of the rule A → x1& . . .&xk&¬y1& . . .&¬ym&TT in Gn implies that there exists a function V ′ such that for all
1 ≤ i ≤ k and for all 1 ≤ j ≤ m, V ′(xi) = 1, V ′(yj) = 0, and for every z ∈ X with z /= xi and z /= yj , V

′(z) = 1
2
; additionally,

V̂ ′(A) = 1. From the first three properties of V ′, we get that V ′ ⊑F V . Using Lemma 42, we obtain that V̂(A) = 1, which
implies that MGǫ (A)(w) = 1.

We now prove thatMGǫ (A)(w) = 1
2
if and only ifMGn

(A)(w) = 1
2
. For the left-to-right direction, assume thatMGǫ (A)(w) =

1
2
. Then, it is also V̂(A) = 1

2
. Consider a maximal function V ′ with respect to ⊑F , such that V̂ ′(A) = 1

2
and V ⊑F V ′. By

construction, in Gn there exists a rule:

A → x1& . . .&xk&¬y1& . . .&¬ym&z1&¬z1& . . .&zr&¬zr&TT&U

such that {x1, . . . , xk}=V ′
1, {y1, . . . , ym}=V ′

0 and {z1, . . . , zr}=V ′
1
2

. Since V ⊑F V
′ we have that V1⊆{x1, . . . , xk} ⊆ V1 ∪ V 1

2
,

V0 ⊆ {y1, . . . , ym} ⊆ V0 ∪ V 1
2
and {z1, . . . , zr} ⊆ V 1

2
. This means that for all 1 ≤ i ≤ k, M̂Gǫ (xi)(w) ≥ 1

2
, for all 1 ≤ j ≤ m,

M̂Gǫ (yj)(w) ≤ 1
2
and for all 1 ≤ l ≤ r, M̂Gǫ (zl)(w) = 1

2
. From the induction hypothesis and the fact that for allD ∈ N it holds

that MGǫ (D)(ǫ) = MGn
(D)(ǫ) = 0, we get that for all 1 ≤ i ≤ m, M̂Gn

(xi)(w) ≥ 1
2
, for all 1 ≤ j ≤ r, M̂Gn

(yj)(w) ≤ 1
2
and

for all 1 ≤ l ≤ r, M̂Gn
(zl)(w) = 1

2
. Since MGn

is a model of Gn, we obtain that MGn
(A)(w) ≥ 1

2
. Notice now that it cannot be

MGn
(A)(w) = 1:we have shown that thiswould implyMGǫ (A)(w) = 1,which is a contradiction. Therefore,MGn

(A)(w) = 1
2
.

Now, consider the right-to-left direction of the statement, i.e., assume that MGn
(A)(w) = 1

2
. We have to distinguish the

following two cases:

Case 1: There exists in Gn a rule of the form:

A → x1& . . .&xk&¬y1& . . .&¬ym&z1&¬z1& . . .&zr&¬zr&TT&U

such that for all 1 ≤ i ≤ k, M̂Gn
(xi)(w) ≥ 1

2
, for all 1 ≤ j ≤ m, M̂Gn

(yj)(w) ≤ 1
2
and for all 1 ≤ l ≤ r, M̂Gn

(zl)(w) = 1
2
. From

the induction hypothesis and the fact that MGǫ (D)(ǫ) = MGn
(D)(ǫ) = 0 for every D ∈ N, we get that for all 1 ≤ i ≤ k it is

M̂Gǫ (xi)(w) = V̂(xi) ≥ 1
2
, for all 1 ≤ j ≤ m it is M̂Gǫ (yj)(w) = V̂(yj) ≤ 1

2
and for all 1 ≤ l ≤ r it is M̂Gǫ (zl)(w) = V̂(zl) = 1

2
.

Notice now that the existence of the above rule for A in Gn implies that there exists a function V ′ such that for all 1 ≤ i ≤ k it
is V ′(xi) = 1, for all 1 ≤ j ≤ m it is V ′(yj) = 0, for all 1 ≤ l ≤ r it is V ′(zl) = 1

2
, and additionally, V̂ ′(A) = 1

2
. From the first

three properties of V ′, we get that V ⊑F V ′. Using Lemma 42, we obtain that V̂(A) = 1
2
and therefore thatMGǫ (A)(w) = 1

2
.

Case 2: There exists in Gn a rule of the form:

A → x1& . . .&xk&¬y1& . . .&¬ym&TT

such that for all 1 ≤ i ≤ k it is M̂Gn
(xi)(w) ≥ 1

2
, for all 1 ≤ j ≤ m it is M̂Gn

(yj)(w) ≤ 1
2
and there exists either some i,

1 ≤ i ≤ k such that M̂Gn
(xi)(w) = 1

2
or some j, 1 ≤ j ≤ m such that M̂Gn

(yj)(w) = 1
2
. From the induction hypothesis and

the fact that MGǫ (D)(ǫ) = MGn
(D)(ǫ) = 0 for every D ∈ N, we get that for all 1 ≤ i ≤ k it is M̂Gǫ (xi)(w) = V̂(xi) ≥ 1

2
, for

all 1 ≤ j ≤ m it is M̂Gǫ (yj)(w) = V̂(yj) ≤ 1
2
and there exists either some i such that M̂Gǫ (xi)(w) = V̂(xi) = 1

2
or some j such

that M̂Gǫ (yj)(w) = V̂(yj) = 1
2
.

Notice now that the existence of rule A → x1& . . .&xk&¬y1& . . .&¬ym&TT in Gn implies that there exists a function
V ′ such that V ′

1 = {x1, . . . , xk}, V
′
0 = {y1, . . . , ym} and additionally, V ′ is a minimal function with respect to ⊑F with the

property V̂ ′(A) = 1. Now, define V− so that V
−
1 = V1 ∩ V ′

1 and V
−
0 = V0 ∩ V ′

0. Also define V+ so that V
+
1 = V1 ∪ V ′

1 and

V
+
0 = V0 ∪ V ′

0. Using the properties of V and V ′ it is easy to check that V
+
1 ∩ V

+
0 = ∅, that is, V+ is well-defined. Obviously,



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 965

V− ⊑F V ′ ⊑F V+. Thus, from Lemma 42, we obtain that V̂+(A) = 1. Furthermore, V− /= V ′, since from the definition of V
there exists either some i, 1 ≤ i ≤ k, such that V(xi) = 1

2
or some j, 1 ≤ j ≤ m, such that V(yj) = 1

2
. From the minimality

property of V we get that V̂−(A) /= 1. Thus, from Lemma 42 we obtain that V̂−(A) = 1
2
. Moreover, V− ⊑F V ⊑F V+, which

implies that V̂(A) = MGǫ (A)(w) ∈ { 1
2
, 1}. However, it cannot beMGǫ (A)(w) = 1, sincewe have shown that this would imply

MGn
(A)(w) = 1, which is a contradiction. Therefore, MGǫ (A)(w) = 1

2
. �

Given the above lemmas, a simple step remains in order to reach the statement of Theorem30: if in the original grammarG
it isMG(S)(ǫ) /= 0, then a rule of the form S → ǫ or S → ǫ&U is added to the grammar that has resulted after the processing
implied by all the above lemmas. The resulting grammar is then in binary normal form and defines the same language as the
initial one.

6. Parsing under the well-founded semantics

We next present an algorithm that computes the truth value of the membership of an input stringw /= ǫ in the language
defined by a grammar G, which is assumed to be in binary normal form. The algorithm computes the value of MG(A)(u) for
every non-terminal symbol A and every substring u of w in a bottom-up manner. It uses two matrices M and Q to keep the
appropriate intermediate values that are needed for the computation. Suppose that the input string is w = a1 · · · an. Then
M[A, i, j] keeps the value MG(A)(ai · · · aj) and Q [B, C, i, j] keeps the value M̂G(BC)(ai · · · aj). By convention min0i=1vi = 1.

Algorithm for parsing under G = (�,N, P, S)

Input: string w = a1 · · · an ∈ �+

Initialization step:

for i := 1 to n do begin
for every A ∈ N do

if there exists a rule A → ai then M[A, i, i] := 1

else if there exists a rule A → ai&U thenM[A, i, i] := 1
2

elseM[A, i, i] := 0
end

Main loop:

for d := 2 to n do
for i := 1 to n − d + 1 do begin

j := i + d − 1
for every B, C ∈ N such that BC appears in the right-hand side of a rule do

Q [B, C, i, j] := max
j−1
ℓ=i min{M[B, i, ℓ],M[C, ℓ + 1, j]}

for every A ∈ N do M[A, i, j]:=0
for every rule A → B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT&U do begin

v := min{ 1
2
, minm

p=1 Q [Bp, Cp, i, j], minr
q=1(1 − Q [Dq, Eq, i, j])}

if v > M[A, i, j] thenM[A, i, j] := v

end
for every rule A → B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT do begin

v := min{minm
p=1 Q [Bp, Cp, i, j], minr

q=1(1 − Q [Dq, Eq, i, j])}

if v > M[A, i, j] thenM[A, i, j] := v

end
end

return M[S, 1, n]

The correctness of the above algorithm is established by the following theorem:

Theorem 45. Let G = (�,N, P, S) be a fixed Boolean grammar. Then, for every string w = a1 · · · an ∈ �+, the above algorithm
computes the correct value MG(A)(w), in time O(n3).

Proof. In order to verify the correctness of the algorithm, we will prove that after the termination of the main loop, for
every A ∈ N and for every i, j, with 1 ≤ i ≤ j ≤ n, M[A, i, j] = MG(A)(ai · · · aj). Observe that, for every i, j, if i = j then the
valueM[A, i, j] is determined in the initialization step and does not change in the main loop; if i < j then the valueM[A, i, j]
is determined in the iteration of the main loop in which d = j − i + 1 and does not change in the next iterations.



966 V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967

We will prove that M[A, i, j] = MG(A)(ai · · · aj), by induction on the length k of ai · · · aj . For the basis case, suppose that
k = 1, that is, i = j.

We first show thatM[A, i, i] = 1 if and only ifMG(A)(ai) = 1. Suppose thatM[A, i, i] = 1. Then there exists a rule A → ai
in P, which immediately implies thatMG(A)(ai) = 1.

Conversely, suppose thatMG(A)(ai) = 1. This value cannot be obtained by a rule containing the conjunct TT , and therefore
it is obtained by a rule A → ai. But in this case the algorithm sets M[A, i, i] = 1 in its initialization step.

It remains to show that M[A, i, i] = 1
2
if and only if MG(A)(ai) = 1

2
. Suppose that M[A, i, i] = 1

2
. Then there exists a

rule A → ai&U in P. This implies that MG(A)(ai) /= 0. Also, it cannot be MG(A)(ai) = 1, since in this case we would have
M[A, i, i] = 1. Therefore,MG(A)(ai) = 1

2
.

Conversely, suppose thatMG(A)(ai) = 1
2
. Obviously P does not contain the rule A → ai. We claim that P contains the rule

A → ai&U. Suppose, for the sake of contradiction, that our claim is not true. Then every rule in P with head A, contains in its
body either conjunct TT or some conjunct b ∈ � with b /= ai. This implies thatMG(A)(ai) = 0 (contradiction). Therefore, P
contains the rule A → ai&U and the algorithm sets M[A, i, i] = 1

2
in its initialization step.

SupposenowthatM[A, i, j] = MG(A)(ai · · · aj)holds for everyA ∈ N and for all i, jwith j − i + 1 ≤ k (i.e., for all substrings
of w of length at most k).

Consider a substring ai · · · aj of w of length k + 1 (i.e., j − i + 1 = k + 1). The value of M[A, i, j] is determined in the
iteration of the main loop in which d = k + 1. Furthermore, at this point the values of M[B, i, ℓ] and M[C, ℓ + 1, j] have
alreadybeen computed, for everyB, C ∈ N and for everyℓ such that i ≤ ℓ < j (sinceℓ − i + 1 ≤ k and j − (ℓ + 1) + 1 ≤ k).

From the induction hypothesisM[B, i, ℓ] = MG(B)(ai · · · aℓ) andM[C, ℓ + 1, j] = MG(C)(aℓ+1 · · · aj). This implies (using

also the fact that MG(B)(ǫ) = MG(C)(ǫ) = 0) that Q [B, C, i, j] = M̂G(BC)(ai · · · aj).

Now it is easy to prove thatM[A, i, j] = 1 if andonly ifMG(A)(ai · · · aj) = 1 andM[A, i, j] = 1
2
if andonly ifMG(A)(ai · · · aj)

= 1
2
. We give a detailed proof only for the one direction of the first argument. The remaining parts of the proof are very

similar.
Suppose that M[A, i, j] = 1. Then there exists a rule

A → B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT

in P such that Q [Bp, Cp, i, j] = 1, for 1 ≤ p ≤ m and Q [Dq, Eq, i, j] = 0, for 1 ≤ q ≤ r. This implies that M̂G(BpCp)(ai · · · aj) =

1, for 1 ≤ p ≤ m and M̂G(¬DqEq)(ai · · · aj) = 1, for 1 ≤ q ≤ r. Since MG is a model of G, we haveMG(A)(ai · · · aj) = 1.
Therefore, for everyA ∈ N, and for every i, jwith 1 ≤ i ≤ j ≤ n it isM[A, i, j] = MG(A)(ai · · · aj). In particularM[S, 1, n] =

MG(S)(a1 · · · an), that is, the algorithm is correct.
We now show that the above algorithm runs in time O(n3). The initialization step performs n iterations, each requiring

time which is independent of the input, and depends only on the grammar. Therefore the initialization step requires time
O(n).

The main loop is a nested-loop that performs O(n2) iterations. In each iteration the computation of Q [B, C, i, j] requires
time O(n), while all the remaining tasks require time which is independent of the input. Therefore, the main loop requires
time O(n3), which dominates the running time of the algorithm. �

7. Conclusions

We have presented a novel semantics for Boolean grammars which has been inspired by techniques that have been
developed in the logic programming domain. Under this new semantics every Boolean grammar has a distinguished (three-
valued) model that satisfies its rules. Moreover, we have shown that this language is the least fixed-point of an appropriate
operator that is associatedwith the grammar. Finally,wehave demonstrated that every Boolean grammar can be transformed
into an equivalent one in a binary normal form. For grammars in this normal form, we have derived an O(n3) parsing
algorithm.

We believe that the well-founded semantics will prove to be a useful tool for the further development of the theory of
Boolean grammars. In particular, two of the authors have already used the well-founded approach in order to prove that
the locally stratified construction is well-defined (see [5] for details). Also, it is expected that the well-founded semantics
and its corresponding parsing algorithm can form the basis of general implementations of Boolean grammars. On the more
theoretical side, the formal machinery behind the well-founded semantics can help to the further development of many-
valued formal language theory (see for example [2]).

It should be noted that it is possible that the well-founded model MG of a grammar G could also be obtained following
slightlydifferent constructions. For logicprogramsone suchconstruction that is basedonan infinite-valued logic, has recently
been proposed in [11]. Adapting the technique of [11] to Boolean grammars would most probably require the introduction
of infinite-valued formal languages. This is probably an interesting venue for further research.

Closing,wewould like to express our strong belief that a further investigation of the connections between formal language
theory and the theory of logic programming will prove to be very rewarding.



V. Kountouriotis et al. / Information and Computation 207 (2009) 945–967 967

Acknowledgments

We would to thank the anonymous reviewers for their detailed and insightful comments.

References

[1] K. Apt, R. Bol, Logic programming and negation: a survey, Journal of Logic Programming, 19, 20 (1994) 9–71.
[2] Z. Esik, W. Kuich, Boolean fuzzy sets, International Journal of Foundations of Computer Science 18 (6) (2007) 1197–1207.
[3] H.B. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.
[4] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, Well-founded semantics for Boolean grammars, in: Tenth International Conference on Developments

in Language Theory (DLT), 2006, pp. 203–214.
[5] Ch. Nomikos, P. Rondogiannis, Locally stratified Boolean grammars, in: First International Conference on Language and Automata Theory and

Applications (LATA), 2007, pp. 437–447.
[6] Ch. Nomikos, P. Rondogiannis, Locally stratified Boolean grammars, Information and Computation 206 (9–10) (2008) 1219–1233.
[7] A. Okhotin, Conjunctive grammars, Journal of Automata, Languages and Combinatorics 6 (4) (2001) 519–535.
[8] A. Okhotin, Boolean grammars, Information and Computation 194 (1) (2004) 19–48.
[9] H. Przymusinska, T. Przymusinski, Semantic issues in deductive databases and logic programs, in: R. Banerji (Ed.), Formal Techniques in Artificial

Intelligence: A Source-Book, North Holland, 1990, pp. 321–367.
[10] T.C. Przymusinski, Every logic program has a natural stratification and an iterated fixed-point model, in: Proceedings of the Eighth Symposium on

Principles of Database Systems ACM SIGACT–SIGMOD, 1989, pp. 11–21.
[11] P. Rondogiannis, W.W. Wadge, Minimum model semantics for logic programs with negation-as-failure, ACM Transactions on Computational Logic 6

(2) (2005) 441–467.
[12] J.E. Stoy, Denotational Semantics: the Scott–Strachey Approach to Programming Language Theory, The MIT Press, 1977.
[13] A. van Gelder, K.A. Ross, J.S. Schlipf, The well-founded semantics for general logic programs, Journal of the ACM 38 (3) (1991) 620–650.
[14] M. Wrona, Stratified Boolean grammars, in: International Symposium on the Mathematical Foundations of Computer Science (MFCS), 2005, pp.

801–812.




