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Abstract The open loop system of an Euler–Bernoulli plate with variable coeffi-
cients and partial boundary Neumann control and collocated observation is consi-
dered. Using the geometric multiplier method on Riemannian manifolds, we show
that the system is well-posed in the sense of D. Salamon and regular in the sense of
G. Weiss. Moreover, we determine that the feedthrough operator of this system is zero.
The result implies in particular that the exact controllability of the open-loop system
is equivalent to the exponential stability of the closed-loop system under proportional
output feedback.

Keywords Euler-Bernoulli plate · Well-posed and regular system ·
Boundary control and observation

1 Introduction

Well-posed and regular linear systems are a quite general class of linear infinite-
dimensional systems, which cover many control systems described by partial diffe-
rential equations with actuators and sensors supported at isolated points, sub-domain,
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or on a part of the boundary of the spatial region. This class of infinite-dimensional
systems, although the input and output operators are allowed to be unbounded,
possess many properties that make them similar in many ways to finite-dimensional
systems.

The abstract theory for well-posed and regular linear systems has already been quite
fruitful. However, the well-posedness and regularity are verified only for a few control
systems described by multi-dimensional partial differential equations and in particular,
to our best knowledge, there are no examples with variable coefficients analyzed in
the literature. Concerning systems with constant coefficients, the well-posedness and
regularity of a multi-dimensional heat equation with both Dirichlet and Neumann
type boundary controls were established in [3]. For a wave equation with boundary
Dirichlet input and collocated output, the well-posedness was proved in [1] and the
regularity was proved in [9]. The well-posedness and regularity for multi-dimensional
Schrödinger and Euler–Bernoulli equations were established in [7,8,12]. Although
Remark 4.1 of [12] mentioned some references for PDEs with variable coefficients,
these earlier results mainly concern with observability/controllability and stability, not
well-posedness and regularity.

The objective of this paper is to generalize the results for the Euler–Bernoulli plate
[8,12] to the variable coefficients case, which occurs often for the plate in practice
when the material consisting of the plate is not uniform. The system is described
by the following Euler–Bernoulli plate with partial boundary Neumann control and
collocated observation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t (x, t)+ A2w(x, t) = 0, x = (x1, x2, . . . , xn) ∈ Ω, t > 0,

w(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
∂w(x, t)

∂νA
= 0, x ∈ Γ1, t ≥ 0,

∂w(x, t)

∂νA
= u(x, t), x ∈ Γ0, t ≥ 0,

y(x, t) = −A(A −1wt (x, t)), x ∈ Γ0, t ≥ 0,

(1)

whereΩ ⊂ R
n(n ≥ 2) is an open bounded region with smooth boundary ∂Ω =: Γ =

Γ0 ∪Γ1. Γ0, Γ1 are disjoint parts of the boundary relatively open in ∂Ω , int(Γ0) �= ∅.

Aw(x, t) :=
n∑

i, j=1

∂

∂xi

(

ai j (x)
∂w(x, t)

∂x j

)

, D(A) = H2(Ω) ∩ H1
0 (Ω),

A ψ := A2ψ, D(A ) = H4(Ω) ∩ H2
0 (Ω),

and for some constant a > 0,

ai j (x) = a ji (x) ∈ C4(Rn),

n∑

i, j=1

ai j (x)ξiξ j ≥ a
n∑

i=1

|ξi |2 , ∀ x ∈ Ω,

ξ = (ξ1, ξ2, . . . , ξn) ∈ C
n,

(2)
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νA :=
(

n∑

k=1

νkak1(x),
n∑

k=1

νkak2(x), . . . ,
n∑

k=1

νkakn(x)

)

,

∂

∂νA
:=

n∑

i, j=1

νi ai j (x)
∂

∂x j
,

(3)

where ν = (ν1, ν2, . . . , νn) is the unit normal of ∂Ω pointing towards the exterior of
Ω . u is the input function (or control) and y is the output function (or observation).

Let H = L2(Ω) × H−2(Ω) and U = L2(Γ0). The following theorem is the
generalization of Theorem 4.15 of [12], where the coefficients of the system (1) are
considered constant.

Theorem 1.1 Let T > 0, (w0, w1) ∈ H and u ∈ L2(0, T ; U ). Then there exists a
unique solution (w,wt ) ∈ C([0, T ];H) to the system (1), which satisfies w(·, 0) =
w0 and wt (·, 0) = w1. Moreover, there exists a constant CT > 0, independent of
(w0, w1, u), such that

‖(w(·, T ), wt (·, T ))‖2
H + ‖y‖2

L2(0,T ;U ) ≤ CT

[
‖(w0, w1)‖2

H + ‖u‖2
L2(0,T ;U )

]
.

Theorem 1.1 implies that the open-loop system (1) is well-posed in the sense of D.
Salamon with the state space H, input and output space U [15]. From this result and
Theorem 2.2 of [2] (see also Theorem 3 of [6]), we have immediately the following
corollary.

Corollary 1.1 The system (1) is exactly controllable in some time interval [0, T ] if and
only if its closed-loop system under the proportional output feedback u = −ky, k > 0
is exponentially stable.

For the conditions of the exact controllability for the system (1), we refer reader to
Theorem 1.3 of [21]. The above equivalent result is new for the exponential stability
of the system (1). The following theorem is the generalization of Theorem 1.2 of [8],
where the coefficients of the system (1) are considered constant.

Theorem 1.2 The system (1) is regular. More precisely, ifw(·, 0) = wt (·, 0) = 0 and
u is a step input: u(·, t) ≡ u(·) ∈ U, then the corresponding output y satisfies

lim
σ→0

∫

Γ0

∣
∣
∣
∣
∣
∣

1

σ

σ∫

0

y(x, t)dt

∣
∣
∣
∣
∣
∣

2

dx = 0. (4)

Theorems 1.1 and 1.2 ensure that the system (1) is a well-posed regular linear
system with feedthrough operator zero. This makes the system (1) similar to a linear
finite-dimensional system in many ways. The property claimed by Corollary 1.1 is
one of them.

It should be pointed out that although Theorems 1.1 and 1.2 are generalizations
of [8,12] where the coefficients are constant, such a generalization is not direct. In
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order to prove the results, some computations on Riemannian manifolds are required.
As it was used in [20,21], the classical multiplier for a domain in Euclidean space
is inadequate to deal with variable coefficients. Standard microlocal analysis may be
used as an alternative to prove Theorems 1.1 and 1.2, but the geometric multiplier
method is more natural to these proofs since it is parallel to the classical multiplier
method in Euclidean space for the system with constant coefficients.

The remaining part of the paper are organized as follows. In Sect. 2, we cast the
system (1) into an abstract setting studied in [6] and give some basic background on
Riemannian geometry. The proofs of Theorems 1.1 and 1.2 are given in Sects. 3 and
4, respectively.

2 Abstract formulation and preliminaries

Let H = H−2(Ω) be the dual space of the Sobolev space H2
0 (Ω) with usual inner

product. Let A be the positive self-adjoint operator in H induced by the bilinear form
a(·, ·) defined by

〈A f, g〉H−2(Ω)×H2
0 (Ω)

= a( f, g) =
∫

Ω

A f (x) · Ag(x)dx, ∀ f, g ∈ H2
0 (Ω).

By means of the Lax-Milgram theorem, A is a canonical isomorphism from D(A) =
H2

0 (Ω) onto H . It is easy to show that A f = A f whenever f ∈ H4(Ω) ∩ H2
0 (Ω)

and that A−1g = A −1g for any g ∈ L2(Ω). Hence A is an extension of A to the
space H2

0 (Ω).
Same as [8], it can be shown that D(A1/2) = L2(Ω) and A1/2 is an isomorphism

from L2(Ω) onto H . Define the map Υ ∈ L(L2(Γ0), H3/2(Ω))([14], p. 189) so that
Υ u = v if and only if

⎧
⎪⎨

⎪⎩

A2v(x) = 0, x ∈ Ω,

v(x)|∂Ω = ∂v(x)

∂νA

∣
∣
∣
∣
Γ1

= 0,
∂v(x)

∂νA

∣
∣
∣
∣
Γ0

= u(x).
(5)

By virtue of the above map, one can write (1) as

ẅ + A(w − Υ u) = 0. (6)

Since D(A) is dense in H , so is D(A1/2). We identify H with its dual H ′. Then the
following relations hold:

D(A1/2) ↪→ H = H ′ ↪→ (D(A1/2))′.

An extension Ã ∈ L(D(A)1/2, (D(A1/2))′) of A is defined by

〈 Ã f, g〉(D(A1/2))′×D(A1/2) = 〈A1/2 f, A1/2g〉H , ∀ f, g ∈ D(A1/2). (7)
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Well-posedness and regularity for an Euler–Bernoulli plate 341

So (6) can be further written in (D(A1/2))′ as

ẅ + Ãw + Bu = 0,

where B ∈ L(U, (D(A1/2))′) is given by

Bu = − ÃΥ u, ∀ u ∈ U. (8)

Define B∗ ∈ L(D(A1/2),U ) by

〈B∗ f, u〉U = 〈 f, Bu〉D(A1/2)×(D(A1/2))′ , ∀ f ∈ D(A1/2), u ∈ U.

Then for any f ∈ D(A1/2) and u ∈ C∞
0 (Γ0), we have

〈 f, Bu〉D(A1/2)×(D(A1/2))′ = 〈 f, Ã Ã−1 Bu〉D(A1/2)×(D(A1/2))′

= 〈A1/2 f, A1/2 Ã−1 Bu〉H

= −〈A1/2 f, A1/2Υ u〉H = −〈 f, Υ u〉L2(Ω)

= −〈A A −1 f, Υ u〉L2(Ω) =
〈
A(A −1 f ), u

〉

U
.

In the last step, we have used the fact that Υ ∗A = −A · |Γ0 on H4(Ω) ∩ H2
0 (Ω).

Indeed, by Lemma 2.2 of the next section, for anyψ ∈ H4(Ω)∩H2
0 (Ω), u ∈ L2(Γ0),

we have

〈
Υ ∗A ψ, u

〉

L2(Γ0)
= 〈A ψ,Υ u〉L2(Ω) =

〈
A2ψ,Υ u

〉

L2(Ω)

=
∫

Ω

A(Aψ)Υ udx

=
∫

∂Ω

Υ u
∂(Aψ)
∂νA

dΓ −
∫

∂Ω

Aψ · ∂(Υ u)

∂νA
dΓ

−
∫

Ω

Aψ · A(Υ u)dx = −
∫

Γ0

Aψ · udΓ = 〈−Aψ, u〉L2(Γ0)
.

Hence Υ ∗A = −A · |Γ0 on H4(Ω)∩ H2
0 (Ω). Since C∞

0 (Γ0) is dense in L2(Γ0), we
finally obtain that

B∗ f = A(A −1 f )
∣
∣
∣
Γ0
, ∀ f ∈ D(A1/2) = L2(Ω). (9)

Now, we have formulated the open-loop system (1) into an abstract form of a
second-order system in H:

{
ẅ(·, t)+ Ãw(·, t)+ Bu(·, t) = 0,
y(·, t) = −B∗ẇ(·, t),

(10)
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where B and B∗ are defined by (8) and (9), respectively. The abstract system (10) has
been studied in detail in [2,6].

To end this section, we list some basic facts in Riemannian geometry that we need in
the following sections. Notice the hypothesis (2) and let A(x) and G(x) be, repectively,
the coefficient matrix and its inverse:

A(x) := (ai j (x)), G(x) := (gi j (x)) = A(x)−1, G(x) := det(gi j (x)).

Let R
n be the usual Euclidean space. For each x = (x1, x2, . . . , xn) ∈ R

n , define the
inner product and norm over the tangent space R

n
x of R

n by

g(X,Y ) := 〈X,Y 〉g =
n∑

i, j=1

gi jαiβ j ,

|X |g := 〈X, X〉1/2
g , ∀X =

n∑

i=1

αi
∂

∂xi
, Y =

n∑

i=1

βi
∂

∂xi
∈ R

n
x .

Then (Rn, g) is a Riemannian manifold with Riemannian metric g [20,21]. Denote
by D the Levi-Civita connection with respect to g. Let N be a vector field on (Rn, g).
Then for each x ∈ R

n , the covariant differential DN of N determines a bilinear form
on R

n
x × R

n
x :

DN (X,Y ) = 〈DX N ,Y 〉g, ∀X,Y ∈ R
n
x ,

where DX N stands for the covariant derivative of the vector field N with respect to X .

For any ϕ ∈ C2(Rn) and N =
n∑

i=1

γi (x)
∂

∂xi
, denote

div0(N ) :=
n∑

i=1

∂γi (x)

∂xi
,

Dϕ = ∇gϕ :=
n∑

i, j=1

∂ϕ

∂xi
ai j (x)

∂

∂x j
,

divg(N ) :=
n∑

i=1

1√G(x)
∂

∂xi

(√
G(x)γi (x)

)
,

∆gϕ :=
n∑

i, j=1

1√G(x)
∂

∂xi

(
√

G(x)ai j (x)
∂ϕ

∂x j

)

= Aϕ − (D f )ϕ,

f (x) = 1

2
log det(ai j (x)),

where ∆g is the Beltrami-Laplace operator.
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Well-posedness and regularity for an Euler–Bernoulli plate 343

Letµ be the unit outward-pointing normal to ∂Ω in terms of the Riemannian metric
g. The following Lemma 2.1 ([16], p. 128, 138) and Lemma 2.2 provide some useful
identities.

Lemma 2.1 Let ϕ,ψ ∈ C2(Ω) and N be a vector field on (Rn, g). Then we have

(i) divergence formula and theorem:

div0(ϕN ) = ϕdiv0(N )+ N (ϕ), divg(ϕN ) = ϕdivg(N )+ N (ϕ),
∫

Ω

div0(N )dx =
∫

∂Ω

N · νdΓ,
∫

Ω

divg(N )dx =
∫

∂Ω

〈N , µ〉gdΓ ;

(ii) Green’s identities:
∫

Ω

∆gϕ · ψdx =
∫

∂Ω

ψ
∂ϕ

∂µ
dΓ −

∫

Ω

〈∇gϕ,∇gψ〉gdx,

∫

Ω

∆gϕ · ψdx −
∫

Ω

ϕ∆gψdx =
∫

∂Ω

ψ
∂ϕ

∂µ
dΓ −

∫

∂Ω

ϕ
∂ψ

∂µ
dΓ.

Lemma 2.2 Let ϕ,ψ ∈ C2(Ω), then

∫

Ω

Aϕ · ψdx =
∫

∂Ω

ψ
∂ϕ

∂νA
dΓ −

∫

Ω

〈∇gϕ,∇gψ〉gdx,

∫

Ω

Aϕ · ψdx −
∫

Ω

ϕAψdx =
∫

∂Ω

ψ
∂ϕ

∂νA
dΓ −

∫

∂Ω

ϕ
∂ψ

∂νA
dΓ,

A(ϕψ) = Aϕ · ψ + 2〈∇gϕ,∇gψ〉g + ϕAψ.

Proof

∫

Ω

Aϕ · ψdx =
∫

Ω

n∑

i, j=1

∂

∂xi

(

ai j (x)
∂ϕ

∂x j

)

· ψdx

=
∫

∂Ω

n∑

i, j=1

ai j (x)
∂ϕ

∂x j
· νi · ψdΓ −

∫

Ω

n∑

i, j=1

ai j (x)
∂ϕ

∂x j
· ∂ψ
∂xi

dx

=
∫

∂Ω

ψ
∂ϕ

∂νA
dΓ −

∫

Ω

〈∇gϕ,∇gψ〉gdx,

where we have used the identity (formula (2.5) of [20]):

〈∇gϕ,∇gψ〉g =
(
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xn

)

· A(x) ·
(
∂ψ

∂x1
, . . . ,

∂ψ

∂xn

)τ

.
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The second identity follows from the first one directly.

A(ϕψ) =
n∑

i, j=1

∂

∂xi

(

ai j (x)
∂(ϕψ)

∂x j

)

=
n∑

i, j=1

∂

∂xi

(

ai j (x)
∂ϕ

∂x j
· ψ + ai j (x) · ϕ ∂ψ

∂x j

)

=
n∑

i, j=1

∂

∂xi

(

ai j (x)
∂ϕ

∂x j

)

· ψ +
n∑

i, j=1

ai j (x)
∂ϕ

∂x j
· ∂ψ
∂xi

+
n∑

i, j=1

ai j (x)
∂ϕ

∂xi
· ∂ψ
∂x j

+
n∑

i, j=1

ϕ
∂

∂xi

(

ai j (x)
∂ψ

∂x j

)

= Aϕ · ψ + 2〈∇gϕ,∇gψ〉g + ϕAψ.
��

Denote by T 2(Rn
x ) the set of all covariant tensors of order 2 on R

n
x . Then T 2(Rn

x )

in an inner product space of dimension n2 with inner product of the following:

〈F,G〉T 2(Rn
x )

=
n∑

i, j=1

F(ei , e j )G(ei , e j ), ∀ F,G ∈ T 2(Rn
x ),

where {e1, e2, . . . , en} is an arbitrarily chosen orthonormal basis of (Rn
x , g).

Let X(Rn) be the set of all vector fields on R
n . Denote by � : X(Rn) −→ X(Rn)

the Hodge-Laplace operator. Then it has ([21], formulae (2.2.7), (2.2.14)):

∆g(N (ϕ)) = (�N )(ϕ)+ 2〈DN , D2ϕ〉T 2(Rn
x )

+ N (∆gϕ)+ Ric(N , Dϕ), (11)

N (∆gϕ) = N (Aϕ)− D2 f (N , Dϕ)− D2ϕ(N , D f ), ∀ϕ ∈ C2(Rn), (12)

where Ric(·, ·) is the Ricci curvature tensor of the Riemannian metric g, D2 f and D2ϕ

are the Hessian of f and ϕ in the Riemannian metric g, respectively. The following
lemma is straightforward. Actually, these inequalities have been used frequently in
literature (see for instance inequality (2.3.6) of [21]).

Lemma 2.3 Let ϕ ∈ C2(Ω). Then there is a constant C depending on g, N and Ω
only such that

(i) sup
x∈Ω

∣
∣A(divg(N ))

∣
∣ ≤ C, sup

x∈Ω

∣
∣D f (divg(N ))

∣
∣ ≤ C,

sup
x∈Ω

|div0(D f )| ≤ C, sup
x∈Ω

|div0(N )| ≤ C,

sup
x∈Ω

∣
∣divg(N )

∣
∣ ≤ C, sup

x∈∂Ω

∣
∣
∣
∣

1

|νA|g
∣
∣
∣
∣ ≤ C,

sup
x∈∂Ω

|D f · ν| ≤ C.
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Well-posedness and regularity for an Euler–Bernoulli plate 345

(ii)
∣
∣〈Dϕ, D(divg(N ))〉g

∣
∣ ≤ |Dϕ|g

∣
∣D(divg(N ))

∣
∣
g ≤ C |Dϕ|g ,

|(�N )ϕ|g ≤ C |�N |g |Dϕ|g ≤ C |Dϕ|g ,
∣
∣
∣〈DN , D2ϕ〉T 2(Rn

x )

∣
∣
∣ ≤ C |DN |g

∣
∣
∣D2ϕ

∣
∣
∣
g

≤ C
∣
∣
∣D2ϕ

∣
∣
∣
g
,

∣
∣
∣D2 f (N , Dϕ)

∣
∣
∣ ≤

∣
∣
∣D2 f

∣
∣
∣
g
|N |g |Dϕ|g ≤ C |Dϕ|g ,

∣
∣
∣D2ϕ(N , D f )

∣
∣
∣ ≤

∣
∣
∣D2ϕ

∣
∣
∣
g
|N |g |D f |g ≤ C

∣
∣
∣D2ϕ

∣
∣
∣
g
,

|Ric(N , Dϕ)| ≤ |Ric|g |N |g |Dϕ|g ≤ C |Dϕ|g , |D f (ϕ)| ≤ C |Dϕ|g ,

|N (ϕ)| ≤ C |Dϕ|g , |D f (N (ϕ))| ≤ C
∣
∣
∣D2ϕ

∣
∣
∣
g
, |Aϕ| ≤ C

∣
∣
∣D2ϕ

∣
∣
∣
g
.

(iii)
∫

Ω

|ϕ|2 dx ≤ C‖ϕ‖2
H2(Ω)

,

∫

Ω

|Dϕ|2g dx ≤ C‖ϕ‖2
H2(Ω)

,

∫

Ω

∣
∣
∣D2ϕ

∣
∣
∣
2

g
dx ≤ C‖ϕ‖2

H2(Ω)
.

3 The proof of Theorem 1.1

In this section, we use CT to denote some positive constant that is independent of
(y, u) although it may change values from different contexts. We rewrite (1) with zero
initial data as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t (x, t)+ A2w(x, t) = 0, x ∈ Ω, t > 0,

w(x, 0) = wt (x, 0) = 0, x ∈ Ω,
w(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

∂w(x, t)

∂νA
= 0, x ∈ Γ1, t ≥ 0,

∂w(x, t)

∂νA
= u(x, t), x ∈ Γ0, t ≥ 0,

y(x, t) = −A(A −1wt (x, t)), x ∈ Γ0, t ≥ 0,

(13)

By Propositions 3.2 and 3.3 of [2] (see also [18]), Theorem 1.1 is equivalent to
saying that the solution to (13) satisfies

‖y‖2
L2(0,T ;U ) ≤ CT ‖u‖2

L2(0,T ;U ), ∀ u ∈ L2(0, T ; U ).
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346 B.-Z. Guo, Z.-X. Zhang

We consider the system (13) in the smoother space H2
0 (Ω)× L2(Ω) by the trans-

formation

z = A−1wt .

Then z satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ztt (x, t)+ A2z(x, t) = Υ ut (x, t), x ∈ Ω, t > 0,

z(x, 0) = z0(x), zt (x, 0) = z1(x), x ∈ Ω, t ≥ 0,

z(x, t) = ∂z(x, t)

∂νA
= 0, x ∈ ∂Ω, t ≥ 0.

(14)

From (9), the output becomes

y(x, t) = − Az(x, t)|Γ0 .

Therefore, Theorem 1.1 is valid if and only if for some (and hence for all) T > 0, the
solution of (14) satisfies

T∫

0

∫

Γ0

|Az(x, t)|2dxdt ≤ CT

T∫

0

∫

Γ0

|u(x, t)|2dxdt. (15)

Proof of (15) We split the proof into eight steps.
Step 1. Let N be a vector field on Ω of class C2 such that (Lemma 4.1, [10])

N (x) = µ(x), x ∈ Γ ; |N |g ≤ 1, x ∈ Ω. (16)

Multiply both sides of the first equation of (14) by N (z) and integrate over [0, T ]×
Ω , to give

T∫

0

∫

Ω

ztt N (z)dxdt +
T∫

0

∫

Ω

A2zN (z)dxdt −
T∫

0

∫

Ω

Υ ut N (z)dxdt = 0. (17)

Compute the first term of the left hand side of (17) to yield

T∫

0

∫

Ω

ztt N (z)dxdt =
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

−
T∫

0

∫

Ω

zt N (zt )dxdt

=
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

−
∫

Ω

zN (zt )dx

∣
∣
∣
∣
∣
∣

T

0

+
T∫

0

∫

Ω

zN (ztt )dxdt
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=
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

−
∫

Ω

[divg(zzt N )− zt zdivg(N )−zt N (z)]dx

∣
∣
∣
∣
∣
∣

T

0

+
T∫

0

∫

Ω

[divg(zztt N )− ztt zdivg(N )− ztt N (z)]dxdt

= 2Re
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

+
∫

Ω

zt zdivg(N )dx

∣
∣
∣
∣
∣
∣

T

0

+
T∫

0

∫

Ω

[zA2zdivg(N )− Υ ut zdivg(N )− ztt N (z)]dxdt.

Hence

Re

T∫

0

∫

Ω

ztt N (z)dxdt = Re
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

+ 1

2

∫

Ω

zt zdivg(N )dx

∣
∣
∣
∣
∣
∣

T

0

−1

2

T∫

0

∫

Ω

Υ ut zdivg(N )dxdt + 1

2

T∫

0

∫

Ω

zA2zdivg(N )dxdt.

(18)

By Green’s second formula in Riemannian manifolds and the fact that z = ∂z

∂µ
= 0

on ∂Ω , the last term of (18) is further expressed as

1

2

T∫

0

∫

Ω

zA2zdivg(N )dxdt

= 1

2

T∫

0

∫

Ω

z[(∆g + D f )(Az)]divg(N )dxdt

= 1

2

T∫

0

∫

Ω

z∆g(Az)divg(N )dxdt

+ 1

2

T∫

0

∫

Ω

zD f (Az)divg(N )dxdt

= 1

2

T∫

0

∫

Ω

Az∆g(zdivg(N ))dxdt
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+ 1

2

T∫

0

∫

∂Ω

zdivg(N )
∂(Az)

∂µ
dΓ dt

− 1

2

T∫

0

∫

∂Ω

Az
∂(zdivg(N ))

∂µ
dΓ dt

+ 1

2

T∫

0

∫

Ω

zD f (Az)divg(N )dxdt

= 1

2

T∫

0

∫

Ω

Az[Azdivg(N )+ 2〈Dz, D(divg(N ))〉g

+ zA(divg(N ))]dxdt − 1

2

T∫

0

∫

Ω

AzD f (zdivg(N ))dxdt

+ 1

2

T∫

0

∫

Ω

zD f (Az)divg(N )dxdt. (19)

Substitute (19) into (18) to obtain

Re

T∫

0

∫

Ω

ztt N (z)dxdt = Re
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

+ 1

2

∫

Ω

zt zdivg(N )dx

∣
∣
∣
∣
∣
∣

T

0

− 1

2

T∫

0

∫

Ω

Υ ut zdivg(N )dxdt + 1

2

T∫

0

∫

Ω

|Az|2 divg(N )dxdt

+
T∫

0

∫

Ω

Az〈Dz, D(divg(N ))〉gdxdt

+ 1

2

T∫

0

∫

Ω

zAzA(divg(N ))dxdt

− 1

2

T∫

0

∫

Ω

AzD f (zdivg(N ))dxdt

+ 1

2

T∫

0

∫

Ω

zD f (Az)divg(N )dxdt. (20)
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Applying Green’s second formula in Riemannian manifolds again, and by (11) and
(12), the second term of the left hand side of (17) is expressed as

T∫

0

∫

Ω

A2zN (z)dxdt

=
T∫

0

∫

Ω

[(∆g + D f )(Az)]N (z)dxdt

=
T∫

0

∫

Ω

∆g(Az)N (z)dxdt +
T∫

0

∫

Ω

D f (Az)N (z)dxdt

=
T∫

0

∫

Ω

Az∆g(N (z))dxdt +
T∫

0

∫

∂Ω

N (z)
∂(Az)

∂µ
dΓ dt

−
T∫

0

∫

∂Ω

Az
∂(N (z))

∂µ
dΓ dt +

T∫

0

∫

Ω

D f (Az)N (z)dxdt

=
T∫

0

∫

Ω

Az∆g(N (z))dxdt −
T∫

0

∫

∂Ω

Az
∂2z

∂µ2 dΓ dt

+
T∫

0

∫

Ω

D f (Az)N (z)dxdt

=
T∫

0

∫

Ω

Az[(�N )(z)+ 2〈DN , D2z〉T 2(Rn
x )

+ N (∆gz)

+ Ric(N , Dz)]dxdt

−
T∫

0

∫

∂Ω

Az(A − D f )(z)dΓ dt +
T∫

0

∫

Ω

D f (Az)N (z)dxdt

=
T∫

0

∫

Ω

Az[(�N )(z)+ 2〈DN , D2z〉T 2(Rn
x )

+ N (Az)

− D2 f (N , Dz)− D2z(N , D f )+ Ric(N , Dz)]dxdt

−
T∫

0

∫

∂Ω

Az(A − D f )(z)dΓ dt +
T∫

0

∫

Ω

D f (Az)N (z)dxdt, (21)

123



350 B.-Z. Guo, Z.-X. Zhang

where the validity of
∂2z

∂µ2 = ∆gz on ∂Ω comes from

z|[0,T ]×∂Ω = ∂z

∂µ

∣
∣
∣
∣[0,T ]×∂Ω

= 0 implies
∂2z

∂µ2

∣
∣
∣
∣[0,T ]×∂Ω

= ∆gz
∣
∣[0,T ]×∂Ω .

Furthermore, it comes from the divergence formula that

Re

T∫

0

∫

Ω

AzN (Az)dxdt = 1

2

T∫

0

∫

Ω

N (|Az|2)dxdt

= 1

2

T∫

0

∫

∂Ω

|Az|2 dΓ dt − 1

2

T∫

0

∫

Ω

|Az|2 divg(N )dxdt.

So (21) can be further expressed as:

Re

T∫

0

∫

Ω

A2zN (z)dxdt = −1

2

T∫

0

∫

Ω

|Az|2 divg(N )dxdt

+ Re

T∫

0

∫

Ω

Az[(�N )(z)+ 2〈DN , D2z〉T 2(Rn
x )

− D2 f (N , Dz)− D2z(N , D f )

+ Ric(N , Dz)]dxdt − 1

2

T∫

0

∫

∂Ω

|Az|2 dΓ dt

+ Re

T∫

0

∫

Ω

N (z)D f (Az)dxdt, (22)

where we have used the fact that the integral of AzD f (z) over (0, T )× ∂Ω is zero.
Finally, substitute (20) and (22) into (17) to obtain

1

2

T∫

0

∫

∂Ω

|Az|2 dΓ dt = RHS1 + RHS2 + RHS3 + b0,T, (23)

where

RHS1 = Re

T∫

0

∫

Ω

Az〈Dz, D(divg(N )〉gdxdt

+ 1

2
Re

T∫

0

∫

Ω

zAz A(divg(N ))dxdt
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+ Re

T∫

0

∫

Ω

Az[(�N )(z)+ 2〈DN , D2z〉T 2(Rn
x )

− D2 f (N , Dz)

− D2z(N , D f )+ Ric(N , Dz)]dxdt,

RHS2 = −1

2
Re

T∫

0

∫

Ω

AzD f (zdivg(N ))dxdt + 1

2
Re

T∫

0

∫

Ω

zdivg(N )D f (Az)dxdt

+ Re

T∫

0

∫

Ω

N (z)D f (Az)dxdt,

RHS3 = −1

2
Re

T∫

0

∫

Ω

Υ ut zdivg(N )dxdt − Re

T∫

0

∫

Ω

Υ ut N (z)dxdt,

b0,T = Re
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

+ 1

2
Re

∫

Ω

zt zdivg(N )dx

∣
∣
∣
∣
∣
∣

T

0

.

Step 2 (estimate for RHS1). Let Υ ut = 0 in (23). It is noted that under the
transformation z = A−1wt ∈ H2

0 (Ω), we have zt = A−1wt t = −w ∈ L2(Ω).
Thus (14) is solved by a C0-group in the space H2

0 (Ω) × L2(Ω), that is to say,
for any (z0, z1) ∈ H2

0 (Ω) × L2(Ω), the corresponding solution to (14) satisfies
(z, zt ) ∈ H2

0 (Ω)× L2(Ω) and depends continuously on (z0, z1):

1

2

T∫

0

∫

∂Ω

|Az|2 dΓ dt ≤ CT ‖(z0, z1)‖2
H2

0 (Ω)×L2(Ω)
.

This shows that B∗ is admissible, hence so is B ([4]). In other words,

u �→ {w,wt } is continuous from

L2((0, T )× Γ0) −→ C([0, T ]; L2(Ω)× H−2(Ω)). (24)

By (24), z(t) ∈ C([0, T ]; H2
0 (Ω)) that is continuous in u ∈ L2((0, T )× Γ0), and

so
RHS1 ≤ CT ‖u‖2

L2((0,T )×Γ0)
, ∀ u ∈ L2((0, T )× Γ0), (25)

where we used Lemma 2.3.

Step 3 (estimate for RHS2). By formulae

div0(zdivg(N )AzD f ) = zdivg(N )D f (Az)+ AzD f (zdivg(N ))

+ zdivg(N )Azdiv0(D f )
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and

div0(N (z)AzD f ) = N (z)D f (Az)+ AzD f (N (z))+ N (z)Azdiv0(D f ),

we have

1

2

T∫

0

∫

Ω

zdivg(N )D f (Az)dxdt = 1

2

T∫

0

∫

∂Ω

zdivg(N )AzD f · νdΓ dt

− 1

2

T∫

0

∫

Ω

AzD f (zdivg(N ))dxdt

− 1

2

T∫

0

∫

Ω

zdivg(N )Azdiv0(D f )dxdt (26)

and

T∫

0

∫

Ω

N (z)D f (Az)dxdt =
T∫

0

∫

∂Ω

N (z)AzD f · νdΓ dt −
T∫

0

∫

Ω

AzD f (N (z))dxdt

−
T∫

0

∫

Ω

N (z)Azdiv0(D f )dxdt. (27)

Substituting (26) and (27) into RHS2, and noticing that both the integrals of
zdivg(N )AzD f · ν and N (z)AzD f · ν over (0, T )× ∂Ω are zero, we have

RHS2 = −Re

T∫

0

∫

Ω

AzD f (zdivg(N ))dxdt

− Re

T∫

0

∫

Ω

AzD f (N (z))dxdt

− 1

2
Re

T∫

0

∫

Ω

zdivg(N )Azdiv0(D f )dxdt

− Re

T∫

0

∫

Ω

N (z)Azdiv0(D f )dxdt. (28)
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Thus along the same line of Step 2, we get

RHS2 ≤ CT ‖u‖2
L2((0,T )×Γ0)

, ∀u ∈ L2((0, T )× Γ0), (29)

where we used Lemma 2.3 again.
The following Steps 4–6 are the same as [12] for the constant coefficients case. But

for the sake of completeness, we still list the sketch of the proof here.

Step 4 (regularity of zt ). To handle RHS3, we need the regularity of zt .

zt = A−1wt t = A−1(−Aw + ÃΥ u) = −w + Υ u ∈ L2((0, T )×Ω). (30)

Sincew ∈ C([0, T ]; L2(Ω)), Υ u ∈ L2((0, T )×Γ0) continuously in u ∈ L2((0, T )×
Γ0), it follows that

zt ∈ L2((0, T )×Ω) continuously in u ∈ L2((0, T )× Γ0). (31)

Step 5 (estimates of RHS3 and b0,T for smoother u). To estimate both RHS3 and
b0,T , confine u within the smoother class that is dense in L2((0, T )× Γ0),

u ∈ C1([0, T ] × ∂Ω), u|Γ1 = 0, u(·, 0) = u(·, T ) = 0. (32)

We will show that

RHS3 ≤ CT ‖u‖2
L2((0,T )×Γ0)

(33)

and

b0,T ≤ CT ‖u‖2
L2((0,T )×Γ0)

(34)

for all u in the class of (32). From now on, we assume z0 = z1 = 0 in (14).

Step 6 (proof of (34)). By the fact that wt ∈ C([0, T ]; H−2(Ω)) continuously in
u ∈ L2((0, T )× Γ0), A−1 ∈ L(H−2(Ω), H2

0 (Ω)) and wt (·, 0) = 0 we have

z(·, 0) = 0, z(·, T ) = A−1wt ∈ H2
0 (Ω)

continuously in u ∈ L2((0, T )× Γ0). (35)

Next by (30), (32) and w(·, 0) = 0,

{
zt (·, 0) = −w(·, 0)+ Υ u(·, 0) = 0,

zt (·, T ) = −w(·, T ) ∈ L2(Ω) continuously in u ∈ L2((0, T )× Γ0),
(36)

where the regularity comes from (24).
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Using (24), (35) and (36), we readily obtain that

b0,T = Re
∫

Ω

zt N (z)dx

∣
∣
∣
∣
∣
∣

T

0

+ Re
1

2

∫

Ω

zt zdivg(N )dx

∣
∣
∣
∣
∣
∣

T

0

≤ CT ‖u‖2
L2((0,T )×Γ0)

. (37)

Step 7 (proof of (33)). For the second term with u in the class (32), we integrate
by parts with respect to t and make use of divergence theorem again to obtain

−Re

T∫

0

∫

Ω

Υ ut N (z)dxdt = − Re
∫

Ω

Υ uN (z)dx

∣
∣
∣
∣
∣
∣

T

0

+ Re

T∫

0

∫

Ω

Υ uN (zt )dxdt

= Re

T∫

0

∫

Ω

Υ uN (zt )dxdt

= Re

T∫

0

∫

Ω

div0(Υ uzt N )dxdt − Re

T∫

0

∫

Ω

Υ uzt div0(N )dxdt

−Re

T∫

0

∫

Ω

zt N (Υ u)dxdt

= Re

T∫

0

∫

∂Ω

Υ uzt N · νdΓ dt − Re

T∫

0

∫

Ω

Υ uzt div0(N )dxdt

− Re

T∫

0

∫

Ω

zt N (Υ u)dxdt

= −Re

T∫

0

∫

Ω

Υ uzt div0(N )dxdt − Re

T∫

0

∫

Ω

zt N (Υ u)dxdt.

(38)

Noticing (30) and Υ u ∈ L2(0, T ; H3/2(Ω)) hence N (Υ u) ∈ L2(0, T ; H1/2(Ω)),
all continuously in u ∈ L2((0, T )× Γ0), it follows from (38) that

−Re

T∫

0

∫

Ω

Υ ut N (z)dxdt ≤ C‖u‖2
L2((0,T )×Γ0)

.

A similar estimate holds true for the first term of RHS3 and thus we get (33).

123



Well-posedness and regularity for an Euler–Bernoulli plate 355

Step 8. We can then extend estimate (33) of RHS3 and (34) of b0,T to all u ∈
L2((0, T ) × Γ0) by density argument, which together with (29) and (25) gives (15).
The proof is complete. ��

4 Proof of Theorem 1.2

In this section, we still use the multiplier method on Riemannian manifolds to gene-
ralize Theorem 1.2 of [8] to the system (1). In particular, for the proof of Lemma 4.1
below, the Riemannian geometry method seems necessary.

Now, it follows from the Appendix of [6] that the transfer function of the system
(10) is

H(λ) = λB∗(λ2 + Ã)−1 B, (39)

where Ã, B and B∗ are given by (7), (8) and (9) respectively. Moreover, from the
well-posedness claimed by Theorem 1.1, it follows that there are constants M, β > 0
such that ([5])

sup
Reλ≥β

‖H(λ)‖L(U ) = M < ∞. (40)

Following the same steps in the proof of Proposition 3.1 of [8], we can assert that:
Theorem 1.2 is valid if for any u ∈ C∞

0 (Γ0), the solution w to the following equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ2w(x)+ A2w(x) = 0, x ∈ Ω,
w(x) = 0, x ∈ ∂Ω,
∂w(x)

∂νA
= 0, x ∈ Γ1,

∂w(x)

∂νA
= u(x), x ∈ Γ0

(41)

satisfies

lim
λ∈R,λ→+∞

∫

Γ0

∣
∣
∣
∣
1

λ
Aw(x)

∣
∣
∣
∣

2

dx = 0. (42)

In order to prove (42), we need the following lemma.

Lemma 4.1 Let w be the solution of (41). Then there exists a function a(x) inde-
pendent of λ, which is continuous on ∂Ω , such that

∆gw(x) = ∂2w(x)

∂µ2 + a(x)
∂w(x)

∂µ
, ∀ x ∈ ∂Ω. (43)

Proof Denote by D and D the Levi-Civita connection on Ω and ∂Ω according to
g, respectively. Then we have the second fundamental form ((13.9) of [19], p. 233;
Theorem 8.2 of [13], p. 135)

S(N1, N2) = DN1 N2 − DN1 N2, ∀N1, N2 ∈ X(Rn),

N1, N2 are tangent to ∂Ω. (44)
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For any x ∈ ∂Ω , let {ei }n−1
i=1 be an orthonormal basis of Tx (∂Ω), i.e. 〈ei , e j 〉g =

δi j , 1 ≤ i, j ≤ n − 1. Here Tx (∂Ω) is the tangent space of Riemannian manifold
(∂Ω, g) at x . By parallel translation of {ei }n

i=1 respect to D, we can get a frame field
{Ei }n−1

i=1 normal at x on the Riemannian manifold (∂Ω, g). This means that there exists
a neighborhood U (x) ⊂ ∂Ω of x , such that Ei ∈ X(Rn), 〈Ei (y), E j (y)〉g = δi j for
all y ∈ U (x) and DEi E j (x) = 0, 1 ≤ i, j ≤ n − 1. Next, for any y ∈ U (x), there
is a normal geodesic γy(t) such that γy(0) = y, γ̇y(0) = −µ(y). Again by parallel
translation of {Ei (y)}n−1

i=1 respect to D along γy , we get an orthonormal frame field
{Ẽi (y)}n

i=1

⋃{−γ̇y}. In this way, we can construct a local orthonormal frame field
near x on Riemannian manifold (Ω, g). And we still denote it by {Ei }n

i=1 without
confusion, where En(y) := −γ̇ satisfying DEn En(x) = 0.

Thirdly, it follows from (44) that at each x ∈ ∂Ω ,

∆gw =
n∑

i=1

D2w(Ei , Ei ) =
n∑

i=1

DEi (dw)(Ei )

=
n∑

i=1

(Ei Eiw − DEi Eiw) = En Enw −
n−1∑

i=1

DEi Eiw

= ∂2w

∂µ2 −
n−1∑

i=1

(DEi Eiw − S(Ei , Ei ))w = ∂2w

∂µ2 +
n−1∑

i=1

S(Ei , Ei )w

= ∂2w

∂µ2 + ηw,

where η := ∑n−1
i=1 S(Ei , Ei ) is the mean curvature normal field of ∂Ω , and |η| is the

mean curvature of ∂Ω ([19], p. 230).
The proof is complete by choosing a(x) with η(x) = a(x) ∂

∂µ
. ��

Proof of Theorem 1.2 First, multiply the both sides of the first equation of (41) by w
and integrate by parts to give

0 =
∫

Ω

λ2 |w|2 + A2w · wdx

=
∫

Ω

λ2 |w|2 dx −
∫

Ω

〈D(Aw), Dw〉gdx +
∫

∂Ω

w
∂(Aw)
∂νA

dΓ

=
∫

Ω

λ2 |w|2 dx +
∫

Ω

|Aw|2 dx −
∫

∂Ω

Aw ∂w

∂νA
dΓ

=
∫

Ω

λ2 |w|2 dx +
∫

Ω

|Aw|2 dx −
∫

Γ0

uAwdΓ,
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which implies that

∫

Ω

|w|2 dx + 1

λ2

∫

Ω

|Aw|2 dx ≤ 1

λ
‖u‖L2(Γ0)

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

L2(Γ0)

. (45)

Secondly, choose the vector field N onΩ as in (16). Now, as it was done in Sect. 3,
multiply the both sides of the first equation of (41) by N (w), integrate by parts and
use (11), (12), (27), (43) and the divergence formula, to yield

0 = Re
∫

Ω

[λ2wN (w)+ A2wN (w)]dx

= λ2

2

∫

Ω

[div0(|w|2 N )− |w|2 div0(N )]dx + Re
∫

Ω

Aw∆g(N (w))dx

+ Re
∫

∂Ω

N (w)
∂(Aw)
∂µ

dΓ

− Re
∫

∂Ω

Aw∂N ((w))

∂µ
dΓ + Re

∫

Ω

D f (Aw)N (w)dx

= −λ
2

2

∫

Ω

div0(N ) |w|2 dx + Re
∫

Ω

Aw∆g(N (w))dx

+ Re
∫

Γ0

u

|νA|g
∂(Aw)
∂µ

dΓ

− Re
∫

∂Ω

Aw∂
2w

∂µ2 dΓ + Re
∫

∂Ω

N (w)AwD f · νdΓ

− Re
∫

Ω

AwD f (N (w))dx − Re
∫

Ω

N (w)Awdiv0(D f )dx

= −λ
2

2

∫

Ω

div0(N ) |w|2 dx + Re
∫

Γ0

u

|νA|g
∂(Aw)
∂µ

dΓ

+ Re
∫

Γ0

u

|νA|g a(x)AwdΓ

+ Re
∫

Γ0

u

|νA|g AwD f · νdΓ − 1

2

∫

∂Ω

|Aw|2 dΓ

+ Re
∫

∂Ω

AwD f (w)dΓ − 1

2

∫

Ω

|Aw|2 divg(N )dx
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+ Re
∫

Ω

Aw[(�N )(w)+ 2〈DN , D2w〉T 2(R2
x )

− D2 f (N , Dw)− D2w(N , D f )+ Ric(N , Dw)]dx

− Re
∫

Ω

AwD f (N (w))dx − Re
∫

Ω

N (w)Awdiv0(D f )dx,

where we used the facts that

N (w)|Γ1 = ∂w

∂µ

∣
∣
∣
∣
Γ1

= 0, N (w)|Γ0 = ∂w

∂µ

∣
∣
∣
∣
Γ0

= 1

|νA|g
∂w

∂νA

∣
∣
∣
∣
Γ0

= u

|νA|g .

Hence

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

2

L2(∂Ω)

= −
∫

Ω

div0(N ) |w|2 dx + 2

λ2 Re
∫

Γ0

u

|νA|g
∂(Aw)
∂µ

dΓ

+ 2

λ2 Re
∫

Γ0

u

|νA|g a(x)AwdΓ + 2

λ2 Re
∫

Γ0

u

|νA|g AwD f · νdΓ

+ 2

λ2 Re
∫

∂Ω

AwD f (w)dΓ − 1

λ2

∫

Ω

|Aw|2 divg(N )dx

+ 2

λ2 Re
∫

Ω

Aw[(�N )(w)+ 2〈DN , D2w〉T 2(R2
x )

− D2 f (N , Dw)− D2w(N , D f )+ Ric(N , Dw)]dx

− 2

λ2 Re
∫

Ω

AwD f (N (w))dx − 2

λ2 Re
∫

Ω

N (w)Awdiv0(D f )dx

≤ C1 ‖w‖2
L2(Ω)

+ C2

λ2
‖u‖L2(Γ0)

‖w‖H4(Ω)

+ C3

λ
‖u‖L2(Γ0)

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

L2(Γ0)

+ C4

λ2
‖Aw‖2

L2(Ω)
, (46)

where Ci > 0, i = 1, 2, 3, 4 are constants independent of λ. Notice that in the last
inequality above, we have used Lemma 2.3 and the following facts:

sup
x∈∂Ω

|a(x)| ≤ C, ‖D f (w)‖L2(∂Ω) ≤ C ‖u‖L2(Γ0)
,

‖w‖H2(Ω) ≤ C ‖Aw‖L2(Ω) ,

∥
∥
∥
∥
∂(Aw)
∂µ

∥
∥
∥
∥

L2(Γ0)

≤ C ‖w‖H4(Ω) ,

for some constant C > 0 independent of λ. The last but one fact is well-known due
to vanishing condition of w on ∂Ω and the last fact comes from the trace theorem in
Sobolev space (see [14]).
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Finally, by (7.27) of [14] on p. 189, the solution of (41) satisfies

‖w‖H4(Ω) ≤ C5

[∥
∥
∥λ

2w

∥
∥
∥

L2(Ω)
+ ‖u‖H5/2(Γ0)

]

for some constant C5 independent of λ. This together with (45) and (46) yields

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

2

L2(Γ0)

≤ (C1 + C3 + C4)
1

λ
‖u‖L2(Γ0)

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

L2(Γ0)

+ C2C5 ‖u‖L2(Γ0)
‖w‖L2(Ω) + C2C5

1

λ2
‖u‖L2(Γ0)

‖u‖H5/2(Γ0)

≤ (C1 + C3 + C4)
1

λ
‖u‖L2(Γ0)

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

L2(Γ0)

+ C2C5λ
−1/2 ‖u‖3/2

L2(Γ0)

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

1/2

L2(Γ0)

+ C2C5
1

λ2
‖u‖L2(Γ0)

‖u‖H5/2(Γ0)
.

The above inequality implies that lim sup
λ∈R,λ→+∞

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

L2(Γ0)

< +∞. This together

with above inequality yields

lim
λ∈R,λ→+∞

∥
∥
∥
∥

1

λ
Aw

∥
∥
∥
∥

L2(Γ0)

= 0.

This is (42). The proof is complete. ��
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