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Abstract. In this article we propose a general procedure that allows us to determine both the
number and type of boundary conditions for time dependent partial differential equations. With
those, well-posedness can be proven for a general initial-boundary value problem. The procedure is
exemplified on the linearized Navier–Stokes equations in two and three space dimensions on a general
domain.
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1. Introduction. The problem of well-posed boundary conditions is an essen-
tial question in many areas of physics. In fluid dynamics, characteristic boundary
conditions for the Euler equations have long been accepted as one way to impose
boundary conditions since the specification of the ingoing variable at a boundary im-
plies well-posedness. Often the Euler boundary conditions are used as a guidance
when boundary conditions are chosen for the Navier–Stokes equations as well (see
[1, 2, 3, 4, 5]). In [6] characteristic boundary conditions for the one-dimensional
linearized Navier–Stokes equations were derived.

For the two- and three-dimensional Navier–Stokes equations, the number of bound-
ary conditions implying well-posedness can be obtained using the Laplace transform
technique. (See [7] for an introduction of the Laplace transform technique.) Although
possible to use, the Laplace transform technique is usually a very complicated proce-
dure for systems of partial differential equations such as the Navier–Stokes equations.
However, the exact form of the boundary conditions that lead to a well-posed problem
is still an open question and will be the issue addressed in this article.

In this paper we assume that we have unlimited access to accurate boundary data.
We do not engage in the elaborate, difficult, and stimulating procedure of deriving
artificial (or radiation or absorbing) boundary conditions. Examples of extensive
research on these matters are given in [8, 9].

We propose a self-contained procedure to obtain both the number and type of
boundary conditions for a general time dependent partial differential equation. The
procedure is based on the energy method and has substantial similarities to the deriva-
tion of characteristic boundary conditions, since it involves a splitting of the boundary
terms into ingoing and outgoing parts by a diagonalization. Compared to the Laplace
transform technique, our procedure yields a much simpler analysis.
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As was already mentioned, boundary conditions for the Navier–Stokes equations
have been the subject of many investigations, and still there is no theory for the
general case. Hence, the linearized and symmetrized Navier–Stokes equations derived
in [10] will serve as an example to which our proposed procedure is applied. Since the
procedure involves a significant amount of work, we will not treat other equations in
this article.

Well-posedness of the continuous problem is a necessary requirement for all nu-
merical methods. Even for well-posed boundary conditions, numerous difficulties
arise, and virtually all numerical schemes have their own way of handling bound-
ary conditions. Hence, we will refrain from numerical calculations for a particular
discretization technique and focus on the mathematical groundwork.

The contents of this article are divided as follows. In section 2 a general procedure
for determining well-posed boundary conditions is presented. Section 3 applies the
procedure to the three-dimensional Navier–Stokes equations on a general domain. In
section 4 conclusions are drawn.

2. Well-posed boundary conditions. Throughout this paper, the analysis
will deal with linear constant coefficient equations. Frequently, the equations of in-
terest are not linear constant coefficient equations but rather variable coefficient or
even nonlinear equations (such as the Navier–Stokes equations). We will start with a
brief discussion on the relevance of analyzing the constant coefficient case.

Consider a nonlinear initial-boundary value problem on a domain D with bound-
ary ∂D. By linearizing around a solution u and freezing the coefficients, we obtain

w̃t = P (u)w̃ + δF (x, t), x ∈ D, t ≥ 0,

w̃ = δf(x), x ∈ D, t = 0,(1)

Lw̃ = δg(t), x ∈ ∂D, t ≥ 0,

where P is the (nonlinear) differential operator and L a boundary operator. Here
δF, δf , and δg are perturbations of the forcing, initial, and boundary functions. w̃ is
the perturbation from the exact solution.

Definition 2.1. The linear problem (1) is well posed if there exists a unique
solution bounded by the data δF, δf , and δg.

Remark 1. There are many definitions of well-posedness. Our choice is sometimes
referred to as strongly well-posed since it involves all types of data (see, for example,
[7]).

Both existence and uniqueness are strongly coupled to the boundedness of the
solution. In fact, it suffices to prove that a solution is bounded using a minimal
number of boundary conditions; then both existence and uniqueness follow. (See, for
example, [11].)

In short, the following principle holds: If (1) is well posed for all values of u, then
the original nonlinear problem is well posed (see [12] for more details).

Before considering well-posedness of a problem of the type (1), we will briefly state
some additional mathematical theory that is the basis of the forthcoming analysis.
First we give a definition from [13].

Definition 2.2. Let A be a Hermitian matrix. The inertia of A is the ordered
triple

i(A) = (i+(A), i−(A), i0(A)),(2)

where i+(A) is the number of positive eigenvalues of A, i−(A) is the number of neg-
ative eigenvalues of A, and i0(A) is the number of zero eigenvalues of A, counting
multiplicities.
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We will also need the following theorem from [13], and we refer to that textbook
for the proof. The theorem is also known as Sylvester’s law of inertia.

Theorem 2.3. Let A,B be Hermitian matrices. There is a nonsingular matrix
S such that A = SBS∗ if and only if A and B have the same inertia.

S∗ denotes the Hermitian adjoint of S. The following corollary is merely a rephras-
ing of Theorem 2.3.

Corollary 2.4. Suppose that R is a nonsingular matrix and that A is a real
symmetric matrix. Then the number of positive/negative eigenvalues of RTAR is the
same as the number of positive/negative eigenvalues of A.

Proof. The claim follows immediately from Theorem 2.3 with B = RTAR.
Finally, we state another definition from [13].
Definition 2.5. If A is a real m-by-n matrix, we set I(A) = [μij ], where μij = 1

if aij �= 0 and μij = 0 if aij = 0. The matrix I(A) is called the indicator matrix
of A.

Now we turn to the main theory of this article. We will give general principles
of how to determine boundary conditions such that the constant coefficient problem
is well posed. Thus, assuming that linearization and freezing of coefficients have
already been carried out, we consider a linear constant coefficient problem with n
space dimensions and x̄ = (x1, . . . , xn),

ũt +

n∑
i=1

Aiũxi
=

n∑
i=1

n∑
j=1

Bij ũxixj
+ F (x̄, t), x̄ ∈ D, t ≥ 0,

ũ(x̄, 0) = f(x̄), x̄ ∈ D,(3)

Lũ(x̄, t) = g(t), x̄ ∈ ∂D, t ≥ 0.

The definition (3) of an initial-boundary value problem covers hyperbolic, parabolic,
and incompletely parabolic partial differential equations depending on the rank of the
matrices. Let ‖ · ‖ denote some norm for functions on D. Our approach of analyzing
the well-posedness of (3) comprises the following steps.

(i) Symmetrize (3).
(ii) Apply the energy method. The energy estimate will have the structure

‖ũ‖2
t + ci

n∑
i=1

‖ũxi
‖2 +

∮
∂D

ṽTAṽds ≤ 0,(4)

where ci ≥ 0, i = 1, . . . , n, are constants and ṽ a vector formed by combinations of
ũ and ũxi

. Further, A is reduced to a full rank matrix. The boundedness of ũ now
depends on the boundedness of ṽTAṽ in boundary data.

(iii) Find a diagonalizing matrix, M , such that MTAM = Λ is diagonal. (A
is symmetric due to step (i) above.) Then we also have the variable transformation
M−1ṽ = w̃.

(iv) Split Λ = Λ+ +Λ− such that Λ+ is positive semidefinite and Λ− is negative
semidefinite. Also, split w̃ into w̃ = w̃+ + w̃− corresponding to the nonzero entries of
Λ+,−. More precisely, let w̃− = I(Λ−)w̃ and w̃+ = w̃ − w̃−.

(v) Supply boundary data to the negative part. That is, specify w̃− by g.
Remark 2. In step (iv) the number of boundary conditions is given as the number

of negative eigenvalues of A or Λ. Further, the type of boundary conditions is given
by the matrix M , derived in step (iii).

This implies boundedness of ‖ũ‖t and hence of ‖ũ‖. The difficult part of this
scheme is step (iii). However, we know that A is symmetric, and we can prove the
following proposition regarding steps (iii)–(v).
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Proposition 2.6. Assume that steps (i) and (ii) are fulfilled; then the matrix A
and the vector ṽ can be split such that ṽTAṽ = w̃+TΛ+w̃+ + w̃−TΛ−w̃−, where Λ+

is positive semidefinite, Λ− is negative semidefinite, and M−1ṽ = w̃ = w̃+ + w̃− for
some matrix M−1. Further, by specifying w̃− = I(Λ−)w at the boundary, we find that
(3) is well posed.

Proof. Since A is symmetric, the eigenvalues are real and there exists a full set
of eigenvectors. If Z contains the eigenvectors, we have

ṽTAṽ = ṽTZZTAZZT ṽ = w̃TΛZw̃ = w̃+TΛ+
Z w̃

+ + w̃−TΛ−
Z w̃

−,(5)

where Λ
−/+
Z are diagonal negative/positive semidefinite. We define w̃− = I(Λ−)w̃

and w̃+ = w̃ − w̃−. This proves the first part of Proposition 2.6.
Another way to prove the first part of Proposition 2.6 is to apply Corollary 2.4, to

conclude that any nonsingular matrix R can be used as a transformation, B = RTAR,
such that A and B have the same inertia. By construction, B is symmetric. Then B
may be diagonalized by its eigenvectors, and we have another diagonalization of A.
Denote by X the matrix containing the eigenvectors of B as columns such that

ṽTAṽ = ṽTR−1,TRTARR−1ṽ = ṽTR−1,TBR−1ṽ

= ṽTR−1,TXΛMXTR−1ṽ = w̃TΛ+
Mw̃ + w̃TΛ−

Mw̃

or

ṽTM−1,TMTAMM−1ṽ = w̃TΛMw̃ = w̃+TΛ+
Mw̃+ + w̃−TΛ−

Mw̃−,(6)

where w̃ = M−1ṽ, M = RX, and Λ
−/+
M are diagonal negative/positive semidefinite.

Further, w̃− = I(Λ−
M)w̃ and w̃+ = w̃ − w̃−. We conclude that there are several

different ways of diagonalizing A, but in all cases ΛZ and ΛM have the same inertia.
The fundamental difference between Z and another diagonalizing matrix, M , is that
M is not orthogonal. We may regard Z as a specific M .

Next, we turn to the proof of the second part of the proposition. Specify w̃− = g
at the boundary. Equation (4) can be rewritten as

‖ũ‖2
t +

∮
∂D

w̃+TΛ+
Mw̃+ds + ci

n∑
i=1

‖ũxi‖2 = −
∮
∂D

gTΛ−
Mg ds.(7)

All the terms on the left-hand side of (7) are positive, implying that ‖ũ‖t, and hence
‖ũ‖, are bounded.

Remark 3. The assumption that steps (i) and (ii) in Proposition 2.6 can be
fulfilled is true for many important partial differential equations. For example, it is
true for the Euler, Navier–Stokes, and Maxwell equations.

Remark 4. The procedure that diagonalizes A, with its eigenvectors and bounds
the negative part, is what we mean by characteristic boundary conditions.

For Proposition 2.6 to be practically useful, a crucial point is to find a diago-
nalizing matrix. That is why we gave two examples of diagonalizing matrices. In
the first example we used the eigenvalues and eigenvectors directly. For a system of
equations, the matrix A can be large (9-by-9 for the Navier–Stokes equations in three
dimensions). The eigenvalues of A are given as the roots of a polynomial of high
degree, for which in general there do not exist roots in closed form.

In the second example, we can proceed in a different way. We will seek a di-
agonalizing matrix to A that is not orthogonal. By choosing R such that B has a
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simpler structure than A, we may be able to find the eigenvalues and eigenvectors to
B. In fact, we will show that this is possible for the three-dimensional Navier–Stokes
equations on general domains.

Certainly, not all of the points are novel in the above procedure. For example,
in [10] a symmetrization of the linearized Navier–Stokes equations is presented. For
the Euler equations, the whole procedure has been carried out when deriving the
well-known characteristic boundary conditions. However, the idea of diagonalizing
the boundary terms with a nonorthogonal matrix is, to the knowledge of the present
authors, new. Furthermore, it is important to formalize the whole procedure since it
should be possible to find well-posed boundary conditions to any problem of type (3).

3. The Navier–Stokes equations.

3.1. Step (i): Symmetrize the equations. We will consider the Navier–
Stokes equations as an example of how to use the procedure presented above to derive
well-posed boundary conditions. We begin by rescaling the three-dimensional Navier–
Stokes equations to nondimensional form. Consider the Navier–Stokes equations in
primitive variables Ṽ = [ρ̃, ũ1, ũ2, ũ3, p̃] as stated in [10],

Ṽt + Ãp
1Ṽx + Ãp

2Ṽy + Ãp
3Ṽz

= B̃p
11Ṽxx + B̃p

22Ṽyy + B̃p
33Ṽzz + B̃p

xyṼxy + B̃p
yzṼyz + B̃p

zxṼzx,(8)

where the tilde sign emphasizes that the entity depends on the solution. Further, ρ̃
is the density; ũ1, ũ2, ũ3 are the velocities in the x, y, and z directions, respectively;
and p̃ is the pressure. We will also use the ratio between the specific heat capacities,
γ = cp/cv, and the speed of sound, c; μ the dynamic viscosity, λ the bulk viscosity,
and ν = μ

ρ the kinematic viscosity; Pr = ν
α denoting the Prandtl number, where α is

the thermal diffusivity. Let Re = ρ∞U∞L
μ∞

denote the Reynolds number. The infinity
subscript denotes free stream conditions, and L is some characteristic length scale.

The equations (8) are nondimensionalized and the coefficients are frozen, which
corresponds to the linearization of the Navier–Stokes equations. The tilde signs are
dropped on the matrices as they no longer depend on the solution. Using the parabolic
symmetrizer Sp derived in [10] and letting ε = 1

Re yields

ũt + A1ũx + A2ũy + A3ũz

= ε(B11ũxx + B22ũyy + B33ũzz + Bxyũxy + Byzũuz + Bzxũzx).(9)

The transformed nondimensionalized variables are

S−1
p Ṽ =

⎛
⎜⎜⎜⎜⎜⎝

c√
γρ 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

− c
ρ
√
γ
√
γ−1

0 0 0
√

γ
γ−1

1
ρc

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ̃
ũ1

ũ2

ũ3

p̃

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

c√
γρ ρ̃

ũ1

ũ2

ũ3

− c√
γ
√
γ−1

ρ̃
ρ +

√
γ

γ−1
1
ρc p̃

⎞
⎟⎟⎟⎟⎟⎠ = ũ.(10)
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The symmetrized matrices are derived in [10] and are repeated here for conve-

nience. Let a =
√

γ−1
γ c and b = c√

γ . Then

A1 =

⎛
⎜⎜⎜⎜⎝

u1 b 0 0 0
b u1 0 0 a
0 0 u1 0 0
0 0 0 u1 0
0 a 0 0 u1

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝

u2 0 b 0 0
0 u2 0 0 0
b 0 u2 0 a
0 0 0 u2 0
0 0 a 0 u2

⎞
⎟⎟⎟⎟⎠ ,(11)

A3 =

⎛
⎜⎜⎜⎜⎝

u3 0 0 b 0
0 u3 0 0 0
0 0 u3 0 0
b 0 0 u3 a
0 0 0 a u3

⎞
⎟⎟⎟⎟⎠ , Bxy =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 λ+μ
ρ 0 0

0 λ+μ
ρ 0 0 0

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,(12)

Byz =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

0 0 0 λ+μ
ρ 0

0 0 λ+μ
ρ 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , Bzx =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 λ+μ
ρ 0

0 0 0 0 0

0 λ+μ
ρ 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,(13)

B11 = diag

(
0,

λ + 2μ

ρ
,
μ

ρ
,
μ

ρ
,
γμ

Prρ

)
,(14)

B22 = diag

(
0,

μ

ρ
,
λ + 2μ

ρ
,
μ

ρ
,
γμ

Prρ

)
,(15)

B33 = diag

(
0,

μ

ρ
,
μ

ρ
,
λ + 2μ

ρ
,
γμ

Prρ

)
.(16)

3.2. Step (ii): Apply the energy method. Next, we turn to the analysis
of boundary conditions for the Navier–Stokes equations. Consider a general domain
D with boundary ∂D in three space dimensions. From (9), the symmetrized and
nondimensionalized Navier–Stokes equations are

ũt + (A1ũ− εF̃v)x + (A2ũ− εG̃v)y + (A3ũ− εH̃v)z,(17)

where

F̃v = B11ũx + B21ũy + B31ũz,(18)

G̃v = B22ũy + B32ũz + B12ũx,(19)

H̃v = B33ũz + B23ũy + B13ũx,(20)

and

B21 = B12 =
Bxy

2
, B32 = B23 =

Byz

2
, B31 = B13 =

Bzx

2
.
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Applying the energy method (step (ii)),

∫
D

ũT ũtdxdydz +

∫
D

∂

∂x

(
1

2
ũTA1ũ− εũT F̃v

)

+
∂

∂y

(
1

2
ũTA2ũ− εũT G̃v

)
+

∂

∂z

(
1

2
ũTA3ũ− εũT H̃v

)
dxdydz(21)

= − ε

∫
D

(ũT
x F̃v + ũT

y G̃v + ũT
z H̃v)dxdydz.

The right-hand side in (21) is negative definite and denoted by −DI.
Remark 5. It is easily verified that the last term in (21) is dissipation,

DI = ε

∫
D

(
ũT
x ũT

y ũT
z

)⎛⎝ B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠

⎛
⎝ ũx

ũy

ũz

⎞
⎠ dxdydz.

The matrix is symmetric with positive or zero diagonal entries. With λ ≤ μ, the
matrix is diagonally dominant. Thus, it is positive semidefinite.

Denote by ‖ũ‖2 the integral
∫
D
ũT ũdxdydz. Using Gauss’ theorem, we obtain

‖ũ‖2
t +

∮
∂D

(
ũT (A1ũ− 2εF̃v), ũ

T (A2ũ− 2εG̃v), ũ
T (A3ũ− 2εH̃v)

)
· n̂ ds(22)

= −2DI,

where n̂ = (n1, n2, n3) is the outward-pointing unit normal on the surface ∂D and

ds =
√
dx2 + dy2 + dz2. Equation (22) can be rewritten as

‖ũ‖2
t +

∮
∂D

(
ũ

F̃V

)T (
A1n1 + A2n2 + A3n3 −εI5

−εI5 05

)(
ũ

F̃V

)
ds(23)

= −2DI,

where In denotes the n-by-n identity matrix, and similarly 0n the n-by-n zero matrix
and F̃V = F̃vn1 + G̃vn2 + H̃vn3.

To prove well-posedness we have to split the matrix in the boundary integral into
positive definite and negative definite parts. The negative part of the boundary term
in (23) caused by

A1 =

(
A1n1 + A2n2 + A3n3 −εI5

−εI5 05

)
(24)

has to be supplied with boundary conditions, which in turn bounds the growth of
‖ũ‖2

t in (21).
We note that the first component of F̃V is zero, and hence we can reduce the

system by omitting that component and denoting the resulting vector by G̃V . By this
procedure A1 is also reduced from a 10-by-10 matrix to a 9-by-9 matrix by deleting
the sixth row and column. With u = (u1, u2, u3), we have

(
ũ

F̃V

)T (
A1n1 + A2n2 + A3n3 −εI5

−εI5 05

)(
ũ

F̃V

)
=

(
ũ

G̃V

)T

A

(
ũ

G̃V

)
,
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where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u · n̂ bn1 bn2 bn3 0 0 0 0 0
bn1 u · n̂ 0 0 an1 −ε 0 0 0
bn2 0 u · n̂ 0 an2 0 −ε 0 0
bn3 0 0 u · n̂ an3 0 0 −ε 0
0 an1 an2 an3 u · n̂ 0 0 0 −ε
0 −ε 0 0 0 0 0 0 0
0 0 −ε 0 0 0 0 0 0
0 0 0 −ε 0 0 0 0 0
0 0 0 0 −ε 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

=

⎛
⎝ A11 A12 014

A21 A22 −εI4
041 −εI4 04

⎞
⎠ ,

using the notation 0nm for the n-by-m zero matrix. We will also use the notation
un = u · n̂. Since n̂ is the outward-pointing normal, un < 0 implies inflow. Further,
note that A11 in (25) is a scalar.

3.3. Step (iii): Find a diagonalizing matrix. Next, we state and prove the
following proposition, where Mn = un/c is the Mach number.

Proposition 3.1. If |Mn| �= 1, 0 and un < 0, there are four positive and five
negative eigenvalues of A. If |Mn| �= 1, 0 and un > 0, there are five positive and four
negative eigenvalues of A.

Proposition 3.1 states that an inflow demands five and an outflow four boundary
conditions. The number of boundary conditions can also be derived using the Laplace
transform technique, which is shown in [14, 15]. However, to prove well-posedness of
specific boundary conditions using the Laplace transform technique is algebraically
very complex, as shown in [15]. In the proof of Proposition 3.1 we will continue with
the procedure outlined in section 2 and find a diagonalizing matrix to A (step (iii)).
However, finding the eigenvalues of A corresponds to solving a ninth degree polyno-
mial. Besides the algebraic difficulty of finding roots to ninth degree polynomials, it
is probable that the roots in this particular case do not exist in closed form. Instead,
we will derive another diagonalizing matrix. That matrix gives the explicit form of
the well-posed boundary conditions.

Proof of Proposition 3.1. Rotate A by

RTAR =

⎛
⎝ 1 014 014

ᾱT I4 04

β̄T γ̄T I4

⎞
⎠

⎛
⎝ A11 A12 014

A21 A22 −εI4
041 −εI4 04

⎞
⎠

⎛
⎝ 1 ᾱ β̄

041 I4 γ̄
041 04 I4

⎞
⎠

=

⎛
⎝ E11 E12 E13

E21 E22 E23

E31 E32 E33

⎞
⎠ = E,(26)

where

E11 = A11,

E12 = A11ᾱ + A12,

E13 = A11β̄ + A12γ̄,

E21 = ᾱTA11 + A21,

E22 = ᾱT (A11ᾱ + A12) + (A21ᾱ + A22),
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E23 = ᾱT (A11β̄ + A12γ̄) + A21β̄ + A22γ̄ − εI3,

E31 = β̄TA11 + γ̄TA21,

E32 = β̄T (A11ᾱ + A12) + γ̄T (A21ᾱ + A22) − εI3,

E33 = β̄T (A11β̄ + A12γ̄) + γ̄T (A21β̄ + A22γ̄ − εI3) − εI3γ̄.

Using AT
12 = A21, we cancel the off-diagonal blocks and solve for ᾱ, β̄, and γ̄. We

obtain

ᾱ = −A−1
11 A12, β̄ = εA−1

11 A12E
−1
22 , γ̄ = −εE−1

22 ,(27)

E =

⎛
⎝ A11 014 014

041 E22 04

041 04 −ε2E−1
22

⎞
⎠ , E22 = A22 −A21A

−1
11 A12.(28)

The conditions for this procedure to hold are that det(A11) �= 0 and det(E22) �= 0.
We know from Corollary 2.4 that i(A) = i(E). Thus, we can instead determine

the sign of the eigenvalues of E. Note that the upper-left entry of E is a scalar and
hence an eigenvalue. We denote that by

λ1 = A11 = un.(29)

If det(E22) �= 0, we know that E22 has four real nonzero eigenvalues, since E22 is
symmetric by construction. The signs of those do not change as E22 is inverted such
that from the second and third block there are always four negative and four positive
eigenvalues of E. Including λ1, we have for un > 0 four negative and five positive
eigenvalues, and for un < 0, five negative and four positive eigenvalues of E, as stated
in the proposition (assuming that det(A11) �= 0 and det(E22) �= 0).

We will now show that det(A11) �= 0 and det(E22) �= 0 for Mn �= ±1, 0. Since
A11 = un, we have det(A11) �= 0 for Mn �= 0. To evaluate the second condition, we
compute the eigenvalues of E22 explicitly. From (25) and (28) we have

E22 =

⎛
⎜⎜⎜⎜⎜⎝

− b2n2
1

un
+ un − b2n1n2

un
− b2n1n3

un
an1

− b2n1n2

un
− b2n2

2

un
+ un − b2n2n3

un
an2

− b2n1n3

un
− b2n2n3

un
− b2n2

3

un
+ un an3

an1 an2 an3 un

⎞
⎟⎟⎟⎟⎟⎠ ,(30)

and the eigenvalues are

λ2,3 =
−b2 + 2u2

n ±
√
b4 + 4a2u2

n

2un
,(31)

λ4 = λ5 = un,(32)

where n2
1 +n2

2 +n2
3 = 1 has been used to simplify the expressions. λ4 and λ5 obviously

shift sign at un = 0. Also, since λ4 = λ5 = 0 with Mn = un = 0, we have that
det(E22) = 0. Thus, to rotate A by R we once more need Mn �= 0. λ2 and λ3 can be
expressed as

λ2,3 =
c

2γMn

(
−1 + 2γM2

n ±
√

1 + 4(γ − 1)γM2
n

)
.(33)
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Consider λ2, and note that γ ≥ 1. Then
√

1 − 4γM2
n + 4γ2M2

n ≥ 1 such that the sign
of λ2 is the same as the sign of the denominator, i.e., Mn or un. This means that
λ2 �= 0 for all Mn �= 0, and λ2 = 0 for Mn = 0.

At last, λ3 is considered. λ3 shifts sign when

2γM2
n − 1 −

√
1 − 4γM2

n + 4γ2M2
n = 0.

Alternatively, (2γM2
n − 1)2 = (1 − 4γM2

n + 4γ2M2
n), which has the solutions Mn =

0, 1,−1, but Mn = 0 is discarded due to the original equality. Thus, λ3 �= 0, and
hence det(E22) �= 0 for |Mn| �= 1. Note that, λ3 is singular for Mn = 0.

We have now derived the number of positive and negative eigenvalues of A, and
hence the number of boundary conditions, and their dependence on Mn. This was
done by calculating the eigenvalues of E explicitly.

To obtain a set of boundary conditions we also need the eigenvectors of E. Given
the eigenvectors of E, it is a simple task to derive a diagonalizing matrix to A. The
eigenvectors of E22 are able to be explicitly derived since the eigenvalues are explicitly
given and they are Y = (y2, y3, y4, y5), where

y2 =

(
n1, n2, n3,−

−b4 −
√
b2 + 4a2u2

n

2aun

)T

=

(
n1, n2, n3,

−λ3 + un

a

)T

,(34)

y3 =

(
n1, n2, n3,−

−b4 +
√
b2 + 4a2u2

n

2aun

)T

=

(
n1, n2, n3,

−λ2 + un

a

)T

,(35)

y4 = (−n2, n1, 0, 0)
T
,(36)

y5 = (−n3, 0, n1, 0) .(37)

Remark 6. We omit the normalization of the eigenvectors to keep the expressions
(34)–(37) simple.

Now, we can derive a specific diagonalizing matrix M and conclude step (iii). For
convenience, we restate (6),

ṽTM−1,TMTAMM−1ṽ = w̃TΛMw̃,

where M = RX and ṽ = (ũT (G̃V )T )T . R is given in (26), (27), and (28). Further,

X =

⎛
⎝ 1 014 014

041 Y 04

041 04 Y

⎞
⎠ , ΛM =

⎛
⎝ un 014 014

041 Λ 04

041 04 −ε2Λ−1

⎞
⎠ ,

where Λ = diag(λ2, λ3, λ4, λ5). Inverting R and M yields

R−1 =

⎛
⎝ 1 −ᾱ 014

041 I4 −γ̄
041 04 I4

⎞
⎠ , M−1 = XTR−1 =

⎛
⎝ 1 −ᾱ 014

041 Y T −Y T γ̄
041 04 Y T

⎞
⎠ .(38)
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To simplify the computation of M−1 we use (27) and obtain

−Y T γ = εY TE−1
22 = εY TY Λ−1Y T = εΛ−1Y T = ε

⎛
⎜⎜⎝

λ−1
2 yT2

λ−1
3 yT3

λ−1
4 yT4

λ−1
5 yT5

⎞
⎟⎟⎠ ,(39)

yielding

M−1 =

⎛
⎝ 1 −ᾱ 014

041 Y T εΛ−1Y T

041 04 Y T

⎞
⎠ , where ᾱ =

(
− b

un
n̂, 0

)
.(40)

We proceed by computing the variables, w̃ = XTR−1ṽ = M−1ṽ, to which boundary
conditions should be applied. Let G̃V

i be the ith component of G̃V . Define ṽi...j =
(ṽi, . . . , ṽj)

T and ũn = (ũ1, ũ2, ũ3) · n̂. For convenience, we restate ṽ,

ṽ =

(
b

ρ
ρ̃, ũ1, ũ2, ũ3,−

b√
γ − 1

ρ̃

ρ
+

1

ρa
p̃, G̃V

1 , G̃V
2 , G̃V

3 , G̃V
4

)T

.(41)

Then,

w̃ = M−1ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ1 − ᾱ · ṽ2...5

yT2 (ṽ2...5 − ελ−1
2 G̃V )

yT3 (ṽ2...5 − ελ−1
3 G̃V )

yT4 (ṽ2...5 − ελ−1
4 G̃V )

yT5 (ṽ2...5 − ελ−1
5 G̃V )

yT2 G̃
V

yT3 G̃
V

yT4 G̃
V

yT5 G̃
V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(42)

by using (34)–(37).
For completeness we also give the reverse transformation. It is ṽ = RXw̃ = Mw̃,

M =

⎛
⎝ 1 ᾱY β̄Y

031 Y γ̄Y
031 03 Y

⎞
⎠ =

⎛
⎝ 1 ᾱY ᾱΛ−1Y T

031 Y −εY Λ
031 03 Y

⎞
⎠ .(43)

The corresponding diagonalizing matrices in the two-dimensional case are given in
Appendix A.

Remark 7. Note that we have found one of possibly several diagonalizing matrices.
M is not orthogonal, which means that ΛM does not hold the eigenvalues of A.

Remark 8. Note that the only condition involved with finding a diagonalizing
matrix M is that A be nonsingular. Then we can choose to rotate A to block diagonal
form with blocks of arbitrary size. If the blocks are small enough, we can derive their
eigenvalues analytically.

3.4. Step (iv) and (v): Split ΛM and w̃. In order to know which components
of w̃ to bound with boundary conditions we need to investigate the sign of the diagonal
entries of ΛM, i.e., the eigenvalues of E (step (iv)).
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Table 1

The sign of the eigenvalues for different Mach numbers.

Eigenvalue Mn < −1 −1 < Mn < 0 0 < Mn < 1 Mn > 1
λ1 − − + +
λ2 − − + +
λ3 − + − +
λ4 − − + +
λ5 − − + +
λ6 + + − −
λ7 + − + −
λ8 + + − −
λ9 + + − −

Table 2

The number of boundary conditions to be specified at different flow cases for the three-
dimensional Navier–Stokes equations.

Supersonic inflow 5
Subsonic inflow 5
Subsonic outflow 4

Supersonic outflow 4

Table 3

The number of boundary conditions to be specified at different flow cases for the three-
dimensional Euler equations.

Supersonic inflow 5
Subsonic inflow 4
Subsonic outflow 1

Supersonic outflow 0

In the proof of Proposition 3.1, λ3 given by (33) was analyzed. It was shown
that λ3 changes sign at Mn = 0 and |Mn| = 1. The eigenvalues λ1, λ2, λ4, and λ5

only change signs at Mn = 0. Thus, the different cases are inflow or outflow and
sub- or supersonic flow. A consequence is that sub- or supersonic flow affects which
boundary conditions to choose but not the number of them. In fact, only the boundary
condition corresponding to λ3 (and hence −ε2λ−1

3 ≡ λ7) changes sign at |Mn| = 1.
With Λ = diag(λ2, λ3, λ4, λ5), the diagonal form of E is ΛM = diag(λ1,Λ,−ε2Λ−1). In
Table 1 the signs of the different eigenvalues are summarized, where λ6, . . . , λ9 denotes
the diagonal entries of −ε2Λ−1. Those with negative signs have to be supplied with
boundary conditions. As mentioned above, since n̂ is the outward-pointing normal,
negative values of Mn indicate inflow and positive values mean outflow.

In Table 2 the numbers of boundary conditions deduced from Table 1 for different
flow cases are shown. They are in full agreement with the results from the Laplace
transform technique derived in [14] and also in [15]. Note that in the Euler limit,
i.e., ε → 0, the last four eigenvalues will become zero, and there are five nontrivial
eigenvalues. In Table 3 the numbers of boundary conditions are displayed for the
Euler case, ε → 0. The result agrees with the well-known theory for Euler equations.

At last, we can split w̃ given by (42) into w̃+ and w− corresponding to the positive
and negative eigenvalues and perform step (v), such that well-posedness follows.

Remark 9. Though there are no numerical computations in this article, we would
like to comment on some computational aspects. We assume that we know the ex-
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act boundary data ahead of time. This implies knowledge of the type of boundary
(inflow/outflow, subsonic/supersonic) that we have at each point on the boundary as
well as when one boundary type changes to another.

However, in computations, the numerical result might indicate that the assumed
data are erroneous. In such a case, this procedure as well as other boundary condition
procedures require an adjustment of the given data or location of the boundary for
better accuracy.

3.5. Special case: un = 0. The above derivation gives a set of boundary
conditions that leads to a well-posed mathematical problem. However, it is assumed
that un �= 0, which excludes two cases: tangential flow and the important solid wall
condition. We will treat the case un = 0 separately and redo the steps (iii)–(v).
Throughout this paper, we have considered the Navier–Stokes equations linearized
around the solution at the boundary, in this case un = 0. We obtain

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 bn1 bn2 bn3 0 0 0 0 0
bn1 0 0 0 an1 −ε 0 0 0
bn2 0 0 0 an2 0 −ε 0 0
bn3 0 0 0 an2 0 0 −ε 0
0 an1 an2 an3 0 0 0 0 −ε
0 −ε 0 0 0 0 0 0 0
0 0 −ε 0 0 0 0 0 0
0 0 0 −ε 0 0 0 0 0
0 0 0 0 −ε 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(44)

to which the previous rotation does not apply, since A is now singular. This leaves
us with no other choice but to seek the eigenvalues and eigenvectors of this matrix.
It turns out that it is now a simpler task than with un �= 0. The result is presented
below, and the details of the derivation are found in Appendix B.

Define m1 and m2 such that n̂Tm1 = 0, n̂Tm2 = m1
Tm2 = 0, and

μ1,2 = −c2

2
±
√

c4

4
+ a2ε2.

Then,

λ1 = −ε, e1 = (0,m1
T , 0,m1

T , 0)T ,

λ2 = −ε, e2 = (0,m2
T , 0,m2

T , 0)T ,

λ3 = ε, e3 = (0,m1
T , 0,−m1

T , 0)T ,

λ4 = ε, e4 = (0,m2
T , 0,−m2

T , 0)T ,

λ5 = 0, e5 =

(
1, 0, 0, 0, 0,

b

ε
n̂, 0T

)
,(45)

λ6 =
√
ε2 − μ1, e6 =

(
b, λ6n̂

T ,−aλ2
6

μ2
1

,−εn̂T ,
εaλ6

μ2
1

)T

,

λ7 = −
√
ε2 − μ1, e7 =

(
b, λ7n̂

T ,−aλ2
7

μ2
1

,−εn̂T ,
εaλ7

μ2
1

)T

,

λ8 =
√
ε2 − μ2, e8 =

(
b, λ8n̂

T ,−aλ2
8

μ2
2

,−εn̂T ,
εaλ8

μ2
2

)T

,

λ9 = −
√
ε2 − μ2, e9 =

(
b, λ9n̂

T ,−aλ2
9

μ2
2

,−εn̂T ,
εaλ9

μ2
2

)T

.
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Remark 10. With some algebra one can show that ε2 ≥ μ1,2 such that the
eigenvalues λ6, . . . , λ9 are real. In fact, since A is symmetric and the vectors e1, . . . , e9

are orthogonal and diagonalize A, λ1, . . . , λ9 have to be real.
Above, step (iii) is performed and we turn to step (iv). We have

Λ− = diag(λ1, λ2, 0, 0, 0, 0, λ7, 0, λ9),

Λ+ = diag(0, 0, λ3, λ4, 0, λ6, 0, λ8, 0).

Remark 11. Note that we have four negative eigenvalues. This means that a
boundary with un = 0 is classified as an outflow boundary.

Further, w̃ = XT v, where the column vectors of X are the eigenvectors. With
ũ = (ũ1, ũ2, ũ3)

T , G̃V
i...j = (G̃V

i , . . . , G̃
V
j )T , and the ith component of ṽ denoted by ṽi,

we obtain

w̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1
T (ũ + G̃V

1...3)

m2
T (ũ + G̃V

1...3)

m1
T (ũ − G̃V

1...3)

m2
T (ũ − G̃V

1...3)

v1 + b
ε n̂

T (G̃V )1...3

bv1 + n̂T (λ6ũ − εG̃V
1...3) − aλ6

μ2
1

(λ6v4 − εG̃V
4 )

bv1 + n̂T (λ7ũ − εG̃V
1...3) − aλ7

μ2
1

(λ7v4 − εG̃V
4 )

bv1 + n̂T (λ8ũ − εG̃V
1...3) − aλ8

μ2
2

(λ8v4 − εG̃V
4 )

bv1 + n̂T (λ9ũ − εG̃V
1...3) − aλ9

μ2
2

(λ9v4 − εG̃V
4 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(46)

Finally, we can split w̃ into w̃+ and w̃− as before and perform step (v), i.e., supply
w̃− with boundary conditions to obtain a well-posed system.

Remark 12. There are two more cases where un �= 0. Those are tangential flows
with |Mn| = 1. To find the eigenvalues of A directly for Mn = 1,−1 is equally difficult
as the general case, and we did not find roots in closed form.

3.6. Curvilinear coordinates. Until now, we have analyzed well-posed bound-
ary conditions for the Navier–Stokes equations in a Cartesian coordinate system and
a general domain. Considering numerical computations, that derivation suffices when
using unstructured methods such as finite volume schemes. However, for structured
methods, such as finite difference schemes, the Navier–Stokes equations are usually
expressed in a curvilinear coordinate system. We have included a brief analysis in Ap-
pendix C showing that the Cartesian results are directly applicable in the curvilinear
case through metric transformations.

4. Conclusions. We have proposed a step-by-step procedure to analyze a gen-
eral time dependent partial differential equation in terms of well-posedness including
boundary conditions. The procedure applied to the Euler equations results in the
well-known characteristic boundary conditions. In this article we have applied the
procedure to the three-dimensional Navier–Stokes equations on a general domain and
obtained a novel set of well-posed boundary conditions.

Appendix A. The two-dimensional matrices. With very few comments and
leaving out most details, we show the differences of the derivation in section 3 for the
two-dimensional case.
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With

B21 = B12 =
Bxy

2
,

the symmetrized equations are

ũt + A1ũx + A2ũy = ε(B11ũxx + B22ũyy + B12ũxy + B21ũyx).

The matrices are obtained by deleting the row and column referring to the u3 com-
ponent (see [10]). We introduce

F̃v = B11ũx + B21ũy, G̃v = B22ũy + B12ũx,

such that

1

2
‖ũ‖2

t +

∮
∂D

1

2

(
ũ

F̃V

)T (
A1n1 + A2n2 −εI4

−εI4 04

)(
ũ

F̃V

)
= DI,

where n̂ = [n1, n2], ds =
√
dx2 + dy2, and F̃V = F̃vn1 + G̃vn2.

By deleting the first component of F̃V yielding G̃V , the matrix is reduced from
an 8-by-8 matrix to a 7-by-7 matrix. With u = (u1, u2), we obtain

(
ũ

F̃V

)T (
A1n1 + A2n2 −εI4

−εI4 04

)(
ũ

F̃V

)
=

(
ũ

G̃V

)T

A

(
ũ

G̃V

)
,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u · n̂ bn1 bn2 0 0 0 0
bn1 u · n̂ 0 an1 −ε 0 0
bn2 0 u · n̂ an2 0 −ε 0
0 an1 an2 u · n̂ 0 0 −ε
0 −ε 0 0 0 0 0
0 0 −ε 0 0 0 0
0 0 0 −ε 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ A11 A12 014

A21 A22 −εI4
041 −εI4 04

⎞
⎠ .

The rotation of A is precisely similar,

RTAR =

⎛
⎝ 1 013 013

ᾱT I3 03

β̄T γ̄T I3

⎞
⎠

⎛
⎝ A11 A12 013

A21 A22 −εI3
031 −εI3 03

⎞
⎠

⎛
⎝ 1 ᾱ β̄

031 I3 γ̄
031 03 I3

⎞
⎠

=

⎛
⎝ E11 E12 E13

E21 E22 E23

E31 E32 E33

⎞
⎠ = E.

The same solution is obtained,

ᾱ = −A−1
11 A12, β̄ = A−1

11 A12E
−1
22 , γ̄ = −εE−1

22 ,
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E =

⎛
⎝ A11 014 014

041 E22 04

041 04 −ε2E−1
22

⎞
⎠ , E22 = A22 −A21A

−1
11 A12.

The first eigenvalue of E is λ1 = A11 = un, and the others are given by the eigenvalues
of E22,

E22 =

⎛
⎜⎜⎜⎝

− b2n2
1

un
+ un − b2n1n2

un
an1

− b2n1n2

un
− b2n2

2

un
+ un an2

an1 an2 un

⎞
⎟⎟⎟⎠ ,

λ2,3 =
−b2 + 2u2

n ±
√
b4 + 4a2u2

n

2un
, λ4 = un,

where n2
1 + n2

2 = 1 and un = u · n̂. These can be simplified similarly as for the
three-dimensional case.

The eigenvectors Y = (y2, y3, y4) are

y2 =

⎛
⎝ n1

n2
−λ3+un

a

⎞
⎠ , y3 =

⎛
⎝ n1

n2
−λ2+un

a

⎞
⎠ , y4 =

⎛
⎝ −n2,

n1

0

⎞
⎠ .(47)

Introduce the block matrix, X = diag(1, Y, Y ), such that XTEX = Λ, where Λ =
diag(un,Λ,−ε2Λ). Let ṽ = (ũT , (G̃V )T )T ; then ṽTAṽ = w̃TΛw̃, where w̃ = XTR−1ṽ =
M−1ṽ and Λ = MTAM . The matrices are

R−1 =

⎛
⎝ 1 −ᾱ 013

031 I3 −γ̄
031 03 I3

⎞
⎠ , M−1 =

⎛
⎝ 1 −ᾱ 014

041 Y T εΛ−1Y T

041 04 Y T

⎞
⎠ ,

where

Λ−Y T =

⎛
⎝ λ−1

2 y2

λ−1
3 y3

λ−1
4 y4

⎞
⎠ , ᾱ =

(
− b

un
n̂, 0

)
, M =

⎛
⎝ 1 ᾱY ᾱΛ−1Y T

031 Y −εY Λ
031 03 Y

⎞
⎠ .

In two dimensions, ṽ is

ṽ =

(
b

ρ

ρ̃

ρ
, ũ1, ũ2,−

b√
γ − 1

ρ̃ +
1

ρa
p̃, G̃V

1 , G̃V
2 , G̃V

3

)
.

Then,

w̃ = M−1ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ1 − ᾱ · ṽ2...4

yT2 (ṽ2...4 − ελ−1
2 G̃V )

yT3 (ṽ2...4 − ελ−1
3 G̃V )

yT4 (ṽ2...4 − ελ−1
4 G̃V )

yT2 G̃
V

yT3 G̃
V

yT4 G̃
V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(48)



WELL-POSED BOUNDARY CONDITIONS 1247

Appendix B. Diagonalization with un = 0. Consider

Ae = λe,(49)

where A is given by (44), repeated here for convenience,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 bn1 bn2 bn3 0 0 0 0 0
bn1 0 0 0 an1 −ε 0 0 0
bn2 0 0 0 an2 0 −ε 0 0
bn3 0 0 0 an2 0 0 −ε 0
0 an1 an2 an3 0 0 0 0 −ε
0 −ε 0 0 0 0 0 0 0
0 0 −ε 0 0 0 0 0 0
0 0 0 −ε 0 0 0 0 0
0 0 0 0 −ε 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(50)

The structure of A suggests the following ansatz:

e1 = (0,m1,m2,m3, 0,m1,m2,m3, 0)T ,(51)

e2 = (0,m1,m2,m3, 0,−m1,−m2,−m3, 0)T ,(52)

e3 = (m4,m5n1,m5n2,m5n3,m6,m7n1,m7n2,m7n3,m8).(53)

We will use the notation m = (m1,m2,m3)
T . With (51), equation (49) becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bn̂Tm
−εm1

−εm2

−εm3

an̂Tm
−εm1

−εm2

−εm3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
m1

m2

m3

0
m1

m2

m3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(54)

With λ = λ1 and m = m1, the following choice satisfies the above equation, n̂Tm1 =
0, and λ1 = −ε. Further, we may also choose a second solution m = m2 and λ2 = −ε
such that n̂Tm2 = 0 and m2

Tm1 = 0. Similarly, ansatz (52) yields

λ3 = ε, n̂Tm3 = 0,(55)

λ4 = ε, n̂Tm4 = 0, m3
Tm4 = 0.(56)

In fact, we can let m1 = m3 and m2 = m4 . It is obvious that the vectors (51) and
(52) will be orthogonal, and, by definition, they are orthogonal to (53). So far, four
eigenvalues and eigenvectors out of nine are derived when we turn to the last ansatz
(53). In this case (49) becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m5b
(bm4 + am6 − εm7)n1

(bm4 + am6 − εm7)n2

(bm4 + am6 − εm7)n3

am5 − εm8

−εm5n1

−εm5n2

−εm5n3

−εm6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m4

m5n1

m5n2

m5n3

m6

m7n1

m7n2

m7n3

m8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(57)
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where n2
1 +n2

2 +n3
3 has been used. Note that the above system of equations reduces to

only five equations by the choice of the eigenvector. Further, we have five unknowns,
including λ. (One of the unknowns of the eigenvector drops out since it should only
enter as a scaling.) We have

m5b = λm4,(58)

bm4 + am6 − εm7 = λm5,(59)

am5 − εm8 = λm6,(60)

−εm5 = λm7,(61)

−εm6 = λm8.(62)

In this case it turns out that the ansatz was satisfactory since five solutions to the
system (58)–(62) exist.

The case we examine is the marginal case with un = 0, which leads us to expect
one eigenvalue to be zero. Thusly, with λ5 = 0 the following eigenvector is obtained:

e5 =

(
1, 0, 0, 0, 0,

b

ε
n1,

b

ε
n2,

b

ε
n3, 0

)T

.(63)

Next, we solve full system (58)–(62) without assumptions on the solution. With
μ = ε2 − λ2, a second degree equation in μ is obtained,

μ2 + (b + a2)μ− a2ε2 = 0,(64)

with the solutions

μ1,2 = −b + a2

2
±
√

(b + a2)2

4
+ a2ε2 = −c2

2
±
√

c4

4
+ a2ε2(65)

such that λ6,7 = ±
√
ε2 − μ1 and λ8,9 = ±

√
ε2 − μ2. For any of these λ’s the eigen-

vector is given by

e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
λn1

λn2

λn3

− aλ2

ε2−λ2

−εn1

−εn2

−εn3
εaλ

ε2−λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(66)

Next, we have to show that the different eigenvectors obtained from (66) are
orthogonal to each other. We distinguish between two cases: 1. any of the eigenvalues
derived from μ1, denoted by ξ1, and another eigenvalue ξ2 derived from μ2; 2. both
eigenvalues ξ1,2 derived from the same μ.

The scalar product is

e(ξ1)
T · e(ξ2) = b + ξ1ξ2 +

a2ξ2
1ξ

2
2

(ε2 − ξ2
1)(ε2 − ξ2

2)
+ ε2 +

ε2a2ξ1ξ2
(ε2 − ξ2

1)(ε2 − ξ2
2)

.(67)
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Case 1. For a general quadratic equation x2 +px+q = 0 the roots fulfill x1x2 = q
and x1 + x2 = −p. When applied to (64) this implies

μ1μ2 = (ε2 − ξ2
1)(ε2 − ξ2

2) = −a2ε2,(68)

μ1 + μ2 = −(b + a2).(69)

Thus, (67) is

b + ξ1ξ2 −
ξ2
1ξ

2
2

ε2
+ ε2 − ξ1ξ2

= b + ε2 +
(ε2 − μ1)(ε

2 − μ2)

ε2

= b + ε2 − (ε2 − (μ1 + μ2) − a2)

= b− (b + a2) + a2 = 0.(70)

Case 2. In this case the following relations hold:

λ2 = ξ2
1 = ξ2

2 ,(71)

λ = ξ1 = −ξ2,(72)

λ2 = −ξ1ξ2 = (μ− ε2),

(ε2 − ξ2
1,2) = μ.(73)

Then (67) becomes, after multiplying by (ε2 − λ2)2,

(ε2 − λ2)2(b− λ2 + ε2) + a2λ4 − ε2a2λ2

= (b− λ2 + ε2)(ε2 − λ2)2 + a2λ2(λ2 − ε2)

= (λ2 − ε2)((b + (ε− λ2))(ε2 − λ2) + a2λ2)

= −μ((b + μ)μ + a2(μ− ε2))

= −μ(μ2 + (b + a2)μ− a2ε2) = 0,

where the last equality is due to (64).
One should also normalize these vectors to formally obtain the eigenvectors of

the matrix A. With this done, we conclude that in the case of neither inflow nor
outflow, the above derivation gives the eigenvalues and eigenvectors of the linearized
Navier–Stokes equations in three dimensions.

Appendix C. Curvilinear coordinates.

C.1. Metric relations. Let x, y, z denote the usual Cartesian coordinates. Con-
sider the following coordinate transformation:

ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z).

The Jacobian is defined as

J =

⎛
⎝ xξ xη xζ

yξ yη yζ
zξ zη zζ

⎞
⎠ .(74)

Let x̄ = (x, y, z) = (x1, x2, x3) and ξ̄ = (ξ, η, ζ) = (ξ1, ξ2, ξ3). Then we can formally
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express the Jacobian as Dξ̄x̄ = J. The following relation holds:

I = Dx̄x̄(ξ̄) = Dξ̄x̄Dx̄ξ̄.(75)

Hence,

J−1 = Dx̄ξ =

⎛
⎝ ξx ξy ξz

ηx ηy ηz
ζx ζy ζz

⎞
⎠ .(76)

However, J−1 can also be obtained directly by inverting (74),

J−1 = Dx̄ξ =
1

J

⎛
⎝ yηzζ − yζzη −(xηzζ − xζzη) xηyζ − xζyη

−(yξzζ − yζzξ) xξzζ − xζzξ −(xξyζ − xζyξ)
yξzη − yηzξ −(xξzη − xηzξ) xξyη − xηyξ

⎞
⎠ ,(77)

where J denotes the determinant of the Jacobian. Then (76) and (77) give relations
between the different metric coefficients. For example, we note that

(Jξx)ξ + (Jηx)η + (Jζx)ζ = (yηzζ − yζzη)ξ − (yξzζ − yζzξ)η + (yξzη − yηzξ)ζ = 0,

(Jξy)ξ + (Jηy)η + (Jζy)ζ = −(xηzζ − xζzη)ξ + (xξzζ − xζzξ)η − (xξzη − xηzξ)ζ = 0,

(Jξz)ξ + (Jηz)η + (Jζz)ζ = (xηyζ − xζyη)ξ − (xξyζ − xζyξ)η + (xξyη − xηyξ)ζ = 0,

(78)

which will be used below.

C.2. Curvilinear Navier–Stokes equations. Consider the linearized and sym-
metrized Navier–Stokes equations (9), restated here for convenience,

ũt+ (A1ũ− ε(B11ũx + B12ũy + B13ũz))x

+ (A2ũ− ε(B22ũy + B23ũz + B12ũx))y

+ (A3ũ− ε(B33ũz + B32ũy + B13ũx))z = 0

or

ũt + (F I − εF̃v)x + (GI − εG̃v)y + (HI − εH̃v)z(79)

= ũt + Fx + Gy + Hz = 0.

Multiply (79) by J and make the change of coordinates,

0 = (Jũ)t + JFx + JGy + JHz

= (Jũ)t + JξxFξ + JηxFη + JζxFζ(80)

+JξyGξ + JηyGη + JζyGζ

+JξzHξ + JηzHη + JζzHζ .

Reformulating (80) yields

(Jũ)t +(JξxF + JξyG + JξzH)ξ −R1

+ (JηxF + JηyG + JηzH)η −R2

+ (JζxF + JζyG + JζzH)ζ −R3,
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where

R1 = (Jξx)ξF + (Jξy)ξG + (Jξz)ξH,

R2 = (Jηx)ηF + (Jηy)ηG + (Jηz)ηH,

R3 = (Jζx)ζF + (Jζy)ζG + (Jζz)ζH.

By using the metric relations in (78), we obtain

R1 + R2 + R3 = F ((Jξx)ξ + (Jηx)η + (Jζx)ζ)
+G((Jξy)ξ + (Jηy)η + (Jζy)ζ)
+H((Jξz)ξ + (Jηz)η + (Jζz)ζ) = 0.

Define

F̂ = (JξxF + JξyG + JξzH),

Ĝ = (JηxF + JηyG + JηzH),

Ĥ = (JζxF + JζyG + JζzH)

such that

0 = (Jũ)t + JFx + JGy + JHz = (Jũ)t + F̂ξ + Ĝη + Ĥζ .(81)

Next, we express the new fluxes in curvilinear coordinates. We obtain

F̂ I =(JξxF
I + JξyG

I + JξzH
I) = J(ξxA1 + ξyA2 + ξzA3)u,

ĜI =(JηxF
I + JηyG

I + JηzH
I) = J(ηxA1 + ηyA2 + ηzA3)u,(82)

ĤI =(JζxF
I + JζyG

I + JζzH
I) = J(ζxA1 + ζyA2 + ζzA3)u,

and

F̂v = (JξxF̃v + JξyG̃v + JξzH̃v),

Ĝv = (JηxF̃v + JηyG̃v + JηzH̃v),(83)

Ĥv = (JζxF̃v + JζyG̃v + JζzH̃v),

where

F̃v = B̃11ũξ + B̃12ũη + B̃13ũζ ,

G̃v = B̃22ũη + B̃23ũζ + B̃12ũξ,

H̃v = B̃33ũζ + B̃32ũη + B̃13ũξ,

and

B̃11 = B11ξx + B12ξy + B13ξz, B̃12 = B11ηx + B12ηy + B13ηz,

B̃13 = B11ζx + B12ζy + B13ζz, B̃22 = B22ξy + B23ξz + B12ξx,

B̃23 = B22ηy + B23ηz + B12ηx, B̃21 = B22ζy + B23ζz + B12ζx,

B̃33 = B33ξz + B32ξy + B13ξx, B̃32 = B33ηz + B32ηy + B13ηx,

B̃31 = B33ζz + B32ζy + B13ζx.
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C.3. Energy estimate. Next, we turn to the well-posedness of (81). We apply
the energy method and derive the boundary terms. Our aim is to relate the boundary
terms in curvilinear coordinates to those derived in x̄-space.

First we note that

dxdydz = Jdξdηdζ.(84)

Further, we use the notation Dξ̄ in ξ̄-space for the image of the domain Dx̄ in x̄-space.
Apply the energy method to (81) to obtain

0 =

∫
Dξ̄

ũT ũtJdξdηdζ +

∫
Dξ̄

ũT (F̂ I
ξ + ĜI

η + ĤI
ζ )dξdηdζ

− ε

∫
Dξ̄

ũT ((F̂v)ξ + (Ĝv)η + (Ĥv)ζ)dξdηdζ =

∫
Dx̄

ũT ũtdxdydz + I1 − εI2,(85)

I2 =

∫
Dξ̄

(ũT F̂v)ξ + (ũT Ĝv)η + (ũT Ĥv)ζdξdηdζ

−
∫
Dξ̄

ũT
ξ (F̂v)ξ + ũT

η (Ĝv)η + ũT
ζ (Ĥv)ζdξdηdζ(86)

=

∫
Dξ̄

(ũT F̂v)ξ + (ũT Ĝv)η + (ũT Ĥv)ζdξdηdζ −DI

=

∮
Γξ̄

(ũT F̂v, ũ
T Ĝv, ũ

T Ĥv) · nξ̄dsξ̄ −DI

=

∮
Γξ̄

ũT F̂V dsξ̄ −DI,

where nξ̄ = (nξ, nη, nζ) and dsξ̄ denote the outward-pointing normal and surface

element in ξ̄-space, respectively. Further, F̂V = F̂vnξ + Ĝvnη + Ĥvnζ . DI denotes a
dissipative term and is equal to DI defined in subsection 3.2.

I1 =

∫
Dξ̄

ũT (F̂ I
ξ + ĜI

η + ĤI
ζ )dξdηdζ

=

∫
Dξ̄

ũT (JξxA1ũ + JξyA2ũ + JξzA3ũ)ξ

+ ũT (JηxA1ũ + JηyA2ũ + JηzA3ũ)η

+ ũT (JζxA1ũ + JζyA2ũ + JζzA3ũ)ζdξdηdζ.

Next, we use relations of the type

ũT (JξxA1ũ)ξ = (Jξx)ξũ
TA1ũ + (Jξx)

(
1

2
ũTA1ũ

)
ξ

= (Jξx)ξũ
TA1ũ +

(
Jξx

1

2
ũTA1ũ

)
ξ

− (Jξx)ξ

(
1

2
ũTA1ũ

)

=

(
Jξx

1

2
ũTA1ũ

)
ξ

+ (Jξx)ξ

(
1

2
ũTA1ũ

)
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to obtain

I1 =

∫
Dξ̄

(
Jξx

1

2
ũTA1ũ

)
ξ

+

(
Jξy

1

2
ũTA2ũ

)
ξ

+

(
Jξz

1

2
ũTA3ũ

)
ξ

+

(
Jηx

1

2
ũTA1ũ

)
η

+

(
Jηy

1

2
ũTA2ũ

)
η

+

(
Jηz

1

2
ũTA3ũ

)
η

+

(
Jζx

1

2
ũTA1ũ

)
ζ

+

(
Jζy

1

2
ũTA2ũ

)
ζ

+

(
Jζz

1

2
ũTA3ũ

)
ζ

(87)

+
1

2
ũTA1ũ(Jξx)ξ +

1

2
ũTA1ũ(Jηx)η +

1

2
ũTA1ũ(Jζx)ζ

+
1

2
ũTA2ũ(Jξy)ξ +

1

2
ũTA2ũ(Jηy)η +

1

2
ũTA2ũ(Jζy)ζ

+
1

2
ũTA3ũ(Jξz)ξ +

1

2
ũTA3ũ(Jηz)η +

1

2
ũTA3ũ(Jζz)ζdξdηdζ.

Hence, by using (78), the last three rows of (87) are identically zero:

I1 =

∮
Γξ̄

1

2
(ũT (Â1)ũ, ũ

T (Â2)ũ, ũ
T (Â3)ũ) · nξ̄dsξ̄,(88)

where

Â1 = (A1Jξx + A2Jξy + A3Jξz),

Â2 = (A1Jηx + A2Jηy + A3Jηz),

Â3 = (A1Jζx + A2Jζy + A3Jζz).

By inserting (86) and (88) into (85), we obtain

2

∫
Dx̄

ũT ũtdxdydz

+

∮
Γξ̄

(ũT (Â1)ũ, ũ
T (Â2)ũ, ũ

T (Â3)ũ) · nξ̄dsξ̄ − ε

(∮
Γξ̄

2ũT F̂V dsξ̄ −DI

)

= ‖ũ‖2
t +

∮
Γξ̄

(
ũ

F̂V

)(
(Â1, Â2, Â3) · nξ̄ −εI

−εI 0

)(
ũ

F̂V

)
dsξ̄ −DI

= ‖ũ‖2
t +

∮
Γξ̄

(
ũ

F̂V

)
Â

(
ũ

F̂V

)
dsξ̄ −DI = 0.(89)

The form (89) is completely similar to the one in the x̄-system. As mentioned earlier,
the domain in ξ̄-space is a cube. Hence, nξ̄ is particularly simple. It is a unit vector
in the coordinate directions, ±eξ,±eη,±eζ , on the boundary of the computational
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domain, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1. The full formulation for the cube is

‖ũ‖2
t−

∫
ξ=0

(
ũ

F̂v

)(
Â1 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

+

∫
ξ=1

(
ũ

F̂V

)(
Â1 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

−
∫
η=0

(
ũ

F̂V

)(
Â2 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄(90)

+

∫
η=1

(
ũ

F̂V

)(
Â2 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

−
∫
ζ=0

(
ũ

F̂V

)(
Â3 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

+

∫
ζ=1

(
ũ

F̂V

)(
Â3 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄ = DI.

Note that dsξ̄ is different in the different coordinate directions. As a last step we will
express one of the integrals in (90) in x̄- space. Consider, for example,

−
∫
ξ=0

(
ũ

F̂V

)(
Â1 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

=

∫
ξ=0

(
ũ

F̂V

)(
−A1Jξx −A2Jξy −A3Jξz −εI

−εI 0

)(
ũ

F̂V

)
dsξ̄

=

∫
ξ=0

(
ũ
F̂V

JT1

)(
−A1

ξx
T1

−A2
ξy
T1

−A3
ξz
T1

−εI

−εI 0

)(
ũ
F̂V

JT1

)
JT1dsξ̄

=

∫
ξ=0

(
ũ
F̂V

JT1

)(
A1n1 + A2n2 + A3n3 −εI

−εI 0

)(
ũ
F̂V

JT1

)
JT1dsξ̄,(91)

where T1 =
√

(ξx)2 + (ξy)2 + (ξz)2 and n2
1 + n2

2 + n2
3 = 1. In fact, (n1, n2, n3) is

equal to the normal in the x̄- system. This is easily seen by the following. Denote by
r = (x, y, z) a position vector in space. The unnormalized normal vector at ξ = 0 is

∂r

∂η
× ∂r

∂ζ
= (xη, yη, zη) × (xζ , yζ , zζ)

= (yηzζ − zηyζ ,−(xηzζ − zηxζ), xηyζ − yηxζ) = JT1(n1, n2, n3),(92)

where (76) and (77) have been used. Hence the matrices appearing in (91) and (23)
are equal. Next, we will show that the vectors in (91) and (23) are also equal. We
have

F̂V

JT1
=

F̂v · 1 + Ĝv · 0 + Ĥv · 0
JT1

=
F̂v

JT1

=
(ξxF̃v + ξyG̃v + ξzH̃v)

T1
= F̃vn1 + G̃vn2 + H̃vn3 = F̃V .

At last, we find

dsx̄ =

∣∣∣∣∂r∂η × ∂r

∂ζ

∣∣∣∣ dsξ̄ = JT1dsξ̄,(93)



WELL-POSED BOUNDARY CONDITIONS 1255

implying that (91) and (23) are equal.
The other boundaries can be treated similarly. To summarize, we have shown

that the relations in x̄-space are completely equivalent to those in ξ̄-space.
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