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Abstract. We study a class of hyperbolic partial differential equations on a one dimensional spatial
domain with control and observation at the boundary. Using the idea of feedback we show these
systems are well-posed in the sense of Weiss and Salamon if and only if the state operator generates
a C0-semigroup. Furthermore, we show that the corresponding transfer function is regular, i.e., has a
limit for s going to infinity.

Mathematics Subject Classification. 93C20, 35L40, 35F15, 37Kxx.

Received April 3rd, 2008. Revised April 1st, 2009.
Published online August 25, 2009.

1. Introduction

Consider the abstract linear differential equation

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (1.1)

y(t) = Cx(t) + Du(t), (1.2)

where x is assumed to take values in the Hilbert space X , u in the Hilbert space U , and y in the Hilbert space Y .
The operators A, B, C, and D are linear operators. Under the standard assumption that A generates a
C0-semigroup, we know that the homogeneous equation, i.e., u ≡ 0 in (1.1) has a unique (weak) solution. As-
suming that B, C, and D are bounded operators, there exists a solution of (1.1)–(1.2) for every u ∈ L2((0, tf ); U).
Existence of solutions for an arbitrary initial condition x0 ∈ X and input u ∈ L2((0, tf ); U), such that
y ∈ L2((0, tf ); Y ) is called well-posedness, see e.g. [23,26]. Hence if B, C, and D are bounded linear operators,

Keywords and phrases. Infinite-dimensional systems, hyperbolic boundary control systems, C0-semigroup, well-posedness,
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then the system (1.1)–(1.2) is well-posed if and only if A is the infinitesimal generator of a C0-semigroup. For
more details on this class of systems we refer to Chapters 2 and 3 of [2].

As it is known for a very long time not all linear partial differential equations (p.d.e.’s) can be written into
the format (1.1)–(1.2) with a bounded B and C. Consider for instance, the delay line on the interval [0, 1] which
is modelled as

∂w

∂t
(t, z) =

∂w

∂z
(t, z), w(0, z) = w0(z), z ∈ [0, 1] (1.3)

u(t) = w(t, 1), (1.4)

y(t) = w(t, 0). (1.5)

Without going into too much detail, it is clear that the mapping f �→ f(0) is not a bounded mapping on
the state space X = L2(0, 1) to the output space C. Hence C is not a bounded operator. Similarly, B is
not a bounded operator from C to X either. It is not hard to see that for any w0 ∈ X and u ∈ L2(0,∞),
the solution of (1.3)–(1.5) is given by w(t, z) = f(t + z) and y(t) = f(t), where f(ξ) = w0(ξ), ξ ∈ [0, 1] and
f(ξ + 1) = u(ξ), ξ > 0. So if w0 ∈ X = L2(0, 1), and u ∈ L2(0,∞), then f ∈ L2(0,∞) and so w(t, ·) ∈ X for
all t > 0, and y ∈ L2(0,∞). Hence this system is well-posed, without having bounded B and C operators.

Over the last decades there has been a growing interest in well-posedness of p.d.e.’s with control and obser-
vation on the boundary. The main books on this subject are the books by Lasiecka and Triggiani [12,13] and
by Tucsnak and Weiss [24]. The references in these books together with Section 5.8 of Staffans [23] give a good
starting point for the interested reader. Additionally, we discuss a few of the recent papers which treat phys-
ically motivated (hyperbolic) p.d.e.’s. In [5] well-posedness is investigated for the Schrödinger equation. The
Euler Bernoulli beam is treated in [6,8], whereas well-posedness of the wave equation is the subject of [7,9,10].
These papers and also many examples in the books [12,13,24] focus on well-posedness of p.d.e.’s on a two or
three dimensional spatial domain. We treat systems on a one-dimensional spatial domain. In contrast to the
higher dimensional situation, for the one-dimensional case a single proof covers the well-posedness for the whole
class. Our class of p.d.e.’s stems from a Hamiltonian formulation of physical models, called boundary port-
Hamiltonian systems [15,25], defined on a one-dimensional spatial domain. This class includes models of the
one-dimensional (undamped) wave equation and Timoshenko beam. It also includes networks of elementary
systems such as vibrating strings or delay lines, see [3,4,16]. The aim of this paper is to show that for this class
we have a similar theorem as for the class of systems with bounded B and C, see (1.1) and (1.2). Namely, it is
well-posed if and only if the homogeneous equation, i.e., u ≡ 0 generates a C0-semigroup.

The set-up of the proof is relatively simple. First we consider a system that consists out of a collection of
delay lines, e.g. (1.3)–(1.5). If these delay lines are non-connected, then it is very easy to show well-posedness.
If they are connected, then we regard this connection as a feedback of the non-connected situation, see Figure 1
on p. 1085. Using a result by Weiss [26], we know that this connected case will lead to a well-posed system,
provided the feedback gives a bounded closed loop transfer function. Hence we study the closed loop transfer
function. For the considered class of systems we show that if the feedback connection does not give a bounded
transfer function, then the homogeneous system does not generate a C0-semigroup.

The general case is shown by performing a state basis transformation such that the system becomes a set of
simple delay lines. This is rather standard by using the characteristic or the Riemann coordinates for our p.d.e.
The idea of treating one-dimensional (hyperbolic) p.d.e.’s by this basis transformation has been used by Phillips
[20] and Russell [21] fifty and thirty years ago, respectively. Phillips assumes that the semigroup is contractive.
In [21] this is not assumed, but there the author considers non-mixed boundary conditions. On p. 649, Russell
indicates why certain boundary conditions do not lead to a solution of the p.d.e. In the proof of Theorem 3.3
we give a more general argument. From Theorem 3.1 by Russell we see that if the homogeneous p.d.e. has
an unique solution, then the same holds for the non-homogeneous one. However, well-posedness implies more,
it also implies that the mapping from the input to the output is bounded, which for hyperbolic systems on a
one-dimensional spatial domain can be non-trivial, see e.g. [27]. The reason why for our systems the proof is
relatively easy lies in the fact that we are looking at a special class of hyperbolic p.d.e.’s, see (2.3), and use its
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structure in order to formulate the boundary control and observations using well-adapted (physically motivated)
variables, see Section 5. In example 2.11 of [1] one may find an example showing that these variables leads to
well-posed systems, whereas another choice does not. However, in that paper no underlying reason was given.
Finally, we remark that our proof easily carries over to inputs and outputs in Lq, see Section 7. A preliminary
version of our results has been published in [29].

2. Class of p.d.e.’s and main result

For the sake of simplicity, we use the elementary hyperbolic p.d.e., i.e. the wave equation, as illustrative
example

∂2w

∂t2
(t, z) = c2 ∂2w

∂z2
(t, z). (2.1)

We consider this as the model of a uniform vibrating string. In this case the variable w(t, z) denotes the position
with respect to equilibrium of the string at position z and the constant c denotes the propagation speed (celerity)

c =
√

T
ρ with T Young’s modulus and ρ the mass density. However, the physical formulation of the model of

the string is given as a set of coupled conservation laws and induces the following choice of the state variables:
the momentum x1(t, z) = ρ∂w

∂t (t, z) and the elastic strain x2(t, z) = ∂w
∂z (t, z) [18,22,25]. It may be noticed that

this formulation is more general than (2.1) as it remains valid in the case of a non-uniform string when Young’s
modulus T and the mass density ρ depend on z. In these variables the model of the vibrating string is written
as follows:

∂

∂t

(
x1

x2

)
(t, z) =

(
0 1
1 0

)
∂

∂z

( 1
ρx1

Tx2

)
(t, z)

=
(

0 1
1 0

)
∂

∂z

[( 1
ρ 0
0 T

)(
x1

x2

)]
(t, z). (2.2)

We have given two examples, the first one corresponding to the delay line (1.3) consisting in one conservation law
and the second one (2.2), the vibrating string, consisting in two coupled conservation laws. More examples of
coupled systems of conservation laws may be found of hyperbolic type [17,18,25] but also of parabolic type [14,25].

In this paper we consider a general class of conservation laws with flux variables depending linearly on the
state and linear source term:

∂x

∂t
(t, z) = P1

∂

∂z
(Lx) (t, z) + P0(z)x(t, z), z ∈ [a, b], (2.3)

where x is a function taking values in Rn, L is a multiplication operator satisfying 0 < mI ≤ L(z) ≤ MI,
z ∈ [a, b], for some positive constants m and M , P1 is a constant (real), invertible, matrix satisfying PT

1 = P1

and P0 is some matrix valued function.
With the operator L we introduce the Hilbert space X as being the function space L2((a, b); Rn) with the

inner product

〈f, g〉L =
∫ b

a

f(z)∗L(z)g(z)dz. (2.4)

The norm associated to this inner product, denoted by ‖x‖L, has, in the case of physical models, the meaning
of energy. The operator L may be interpreted as the variational derivative of the energy Lx = 1

2
δ‖x‖2

L
δx . Note

that since mI ≤ L(z) ≤ MI, this new norm is equivalent to the standard L2-norm.
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Assume for a moment that P0 is zero, and that we have a classical solution of the p.d.e. (2.3), then

d
dt

‖x(t)‖2
L =

〈∂x

∂t
, x
〉
L

+
〈
x,

∂x

∂t

〉
L

=
〈
P1

∂

∂z
(Lx) , x

〉
L

+
〈
x, P1

∂

∂z
(Lx)

〉
L

=
∫ b

a

(
P1

∂

∂z
(Lx) (t, z)

)∗
L(z)x(z)dz

+
∫ b

a

x(z)∗L(z)P1
∂

∂z
(Lx) (t, z)dz

=
∫ b

a

∂

∂z

[
(Lx)∗ (t, z)P1 (Lx) (t, z)

]
dz

=
[
(Lx)∗ (t, z)P1 (Lx) (t, z)

]b
a
, (2.5)

where we have used the symmetry of P1 and L(z). Hence by putting enough boundary conditions to zero,
this last expression becomes zero, and the energy remains constant along solutions. This reflects the hyperbolic
nature of (2.3). From the calculation above, we can clearly see the advantage of writing a p.d.e. in the form (2.3).
The symmetry of P1 tells that the system is hyperbolic in nature, and the L tells us which energy function
should be used. In many models the P1 only contains ones and zeros, telling how different physical domains are
coupled, and all the physical parameters are in L [14,17,18,25]. One may also see P1 as the matrix obtained
by putting all physical constants to one. Standard p.d.e. theory gives that we do not have a unique solution
of (2.3) if we do not impose boundary conditions. If we set all 2n boundary conditions to zero, then we only
have the zero solution, and so we cannot choose a non-zero initial condition. It is well-known that we must
impose n boundary conditions, if we want to have existence and uniqueness of solutions. In [20], Section 1.5,
all boundary conditions are characterized for which we have that the energy stays constant along solutions. For
a formulation of this result in the language of this paper, we refer to [15].

We decompose the set of n boundary conditions into two sets, the first one contains those boundary conditions
that are set to zero, whereas the other class contains the boundary conditions which are free to choose, i.e., the
inputs. More precisely, we shall complete the p.d.e. (2.3) with a set of boundary conditions defined in terms of
the variational derivative of the energy, Lx, and not the state variable x, as follows:

∂x

∂t
(t, z) = P1

∂

∂z
(Lx) (t, z) + P0(z)x(t, z), x(0, z) = x0(z) (2.6)

0 = M11 (Lx) (t, b) + M12 (Lx) (t, a) (2.7)

u(t) = M21 (Lx) (t, b) + M22 (Lx) (t, a), (2.8)

where
[

M11 M12
M21 M22

]
is a n × 2n matrix with rank n. The maximality of the rank implies that (2.7) and (2.8)

are not conflicting. Furthermore, we assume that we observe the system through its boundary in terms of the
variables Lx:

y(t) = C1 (Lx) (t, b) + C2 (Lx) (t, a). (2.9)

In order that we are not observing an input or a zero boundary condition, we assume that rank
[

M11 M12
M21 M22
C1 C2

]
=

n + rank [ C1 C2 ]. In other words we choose the observations at the boundary to be complementary to the
boundary control (2.8). Notice again that both the boundary input and output variables are defined as linear
combinations of the co-energy variables Lx (obtained from the variational derivative of the energy) restricted
to the boundary, which appears naturally in the energy balance equation (2.5).

Equations (2.6)–(2.9) give a system with boundary control and observation. The aim of this paper is to
study solutions of this system. For this we define the notion of well-posedness. Note that this is the adaptation
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of a more general notion to our class of p.d.e.’s, see [23] or [26]. By H1 we denote the Sobolev space of square
integrable functions, whose derivative is also square integrable.

Definition 2.1. Consider the system (2.6)–(2.9) and let k be the dimension of u. This system is well-posed if
there exists a tf > 0 and mf such that the following holds:

(1) The operator A defined as P0 + P1
∂
∂zL with domain,

D(A) =
{
x0 ∈ X | Lx0 ∈ H1((a, b); Rn),

[
M11 M12
M21 M22

] [ (Lx0)(b)
(Lx0)(a)

]
= 0
}

is the infinitesimal generator of a C0-semigroup on X .
(2) The following inequality holds for all Lx0 ∈ H1((a, b); Rn) and u ∈ C2([0, tf ); Rk) with u(0) =

M21 (Lx0) (b) + M22 (Lx0) (a), and 0 = M11 (Lx0) (b) + M12 (Lx0) (a)

‖x(tf )‖2
L +

∫ tf

0

‖y(t)‖2dt ≤ mf

[
‖x0‖2

L +
∫ tf

0

‖u(t)‖2dt

]
. (2.10)

Item (1) of this definition implies that the homogeneous p.d.e., i.e. (2.6), (2.7), and with (2.8) put to zero,
has a unique (weak) solution for every initial condition in X . This implies that the inhomogeneous equation
possesses a unique solution provided that the input and the initial condition are sufficiently smooth. This is
formalized in the following lemma, see Malinen [19].

Lemma 2.2. Let tf be a positive real number. Assume further that condition (1) of Definition 2.1 is satisfied.
Then for every Lx0 ∈ H1((a, b); Rn) and every u(·) ∈ C2([0, tf ); Rk) with u(0) = M21 (Lx0) (b)+M22 (Lx0) (a),
and 0 = M11 (Lx0) (b)+ M12 (Lx0) (a), there exists a unique classical solution of (2.6)–(2.8) on [0, tf ]. Further-
more, the output (2.9) is well-defined and y(·) is continuous.

Since L−1H1((a, b); Rn) and C2([0, tf); Rk) are dense linear subspaces of X and L2([0, tf ); Rk), respectively,
we find that if (2.10) holds for all Lx0 ∈ H1((a, b); Rn) and u ∈ C2([0, tf ), Rk), then (2.10) holds for all x0 ∈ X
and u ∈ L2([0, tf ); Rk). Hence if the system is well-posed, then (2.6)–(2.9) has for every initial condition and
every square integrable input a unique (weak) solution, and (2.10) still holds.

For a well-posed system one can define the transfer function. Basically, this means that for an input of the
form u0 exp(st), one finds a state trajectory and an output of the form y(t) = G(s)u0 exp(st). The function
G(s) is the transfer function, see Zwart [28]. For a well-posed system the transfer function exists and is bounded
on some right-half plane.

Definition 2.3. Let G(s) be the transfer function of (2.6)–(2.9). The system (2.6)–(2.9) is regular when
lims→∞ G(s) exists. If the system (2.6)–(2.9) is regular, then the feed-through term D is defined as D =
lims→∞ G(s).

In the sequel we state the main result of this paper which gives the conditions under which, for the class of
systems given in (2.6)–(2.9), the inequality (2.10) of the Definition 2.1 is necessarily satisfied if the condition (1)
is satisfied. Furthermore, when the condition (1) holds, then the transfer function corresponding to the well-
posed system is regular. We formulate this in the following theorem.

Theorem 2.4. Consider the partial differential equation (2.6)–(2.9) on the spatial interval [a, b], with x(t, z)
taking values in Rn. Let X be the Hilbert space L2((a, b); Rn) with inner product (2.4). Furthermore, assume
that

• P1 is real-valued, invertible, and symmetric, i.e., PT
1 = P1.

• L is a (real) multiplication operator on L2((a, b); Rn). For every z ∈ [a, b], L(z) is symmetric and
satisfies 0 < mI ≤ L(z) ≤ MI, for some m and M independent of z ∈ [a, b].
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• The multiplication operator P1L can be written as

P1L(z) = S−1(z)Δ(z)S(z), (2.11)

with Δ(z) a diagonal multiplication operator, and both Δ(z) and S(z) are continuously differentiable.
• [M11 M12

M21 M22

]
is a n × 2n matrix with rank n.

• rank
[

M11 M12
M21 M22
C1 C2

]
= n + rank [ C1 C2 ].

If the homogeneous p.d.e., i.e., u ≡ 0, generates a C0-semigroup on X, then the system (2.6)–(2.9) is well-
posed, and the corresponding transfer function G is regular. Furthermore, we have that limRe(s)→∞ G(s) =
lims→∞ G(s).

As mentioned before, the last condition in the theorem tells us that we will not be observing inputs or
boundary conditions which are set to zero. In other words, we are really observing a part of the state.

The third condition tells us that P1L is diagonalizable via a continuously differentiable basis transformation.
In Kato [11], Chapter II, one can find conditions on P1L(z) such that this is possible. For simplicity, we have
assumed that Δ(z) is continuously differentiable. However, the above theorem also holds if this does not hold.

Since L(z) > mI, we see that for every z ∈ [a, b] the signature of the matrix L(z)
1
2 P1L(z)

1
2 equals the

signature of P1. This implies that the signature of L(z)
1
2 P1L(z)

1
2 is independent of z. Furthermore, a simple

calculation gives that the eigenvalues of L(z)
1
2 P1L(z)

1
2 are equal to the eigenvalues of P1L(z). Concluding, we

see that for all z ∈ [a, b] zero is not an eigenvalue of P1L(z), and that the number of negative and positive
eigenvalues of P1L(z) is independent of z. Thus without loss of generality, we may assume that

Δ(z) =
(

Λ(z) 0
0 Θ(z)

)
, (2.12)

where Λ(z) is a diagonal (real) matrix, with positive functions on the diagonal, and Θ(z) is a diagonal (real)
matrix, with negative functions on the diagonal.

In [15] necessary and sufficient conditions are given such that the homogeneous p.d.e. (2.6)–(2.8) generates
a contraction semigroup and also gives the dissipation inequalities associated with the choices of the boundary
output variables (2.9). As a consequence of the Theorem 2.4, these systems are furthermore proved to be
well-posed and regular.

We prove this theorem in two main steps. First, in Section 3, we assume that P1L is diagonal and prove the
theorem in this case. Secondly, in Section 4, we consider the general case and use the fact that Theorem 2.4
remains valid under a basis transformation.

As a consequence of our proof we obtain a matrix condition for item 1 in Theorem 2.4, see Remark 4.2. This
extends the matrix condition of [21], Theorem 3.1, to mixed boundary conditions.

3. Proof of Theorem 2.4 for the diagonal case

In this section, we prove Theorem 2.4 when P1L is diagonal. For this we need the following two lemmas.

Lemma 3.1. Let λ(z) be a positive continuously differentiable function on the interval [a, b]. With this function
we define the scalar system

∂w

∂t
(t, z) =

∂

∂z
(λ(z)w(t, z)) , w(0, z) = w0(z) z ∈ [a, b]. (3.1)

The value at b we choose as input
u(t) = λ(b)w(t, b) (3.2)
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and as output we choose the value on the other end

y(t) = λ(a)w(t, a). (3.3)

The system (3.1)–(3.3) is a well-posed system on the state space L2(a, b), and its solution is given as

w(t, z) = f(p(z) + t)λ(z)−1, (3.4)

where

p(z) =
∫ z

a

λ(ζ)−1dζ (3.5)

f(p(z)) = λ(z)w0(z), z ∈ [a, b] (3.6)

f(p(b) + t) = u(t), t > 0. (3.7)

The transfer function is given by G(s) = e−p(b)s which satisfies

lim
Re(s)→∞

G(s) = 0. (3.8)

Proof. It is easy to see that (3.4)–(3.7) is a classical solution of (3.1)–(3.2) provided w0 is continuously differ-
entiable and λ(b)w0(b) = u(0). Let w(t, z) be this classical solution, then

∂

∂t

∫ b

a

w∗(t, z)λ(z)w(t, z)dz =
∫ b

a

[
∂

∂z
[λ(z)w(t, z)]∗ λ(z)w(t, z) + w(t, z)∗λ(z)

∂

∂z
[λ(z)w(t, z)]

]
dz

= [λ(z)w(t, z)]∗ λ(z)w(t, z) |ba
= |u(t)|2 − |y(t)|2.

Thus for all t > 0 we have that∫ b

a

w∗(t, z)λ(z)w(t, z)dz −
∫ b

a

w∗(0, z)λ(z)w(0, z)dz =
∫ t

0

|u(τ)|2dτ −
∫ t

0

|y(τ)|2dτ. (3.9)

Since λ is strictly positive, we have that the norm
∫ b

a
w∗(t, z)λ(z)w(t, z)dz is equivalent to the L2(a, b)-norm,

and so on a dense set an inequality like (2.10) is satisfied. Thus the system is well-posed, see also the remark
following Definition 2.1.

The transfer function G(s) is constructed by finding for s ∈ C and for all u0 a triple (us(t), ws(t, z), y(t)) =
(u0est, w0(z)est, y0est) satisfying (3.1)–(3.3). If such a triple can be constructed and y0 is uniquely depending
on u0, then G(s) is defined as G(s)u0 = y0, see [28]. Substituting a triple of this form in the p.d.e., gives

sw0(z) =
∂

∂z
(λ(z)w0(z)) , u0 = λ(b)w0(b), y0 = λ(a)w0(a).

Thus w0(z) = u0λ(z)−1 exp(s(p(z)− p(b))), and y0 = u0 exp(−sp(b)). This gives the expression for the transfer
function. The property (3.8) follows directly from it and the fact that p(b) > 0. �

For a p.d.e. with negative coefficient, we obtain a similar result.

Lemma 3.2. Let θ(z) be a negative continuously differentiable function on the interval [a, b]. With this function
we define the scalar system

∂w

∂t
(t, z) =

∂

∂z
(θ(z)w(t, z)) , w(0, z) = w0(z) z ∈ [a, b]. (3.10)
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The value at a we choose as input
u(t) = θ(a)w(t, a) (3.11)

and as output we choose the value on the other end

y(t) = θ(b)w(t, b). (3.12)

The system (3.10)–(3.12) is a well-posed system on the state space L2(a, b), and its solution is given as

w(t, z) = f(n(z) + t)θ(z)−1, (3.13)

where

n(z) =
∫ z

a

θ(ζ)−1dζ (3.14)

f(n(z)) = θ(z)w0(z), z ∈ [a, b] (3.15)

f(t) = u(t), t > 0. (3.16)

The transfer function is given by G(s) = en(b)s and satisfies (3.8).

We use these two lemmas to prove Theorem 2.4 when P1L is diagonal and the input space has dimension n.
Consider the following diagonal hyperbolic system on the spatial interval z ∈ [a, b]

∂

∂t

(
x+(t, z)
x−(t, z)

)
=

∂

∂z

[(
Λ(z) 0

0 Θ(z)

)(
x+(t, z)
x−(t, z)

)]
(3.17)

where Λ(z) is a diagonal (real) matrix, with positive functions on the diagonal, and Θ(z) is a diagonal (real)
matrix, with negative functions on the diagonal. Furthermore, we assume that Λ and Θ are continuously
differentiable.

With this p.d.e. we associate the following boundary control and observation

us(t) :=
(

Λ(b)x+(t, b)
Θ(a)x−(t, a)

)
, (3.18)

ys(t) :=
(

Λ(a)x+(t, a)
Θ(b)x−(t, b)

)
. (3.19)

Theorem 3.3. Consider the p.d.e. (3.17) with us and ys as defined in (3.18) and (3.19), respectively.
• The system defined by (3.17)–(3.19) is well-posed and regular. Furthermore, its transfer function con-

verges to zero for Re(s) → ∞.
• To the p.d.e. (3.17) we define a new set of inputs and outputs. The new input u(t) is written as

u(t) = Kus(t) + Qys(t), (3.20)

where K and Q are two square matrices, with [K, Q] of rank n. The new output is written as

y(t) = O1us(t) + O2ys(t), (3.21)

where O1 and O2 are some matrices. For the system (3.17) with input u(t) and output y(t), we have
the following possibilities:
(1) If K is invertible, then the system (3.17)–(3.21) is well-posed and regular. Furthermore, its transfer

function converges to O1K
−1 for Re(s) → ∞.
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Figure 1. The system (3.17) with input (3.20) and output (3.21).

(2) If K is not invertible, then the operator AK defined as

AK

(
g+(z)
g−(z)

)
=

∂

∂z

[(
Λ(z) 0

0 Θ(z)

)(
g+(z)
g−(z)

)]
(3.22)

with domain

D(AK) =
{(

g+(z)
g−(z)

)
∈ H1((a, b), Rn) |

K

(
Λ(b)g+(b)
Θ(a)g−(a)

)
+Q

(
Λ(a)g+(a)
Θ(b)g−(b)

)
= 0
}

(3.23)

does not generate a C0-semigroup on L2((a, b); Rn).

Note that the last item implies that the homogeneous p.d.e. does not have a well-defined solution, when K
is not invertible.

Proof. The first item is a direct consequence of Lemmas 3.1 and 3.2 by noticing that the system (3.17)–(3.19)
is built out of copies of the system (3.1)–(3.3) and the system (3.10)–(3.12). Furthermore, these sub-systems
do not interact with each other.

For the proof of the first part of the second assertion, with K invertible, we rewrite the new input, as
us(t) = K−1u(t) − K−1Qys(t). This can be seen as a feedback interconnection on the system (3.17)–(3.19), as
is depicted in Figure 1. The system contains one feedback loop with gain matrix K−1Q. By Weiss [26], see
also Staffans [23], Chapter 7, we have that if I + Gs(s)K−1Q is invertible on some right-half plane and if this
inverse is bounded on a right-half plane, then the closed loop system is well-posed. Since limRe(s)→∞ Gs(s) = 0,
we see that this holds for every K−1 and Q. So under the assumption that K is invertible, we find that (3.17)
with input and output given by (3.20) and (3.21) is well-posed. The regularity follows easily. By regarding the
loops in Figure 1 we see that the feed-though term is O1K

−1.
So it remains to show that there is no C0-semigroup when K is non-invertible. Since K is singular, there

exists a non-zero v ∈ Rn such that vT K = 0. Since [K, Q] has full rank, we know that qT := vT Q �= 0. So at
least one of the components of q is unequal to zero. For the sake of the argument, we assume that this holds
for the first one.

If AK would be the infinitesimal generator of a C0-semigroup, then for all x0 ∈ D(AK) the abstract differential
equation

ẋ(t) = AKx(t), x(0) = x0 (3.24)
would have classical solution, i.e., for all t > 0, x(t) is differentiable, it is an element of D(AK), and it
satisfies (3.24). Hence by (3.23), we have that x(t) is an element of H1. Since we are working in a one
dimensional spatial domain, we have that functions in H1 are continuous. So we have that for every t, x(t) is
a continuous function of z satisfying the boundary conditions in (3.23).
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So if AK would generate a C0-semigroup, then for every x0 ∈ D(AK) there would be a function x(t, z) :=(
x+(t,z)
x−(t,z)

)
which is a (mild) solution to the p.d.e. (3.17), and satisfies for all t > 0 the boundary condition

K

(
Λ(b)x+(t, b)
Θ(a)x−(t, a)

)
+ Q

(
Λ(a)x+(t, a)
Θ(b)x−(t, b)

)
= 0.

Using the vectors v and q, we see that this x(t, z) must satisfy

0 = qT

(
Λ(a)x+(t, a)
Θ(b)x−(t, b)

)
, t > 0. (3.25)

Now we construct an initial condition in D(AK), for which this equality does not hold. Note that we have
chosen the first component of q unequal to zero.

The initial condition x0 is chosen to have all components zero except for the first one. For this first component
we choose an arbitrary function in H1(a, b) which is zero at a and b, but nonzero everywhere on the open set (a, b).
It is clear that this initial condition is in the domain of AK . Now we solve (3.17).

Standard p.d.e. theory gives that the solution of (3.17) can be written as, see also Lemmas 3.1 and 3.2,

x+,m(t, z) = f+,m(pm(z) + t)λm(z)−1,

x−,l(t, z) = f−,l(nl(z) + t)θl(z)−1,

where λm and θl are the mth and the lth diagonal element of Λ and Θ, respectively. Furthermore, pm(z) =∫ z

a λm(ζ)−1dζ, nl(z) =
∫ z

a θl(ζ)−1dζ, see also Lemmas 3.1 and 3.2. The functions f+, f− need to be determined
from the boundary and initial conditions.

Using the initial condition we have that f+,m(pm(z)) = λm(z)x0,+,m(z) and f−,l(nl(z)) = θl(z)x0,−,l(z).
Since pm > 0, and nl < 0, we see that the initial condition determines f+ on a (small) positive interval, and f−
on a small negative interval. By our choice of the initial condition, we find that

f+,1(ξ) = λ1(ξ)x0,+,1(ξ) ξ ∈ [0, p1(b)),

f+,m(ξ) = 0 ξ ∈ [0, pm(b)), m ≥ 2, (3.26)

f−,l(ξ) = 0 ξ ∈ [nl(b), 0), l ≥ 1.

The solution x(t, z) must also satisfy (3.25), thus for all t > 0 we have that

0 = qT

(
f+(t)

f−(n(b) + t)

)
. (3.27)

Combining this with (3.26), we find

0 = q1f+,1(p1(z)) = q1x0,+,1(z)λ−1
1 (z)

on some interval [a, β]. Since q1 and λ1 are unequal to zero, we find that x0 must be zero on some interval.
This is in contradiction with our choice of the initial condition. Thus AK cannot be the infinitesimal generator
of a C0-semigroup. �

4. Proof of Theorem 2.4, general case

In this section we use the results of the previous section to prove Theorem 2.4. We begin with a useful
lemma. Its proof is based on the feedback results of Staffans [23], Chapter 7.
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Lemma 4.1. The system (2.6)–(2.9) is well-posed if and only if the system

∂x

∂t
(t, x) = P1

∂

∂z
(Lx) (t, z), (4.1)

with inputs, outputs given by (2.7)–(2.9) is well-posed.
Let G(s) denote the transfer function of (2.6)–(2.9) and G0(s) the transfer function of (4.1) with (2.7)–(2.9).

Then
lim

s→∞G(s) = lim
s→∞G0(s), (4.2)

and
lim

Re(s)→∞
G(s) = lim

Re(s)→∞
G0(s). (4.3)

Proof. We consider the system (2.6)–(2.10) with (2.6) replaced by

∂x

∂t
(t, z) = P1

∂

∂z
(Lx) (t, z) + u1(t, z), x(0, z) = x0(z) (4.4)

and the additional observation
y1(t, z) = x(t, z). (4.5)

Since the extra input and output operator is a bounded operator, it is easy to show that this system is well-
posed when (4.1) with inputs, outputs given by (2.7)–(2.9) is well-posed, see also [24], p. 164. Furthermore, the
feed-through from (u, u1) to y1 is zero. Using [23], Chapter 7, we see that the feedback u1 = P0u1 is allowed,
and gives a well-posed system. This closed loop system is clearly equal to (2.6)–(2.10). The revised direction is
proved similarly by adding an extra input and output to the system (2.6)–(2.10). �

This lemma tells us that we may ignore any bounded linear term involving x.
By the third assumption of Theorem 2.4, the matrices P1 and L satisfy equation (2.11):

P1L(z) = S−1(z)Δ(z)S(z).

With this we introduce the new state vector

x̃(t, z) = S(z)x(t, z), z ∈ [a, b]. (4.6)

Under this basis transformation, the p.d.e. (2.6) becomes

∂x̃

∂t
(t, z) =

∂

∂z
(Δx̃) (t, z) + S(z)

dS−1(z)
dz

Δ(z)x̃(t, z) + S(z)P0(z)S(z)−1x̃(t, z),

x(0, z) = S(z)x0(z) = x̃0(z). (4.7)

The relations (2.7)–(2.9) become

0 = M11P
−1
1 S−1(b)Δ(b)x̃(t, b) + M12P

−1
1 S−1(a)Δ(a)x̃(t, a)

= M̃11Δ(b)x̃(t, b) + M̃12Δ(a)x̃(t, a) (4.8)

u(t) = M21P
−1
1 S−1(b)Δ(b)x̃(t, b) + M22P

−1
1 S−1(a)Δ(a)x̃(t, a)

= M̃21Δ(b)x̃(t, b) + M̃22Δ(a)x̃(t, a) (4.9)

y(t) = C1P
−1
1 S−1(b)Δ(b)x̃(t, b) + C2P

−1
1 S−1(a)Δ(a)x̃(t, a)

= C̃1Δ(b)x̃(t, b) + C̃2Δ(a)x̃(t, a). (4.10)
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We introduce M̃ =
(

M̃11 M̃12

M̃21 M̃22

)
with

(
M̃j1 M̃j2

)
=
(

Mj1 Mj2

)( P−1
1 S(b)−1 0

0 P−1
1 S(a)−1

)
, j = 1, 2,

and

C̃ =
(

C̃1 C̃2

)
=
(

C1 C2

)( P−1
1 S(b)−1 0

0 P−1
1 S(a)−1

)
.

Since the matrix
(

P−1
1 S(b)−1 0

0 P−1
1 S(a)−1

)
has full rank, we see that the rank conditions in Theorem 2.4 imply

similar rank conditions for M̃ and C̃.
Using Lemma 4.1 we see that we only have to prove the result for the p.d.e.

∂x̃

∂t
(t, z) =

∂

∂z
(Δx̃) (t, z) (4.11)

with boundary conditions, inputs, and outputs as described in (4.8)–(4.10).
It is clear that if condition (4.8) is not present, then Theorem 3.3 gives that the above system is well-posed

and regular if and only if the homogeneous p.d.e. generates a C0-semigroup on L2((a, b); Rn). Since the state
transformation (4.6) defines a bounded mapping on L2((a, b); Rn), we have proved Theorem 2.4 provided there
is no condition (2.7).

Thus it remains to prove Theorem 2.4 if we have put part of the boundary conditions to zero. Or equivalently,
to prove that the system (4.8)–(4.11) is well-posed and regular if and only if the homogeneous p.d.e. generates
a C0-semigroup.

We replace (4.8) by
v(t) = M̃11Δ(b)x̃(t, b) + M̃12Δ(a)x̃(t, a), (4.12)

where we regard v as a new input. We consider the system consisting of the p.d.e. (4.11) with the new extended
input (

v(t)
u(t)

)
=
(

M̃11

M̃21

)
Δ(b)x̃(t, b) +

(
M̃12

M̃22

)
Δ(a)x̃(t, a) (4.13)

and the output (4.10). By doing so we have obtained a system without a condition (4.8). For this system we
know that it is well-posed and regular if and only if the homogeneous equation generates a C0-semigroup.

Assume that the system (4.11), (4.13) and (4.10) is well-posed, then we may choose any (locally) square
input. In particular, since u and v are independent inputs, we may choose v ≡ 0. Thus the system (4.7)–(4.11)
is well-posed and regular as well.

Assume next that the p.d.e. (4.11) with the extended input in (4.13) set to zero, does not generate a
C0-semigroup. Since this gives the same homogeneous p.d.e. as (4.11) with (4.8) and u in (4.9) set to zero, we
know that this p.d.e. does not generate a C0-semigroup. This finally proves Theorem 2.4.

Concerning first item in Theorem 2.4, we have the following remarks.

Remark 4.2.
(1) From the proof of Theorem 2.4, we see that we obtain an equivalent matrix condition for condition 1,

i.e., first item of Theorem 2.4 holds if and only if K is invertible, see Theorem 3.3. Since the matrix K
is obtained after a basis transformation, and depends on the negative and positive eigenvalues of P1L,
it is not easy to rewrite this condition in a condition for Mij .

(2) A semigroup can be extended to a group if the homogeneous p.d.e. has for every initial condition a
solution for negative and positive time. Using once more the proof of Theorem 3.3, we see that A
in first item of Theorem 2.4 generates a group if and only if K and Q are invertible matrices. For
non-mixed boundary conditions, this can be found in [21], Theorem 3.1.
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5. Example of the vibrating string

Consider again the example of the vibrating string written as the system of conservation laws (2.2).
This system belongs to the class of systems defined in the equation (2.3) with zero source term (i.e. P0 = 0)

and

P1 =
(

0 1
1 0

)
, L =

( 1
ρ 0
0 T

)
.

The operator P1L of this system is diagonalizable:

P1L = S(z)−1Δ(z)S(z) =
(

γ −γ
1
ρ

1
ρ

)(
γ 0
0 −γ

)( 1
2γ

ρ
2

−1
2γ

ρ
2

)
, (5.1)

where γ2 = c = T
ρ . We take γ to be positive.

Hence the state transformation under which the p.d.e. becomes diagonal is

x̃ =
1
2

( 1
γ ρ
−1
γ ρ

)
x.

Since we assumed that γ > 0, we see that x̃1, x̃2 correspond to x+, and x− in equation (3.17), respectively and
Λ, Θ to γ and −γ, respectively. Hence we have that the input and output us and ys defined for the diagonal
system (3.17) by the equations (3.18)–(3.19) are expressed in the original coordinates by

us(t) =
1
2

(
x1(t, b) + γρx2(t, b)
x1(t, a) − γρx2(t, a)

)
, (5.2)

ys(t) =
1
2

(
x1(t, a) + γρx2(t, a)
x1(t, b) − γρx2(t, b)

)
. (5.3)

This pair of boundary input and output variables consist in complementary linear combinations of the momen-
tum x1 and the the strain x2 at the boundaries: however they lack an obvious physical interpretation. One could
consider another choice of boundary input and outputs, for instance the velocity and the strain at the boundary
points and choose as input u1(t) =

( x1
ρ (t,b)

x2(t,a)

)
and as output y1(t) =

( x1
ρ (t,a)

x2(t,b)

)
. We may apply Theorem 3.3 to

check whether this system is well-posed, and to find the feed-through. Expressing the input-output pair (u1, y1)
in (us, ys) gives

u1(t) =

(
1
ρ 0
0 −1√

Tρ

)
us(t) +

(
0 1

ρ
1√
Tρ

0

)
ys(t), (5.4)

y1(t) =

(
0 1

ρ
1√
Tρ

0

)
us(t) +

(
1
ρ 0
0 −1√

Tρ

)
ys(t). (5.5)

Hence

K =

(
1
ρ 0
0 −1√

Tρ

)
Q =

(
0 1

ρ
1√
Tρ

0

)
, (5.6)

O1 =

(
0 1

ρ
1√
Tρ

0

)
, O2 =

(
1
ρ 0
0 −1√

Tρ

)
. (5.7)

Since K is invertible, the system with the input-output pair (u1, y1) is well-posed and regular, and the feed-
through term is given by O1K

−1 =
(

0 −γ
1
γ 0

)
.
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Figure 2. The system (2.1) with input and output (5.8) and (5.9).

Since Q is also invertible, we have that the associated semigroup can be extended to a group.
Let us now interpret the boundary inputs u1 and outputs y1 in terms of the position w in the second order

p.d.e. (2.1) for which the change of coordinates with respect to the state variable of the system of conservation
laws is x1 = ρ∂w

∂t and x2 = ∂w
∂z . One obtains the following expression of the boundary inputs and outputs:

u1(t) =
(

∂w
∂t (t,b)

∂w
∂z (t,a)

)
and y1(t) =

(
∂w
∂t (t,a)
∂w
∂z (t,b)

)
, respectively. However considering the p.d.e. (2.1), one could consider

as one of the boundary inputs or output the position and not the velocity at the boundary points. This leads
to consider:

u2(t) =
(

w(t, b)
∂w
∂z (t, a)

)
(5.8)

y2(t) =
(

w(t, a)
∂w
∂z (t, b)

)
. (5.9)

These inputs and outputs a related to the previously defined input u1 and output y1 by integration and derivation
with respect to time and this can be de-pictured as shown in Figure 2.

From this it is clear that the transfer function, G2(s) of the system with input u2 and output y2 is given by

G2(s) =
(

s−1 0
0 1

)
G1(s)

(
s 0
0 1

)
.

Since for large real s the transfer function G1(s) is approximately equal to
(

0 −γ

γ−1 0

)
, we see that G2(s) grows

like s for large s. Any well-posed system has a transfer function which is bounded in some right-half plane.
Thus the system (2.1) with input (5.8) and output (5.9) is not well-posed.

Putting the input u2 to zero, is the same as putting the input u1 to zero. Hence the homogeneous p.d.e. will
have a unique solution. Furthermore, for any initial condition the output corresponding to the homogeneous
p.d.e. will stay square integrable. Hence the output is admissible, see Weiss [26]. On the other hand, since the
transfer function grows to infinity for s → ∞ the input will not be admissible.

Note that u3(t) = ∂w
∂z (t, a), w(t, b) = 0, and y3(t) = y2(t) will give a well-posed system.

6. A semigroup example

In this section, we show that it is possible to construct a closed operator A and a coercive operator L such
that A with domain D(A) is not the infinitesimal generator of a C0-semigroup on the Hilbert space X , but the
operator AL defined as AL := AL with domain all x ∈ X such that Lx ∈ D(A) does generate a C0-semigroup
on X . The example is based on the results of the previous section.

We begin with defining A, L, and the state space. As state space we choose L2((0, 1); R2). The coercive
operator L is just

L =
(

1 0
0 γ2

)
, (6.1)

where γ > 0. The operator A is defined as

A

(
x1

x2

)
=

∂

∂z

[(
0 1
1 0

)(
x1

x2

)]
(6.2)
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with domain
D(A) = {x ∈ H1((0, 1); R2) | x1(0) + x2(0) = 0, x2(1) = 0}· (6.3)

Consider the p.d.e. associated to AL = AL

∂

∂t

(
x1

x2

)
(t, z) =

∂

∂z

[(
0 1
1 0

)(
1 0
0 γ2

)(
x1

x2

)
(t, z)

]
(6.4)

with boundary conditions

(
0
0

)
=
(

1 1
0 0

)(
1 0
0 γ2

)(
x1

x2

)
(t, 0) +

(
0 0
0 1

)(
1 0
0 γ2

)(
x1

x2

)
(t, 1). (6.5)

So we have the p.d.e. (2.2) with ρ = 1 and T = γ2. We write the boundary condition (6.5) in terms of us

and ys, see (5.2) and (5.3). This gives

(
0
0

)
=
(

0 1 − γ
γ 0

)
us(t) +

(
1 + γ 0

0 −γ

)
ys(t). (6.6)

From Theorem 3.3 we know that for γ = 1 this does not generate a C0-semigroup, and this is the only
positive γ with this property. Hence we have that A does not generate a C0-semigroup, whereas AL with
γ ∈ (0, 1)∪ (1,∞) does. Note that for every γ > 0 the operator L−1AL with domain equal to the domain of AL
does not generate a C0-semigroup. This follows from the fact that L−1AL is similar to A, see Exercise 2.5 of [2].

Finally, we remark, that it is easy to show that if A generates a contraction semigroup on a Hilbert space,
then AL is the infinitesimal generator of a C0-semigroup.

7. Well-posedness on Lq
-spaces

The theorem as formulated in Section 2 can also be formulated in Lq spaces.

Theorem 7.1. Let 1 ≤ q < ∞. Under the conditions of Theorem 2.4 we have that the homogeneous p.d.e.
generates a C0-semigroup on Lq(a, b) if and only if the system is well-posed for Lq inputs and outputs, that is

∫ tf

0

‖y(t)‖qdt +
∫ b

a

‖x(tf , z)‖qdz ≤ mf

[∫ tf

0

‖u(t)‖qdt +
∫ b

a

‖x0(z)‖qdz

]
. (7.1)

For the proof, we first prove the corresponding relation for the diagonal system, then we use a result of
Staffans [23], Chapter 7, to show that the feedback is allowed if K is invertible. Looking in the proof of
Theorem 3.3, we see that in showing that AK is not a generator when K is singular, we used only smooth
functions. These functions are in Lq for all q and so this part of the proof easily carries over. The only essential
part in the proof is to show Lemma 3.1, in particular equation (3.9), for Lq-functions.

Consider the p.d.e. (3.1)–(3.3). Its solution is given by (3.4)–(3.7). Now define Q(t) as

Q(t) =
∫ b

a

|w(t, z)|qλq−1(z)dz. (7.2)

Using (3.4) we see that Q(t) is equal to

Q(t) =
∫ b

a

|f(p(z) + t)|qλ−1(z)dz.
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Performing the change of variables ξ = p(z) + t in this integral and using that ṗ = λ−1, see (3.5), we find that

Q(t) =
∫ p(b)+t

p(a)+t

|f(ξ)|qdξ. (7.3)

So we find that

Q(tf ) − Q(0) =
∫ tf

0

Q̇(τ)dτ

=
∫ tf

0

[|f(p(b) + τ)|q − |f(p(a) + τ)|q] dτ

=
∫ tf

0

|u(τ)|qdτ −
∫ tf

0

|y(τ)|qdτ, (7.4)

where we have used (3.3) and (3.7). Combining (7.2) and (7.4), gives he desired estimate.
We conclude this session by remarking that the equality (7.4) does not hold for q = ∞, i.e., for the sup norm.

Simply take f(ξ) = ξ and λ = 1.

8. Conclusion

In this paper, we use physical port Hamiltonian modeling to study a class of hyperbolic partial differential
equations on a one dimensional spatial domain with control and observation at the boundary. Even if for this
class of systems the input mapping operator is unbounded, we show that the system is well-posed if and only
if the state operator generates a C0-semigroup. Furthermore, in this case the associated transfer function is
regular and it is possible to give the expression of its direct transmission term. To prove this result we consider
a basis state transformation to represent the system as a coupled set of delay lines. We regard this coupling
as a feedback interconnection. The well posedness of the global system is given checking a condition on this
feedback according to a result proposed by Weiss [26]. Furthermore, from the input and output definition in
the diagonal case we characterize all the possible choices of boundary input and output that permit to obtain a
well posed system and give, from his parametrization, the associated direct transmission term. With this work
we showed that appropriate physical modeling is of great interest to prove properties of solutions associated to
boundary control systems. Finally, we can remark that the class of systems treated in this paper is large enough
to deal with well known examples from the literature as coupled wave equation (see [16], Chap. 6, and [3]),
Timoshenko beam equation, convection equation. Currently, we try to generalize these results to systems with
a dissipation term.
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