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Motivated by the Hilfer fractional derivative (which interpolates the Riemann-Liouville derivative and the Caputo derivative), we
consider a new type of fractional derivative (which interpolates the Hadamard derivative and its Caputo counterpart). We prove
the well-posedness for a basic Cauchy type fractional di�erential equation involving this kind of derivative.
is is established in an
appropriate underlying space a�er proving the equivalence of this problemwith a certain corresponding Volterra integral equation.

1. Introduction

In this work, we are concerned with the Hadamard derivative

(�D��+ �) (�) = 1Γ (1 − �) (� 		�)∫
�

�
(log � )

−�� () 	 ,
� < � < �.

(1)

Its Caputo counterpart is

�
�D
�
�+� = J

1−�
�+ (� 		�)�, (2)

where

(J��+�) (�) := 1Γ (�) ∫
�

�
(log � )

�−1� () 	 , � < � < �
(3)

(see [1–5]). Here, we consider the following fractional deriva-
tive

(�D�,��+ �) (�) = (J�(1−�)�+ ⋅�D�+�−���+ �) (�) . (4)


is type of fractional derivative interpolates the Hadamard
fractional derivative (� = 0) and the Caputo-Hadamard
fractional derivative (� = 1). It has been introduced recently
in [6]. In introducing this new fractional derivative we were

motivated by the Hilfer fractional derivative of order 0 < � <1 and type 0 ≤ � ≤ 1 (see [7])
(��,�0+ �) (�) = (��(1−�)0+

		��(1−�)(1−�)0+ �) (�) , (5)

which interpolates the Riemann-Liouville derivative and the
Caputo derivative.

We study the existence and uniqueness of solutions of a
basic fractional di�erential equation

(�D�,��+ �) (�) = � (�, �) , � > � > 0 (6)

with an appropriate initial condition in a suitable underlying
space a�er proving the equivalence of this problem with a
corresponding Volterra integral equation. In addition to that,
we discuss the stability of solutions for a large and important
class of nonlinearities. We �nd that solutions decay to zero
at a logarithmic rate as time goes to in�nity. To this end, we
prove an inequality (which is important by itself).


e literature is very rich in works on well-posedness for
fractional di�erential equations [8–17] (see also the books
[1, 2, 4, 5] and the survey paper [18]) to cite but a few. 
e
Hadamard fractional derivative may be found in the books
[1, 2, 4–6]. Di�erential equations involving such a derivative
and others have been treated in [2, 3]. In contrast with the
well-posedness, the stability issue and the long time behavior
is not well studied [6, 12, 19–23].
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e rest of the paper is organized as follows: the next
section contains some material needed in our proofs. 
e
di�erent fractional derivatives as well as the new one are
de�ned there. In Section 3, we present our problem and
prove an existence anduniqueness result a�er establishing the
equivalence of the di�erential problemwith its corresponding
integral equation. Section 4 is devoted to a stability result.

2. Preliminaries

In this section we present some de�nitions, lemmas, proper-
ties, and notation which will be used in our theorems later.

De�nition 1 (see [2]). Let Ω = [�, �] (0 < � < � < ∞) be a
�nite interval and 0 ≤ � < 1, we introduce the weighted space��,log[�, �] of continuous functions � on (�, �]
��,log [�, �] = {� : (�, �] �→ R : (log ��)

�� (�) ∈ � [�, �]} .
(7)

In the space ��,log[�, �], we de�ne the norm
####�####	�,log =

#######(log ��)
�� (�)#######	, �0,log [�, �] = � [�, �] .

(8)

De�nition 2 (see [2]). Let $ = �(	/	�) be the $-derivative,
for % ∈ N we denote by �
�,�[�, �] (0 ≤ � < 1) the Banach
space of functions � which have continuous $-derivatives on[�, �] up to order % − 1 and have the derivative $
� of order %
on (�, �] such that $
� ∈ ��,log[�, �]
�
�,� [�, �]
= {$�� ∈ � [�, �] , ' = 0, . . . , % − 1, $
� ∈ ��,log [�, �]}

(9)

with the norm

####�####	��,� =

−1∑
�=0

#####$��#####	 + ####$
�####	�,log . (10)

When % = 0, we set
�0�,� [�, �] = ��,log [�, �] . (11)

De�nition 3 (see [2]). Let (�, �) (0 ≤ � < � ≤ ∞) be a �nite
or in�nite interval of the half-axis R+ and let � > 0. 
e
Hadamard le�-sided fractional integral J��+� of order � > 0
is de�ned by

(J��+�) (�) := 1Γ (�) ∫
�

�
(log � )

�−1� () 	 , � < � < �,
(12)

provided that the integral exists. When � = 0, we set
J
0
�+� = �. (13)

De�nition 4 (see [2]). Let (�, �) (0 ≤ � < � ≤ ∞) be a
�nite or in�nite interval of the half-axis R+ and let � > 0.

e Hadamard right-sided fractional integral J�−� of order� > 0 is de�ned by

(J�−�) (�) := 1Γ (�) ∫


�
(log �)

�−1� () 	 , � < � < �,
(14)

provided that the integral exists. When � = 0, we set
J
0
−� = �. (15)

De�nition 5 (see [2]). 
e le�-sided Hadamard fractional
derivative of order � (0 ≤ � < 1) on (�, �) is de�ned by

(�D��+ �) (�) := $ (J1−��+ �) (�) ; (16)

that is,

(�D��+ �) (�) = 1Γ (1 − �) (� 		�)∫
�

�
(log � )

−�� () 	 ,
� < � < �.

(17)

In particular, when � = 0 we have
�D
0
�+� = �. (18)

De�nition 6 (see [2]). 
e right-sided Hadamard fractional
derivative of order � (0 ≤ � < 1) on (�, �) is de�ned by

(�D�− �) (�) := −$ (J1−�− �) (�) ; (19)

that is,

(�D�− �) (�) = −(� 		�) 1Γ (1 − �) ∫


�
(log �)

−�� () 	 ,
� < � < �.

(20)

In particular, when � = 0 we have
�D
0
−� = �. (21)

De�nition 7. Let (�, �) be a �nite interval of the half-axis R+.

e fractional derivative

�
�D
�
�+ � of order � (0 < � < 1) on(�, �) de�ned by

�
�D
�
�+� = J

1−�
�+ $�, (22)

where $ = �(	/	�), is called the Hadamard-Caputo frac-
tional derivative of order �.

In the rest of the paper we shall assume � ̸= 0 when
considering an interval (�, �).
Lemma 8 (see [2]). Let % ∈ N0 = {0, 1, . . .} and let 31 and 32
be real numbers such that

0 ≤ 31 ≤ 32 < 1. (23)
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e following embeddings hold:

�
� [�, �] �→ �
�,�1 [�, �] �→ �
�,�2 [�, �] , (24)

with

####�####	��,�2 ≤ 4�####�####	��,�1 , 4� = min[1, (log ��)
�2−�1] ,
� ̸= 0.

(25)

In particular,

� [�, �] �→ ��1 ,log [�, �] �→ ��2 ,log [�, �] , (26)

with

####�####	�2,log ≤ (log ��)
�2−�1####�####	�1,log , � ̸= 0. (27)

Lemma 9 (see [2]). If � > 0, � > 0 and 0 < � < � < ∞, then

(J��+(log �)
�−1) (�) = Γ (�)

Γ (� + �)(log ��)
�+�−1,

(�D��+ (log �)
�−1) (�) = Γ (�)

Γ (� − �)(log ��)
�−�−1.

(28)

In particular, if� = 1 and � ≥ 0, then theHadamard fractional
derivative of a constant is not equal to zero:

(�D��+ 1) (�) = 1Γ (1 − �)(log ��)
−�, (29)

when 0 < � < 1.
Lemma 10 (see [2]). Let � > 0, � > 0 and 0 ≤ 3 < 1. If0 < � < � < ∞, then, for � ∈ ��,log[�, �]

J
�
�+J
�
�+� = J

�+�
�+ � (30)

holds at any point � ∈ (�, �]. When � ∈ �[�, �] this relation is
valid at any point � ∈ [�, �].
Lemma 11 (see [2]). Let 0 < � ≤ 1 and 0 < � < � < ∞. 
e
equality (�D��+ �)(�) = 0 is valid for

� (�) = 8(log ��)
�−1

(31)

for any 8 ∈ R.
�eorem 12 (see [2]). Let 0 < � < 1 and 0 < � < � < ∞. Also
let J1−��+ � be the Hadamard fractional integral of order 1 − �
of the function �.

If � ∈ ��,log[�, �] (0 ≤ 3 < 1) and J
1−�
�+ � ∈ �1�,�[�, �],

then

(J��+�D��+�) (�) = � (�) − (J
1−�
�+ �) (�)Γ (�) (log ��)

�−1
(32)

holds at any point � ∈ (�, �]. If � ∈ �[�, �] and J
1−�
�+ � ∈�1�[�, �], then the relation holds at any point � ∈ [�, �].

Lemma 13 (see [2]). Let 0 < � < � < ∞, � > 0 and 0 ≤ 3 <1.
(a) If 3 > � > 0, then the fractional integration operator

J
�
�+ is bounded from ��,log[�, �] into ��−�,log[�, �]:

####J��+�####	�−�,log ≤ '1####�####	�,log , (33)

where

'1 = (log ��)
� Γ (1 − 3)
Γ [1 + � − 3] . (34)

In particular,J��+ is bounded in ��,log[�, �].
(b) If 3 ≤ �, then the fractional integration operatorJ��+ is

bounded from ��,log[�, �] into �[�, �]:
####J��+�####	 ≤ '2####�####	�,log , (35)

where

'2 = (log ��)
�−� Γ (1 − 3)
Γ (1 + � − 3) . (36)

In particular,J��+ is bounded in ��,log[�, �].
Lemma 14 (see [2]). 
e Hadamard fractional integration
operator J��+ of order � (� > 0) is a mapping from �[�, �] to�[�, �] and

####J��+�####	[�,] ≤ 1�Γ (�)(log ��)
�####�####	[�,], (37)

where � ∈ �[�, �].
Lemma 15 (see [17]). Let 0 ≤ � < 1, 0 < � < 8 < � < ∞, � ∈��,log[�, 8] and � ∈ �[8, �]. 
en, � ∈ ��,log[�, �] and
####�####	�,log[�,] ≤ max{####�####	�,log[�,�], (log ��)

�####�####	[�,]} . (38)

Lemma 16 (see [24]). Let �, � be two continuous, positive
functions de�ned on [0,∞), 0 ≥ 0, andB : [0,∞) → [0,∞)
be a continuous monotonic nondecreasing function such thatB(0) = 0 andB(�) > 0 for � > 0. If C is a positive di�erentiable
function on [0,∞) that satis�es

C� () ≤ � () B (C ()) + � () ,  ∈ [0,∞) , (39)

then we have

C () ≤ D−1 [D(C (0) + ∫�
�0
� (F) 	F) + ∫�

�0
� (F) 	F] ,

(40)

for the values of , for which the right-hand side is well-de�ned,
where

D(H) = ∫�
�0

	FB (F) , H > H0 > 0. (41)
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�eorem 17 (Banach �xed point theorem [2]). Let (I, 	) be
a non-empty complete metric space, let 0 ≤ B < 1, and letJ : I → I be a map such that, for every C, V ∈ I, the relation

	 (JC, JV) ≤ B	 (C, V) , 0 ≤ B < 1 (42)

holds. 
en, the operator J has a unique �xed point C∗ ∈ I.
Furthermore, if J� (' ∈ N) is the sequence of operators

de�ned by

J1 = J, J� = JJ�−1' ∈ N \ {1} , (43)

then, for any C0 ∈ I, the sequence {J�C0}∞�=1 converges to the
above �xed point C∗.
�eorem 18 (Young’s inequality). If � and � are nonnegative
real numbers and K and L are positive real numbers such that1/K + 1/L = 1 then we have

�� ≤ ��K + �
�

L . (44)

Equality holds if and only if �� = ��.
Finally, we refer the reader to the nice treatments of

Hadamard-type fractional calculus in [25, 26]

3. Existence and Uniqueness for an FDE with
Hilfer-Hadamard Fractional Derivative

In this section we discuss the existence, uniqueness and the
stability of solutions of the Cauchy type problem (46) (below)
with Hilfer-Hadamard fractional derivative.

De�nition 19 (Hilfer-Hadamard fractional derivative
(HHFD)). 
e le� sided fractional derivative of order �,(0 < � < 1) and type 0 ≤ � ≤ 1 with respect to � is de�ned
by

(�D�,��+ �) (�) = (J�(1−�)�+ ⋅�D�+�−���+ �) (�) (45)

for functions for which the expression on the right hand side

exists, where�D
�+�−��
�+ is theHadamard fractional derivative

(De�nition 5).


is new fractional derivative (introduced for the �rst
time in [6]) may be viewed as interpolating the Hadamard
fractional derivative and the Hadamard-Caputo fractional
derivative. Indeed for � = 0 this derivative (46) reduces to
the Hadamard fractional derivative (De�nition 5) and when� = 1, we recover theHadamard-Caputo fractional derivative
(De�nition 7).

We will study the existence and uniqueness for the
Cauchy type problem

(�D�,��+ �) (�) = � (�, � (�)) , � > � > 0
(J(1−�)(1−�)�+ �) (�) = 8. (46)

We consider the underlying spaces de�ned by

��,�1−�,� [�, �]
= {� ∈ �1−�,log [�, �] , �D�,��+ � ∈ ��, log [�, �]} ,

(47)

��1−�,log [�, �]
= {� ∈ �1−�,log [�, �] , �D��+ � ∈ �1−�, log [�, �]} ,

(48)

where � = � + � − �� and 0 ≤ 3 < 1. It is clear that 0 < � < 1
for 0 < �, � < 1.

Here, �1−�,log[�, �] and ��,log[�, �] are weighted spaces of
continuous functions on (�, �] de�ned by

��,log [�, �] = {� : (�, �] �→ R : (log ��)
�� (�) ∈ � [�, �]} .

(49)

Our investigations are based on reducing the fractional
di�erential problem to a Volterra integral equation of the
second kind:

� (�) = 8Γ (�)(log ��)
�−1 + 1Γ (�)

× ∫�
�
(log � )

�−1� [, � ()] 	 , � > �,
(50)

and then using the Banach �xed point theorem.

3.1. Equivalence of the Cauchy Type Problem and the Volterra
Integral Equation. Here, we prove the equivalence of the
Cauchy type problem (46) and the nonlinearVolterra integral
equation (50) in the sense that, if � ∈ ��1−�,log[�, �] satis�es
one of them, then it also satis�es the other one. To establish
this result, we assume that the function �[⋅, �(⋅)] belongs to��,log[�, �] for any � ∈ ��,log[�, �]. We need the following
lemma.

Lemma 20. Let 0 < � < � < ∞, � > 0, 0 ≤ 3 < 1 and� ∈ ��,log[�, �]. If � > 3, then J
�
�+� is continuous on [�, �]

and

J
�
�+� (�) = lim

�→�+
J
�
�+� (�) = 0. (51)

Proof. Since � ∈ ��,log[�, �] then (log(�/�))��(�) is continu-
ous on [�, �] and on [�, �] we have

MMMMMMM(log ��)
�� (�)MMMMMMM ≤ N, (52)

for some positive constantN. 
erefore,

MMMM(J��+�) (�)MMMM ≤ N(J��+(log �)
−�) (�) , (53)

and by using Lemma 9 (with � = 1 − 3 > 0) we have
MMMM(J��+�) (�)MMMM ≤ N Γ (1 − 3)

Γ (� + 1 − 3)(log ��)
�−�. (54)

As � > 3, we obtain the result.
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�eorem 21. Let � = �+�−��where 0 < � < 1 and 0 ≤ � ≤1. Let � : (�, �] × R → R be a function such that �(⋅, �(⋅)) ∈��,log[�, �] for any� ∈ ��,log[�, �]with 1−� ≤ 3 < 1−�(1−�).
If � ∈ ��1−�,log[�, �], then � satis�es the (CFDP) (46) if and

only if � satis�es the (IE) (50).
Proof. First we prove the necessity. Let � ∈ ��1−�,log[�, �] be a
solution of problem (46). We want to prove that � is also a
solution of the integral equation (50). By the de�nition of the
space ��1−�,log[�, �] (relation (48)) we have

$ (J1−��+ �) =�D��+� ∈ �1−�,log [�, �] . (55)

Moreover, by Lemma 13(b) we have J
1−�
�+ � ∈ �[�, �] since� ∈ �1−�,log[�, �]. 
en, by De�nition 2, we have

J
1−�
�+ � ∈ �1�,1−� [�, �] . (56)


us, we can apply 
eorem 12 (with � replaced by �) to get
(J��+�D��+�) (�) = � (�) − (J

1−�
�+ �) (�)Γ (�) (log ��)

�−1,
� ∈ (�, �] ,

(57)

or

(J��+�D��+�) (�) = � (�) − 8Γ (�)(log ��)
�−1, � ∈ (�, �] ,

(58)

where 8 comes from the initial condition in (46). By our
hypothesis �[⋅, �(⋅)] ∈ ��,log[�, �], since � ∈ �1−�,log[�, �] ⊂��,log[�, �], Lemma 13(a) and (b) we see that the integral

J
�
�+�[⋅, �(⋅)] ∈ ��−�,log[�, �] for 3 > � and J

�
�+�[⋅, �(⋅)] ∈�[�, �] for 3 ≤ �. Applying the operatorJ��+ to both sides of

(46) we get

J
�
�+J
�(1−�)
�+ (�D��+ �) (�) = J

�
�+� [�, � (�)] , � ∈ (�, �] .

(59)

We can sum up the exponents by Lemma 10 to get

J
�+�(1−�)
�+� D

�
�+� (�) = J

�
�+� [�, � (�)] , � ∈ (�, �] , (60)

or

(J��+�D��+�) (�) = (J��+� [, � ()]) (�) , � ∈ (�, �] . (61)
From (58) and (61) we obtain

� (�) = 8Γ (�)(log ��)
�−1 + (J��+� [, � ()]) (�) , (62)

which is (50), and hence the necessity is proved.
Now, we prove the su�ciency. Let � ∈ ��1−�,log[�, �]

satisfy (50), then �D
�
�+ � exists and �D��+ � ∈ �1−�,log[�, �].

Applying the operator �D
�
�+ to both sides of the last identity

we �nd

(�D��+ �) (�) = 8Γ (�)�D��+ (log �)
�−1 (�)

+ (�D��+ J��+� [, � ()]) (�) .
(63)

By using Lemma 10, De�nition 5, Lemma 23 and the hypoth-
esis �[⋅, �(⋅)] ∈ ��,log[�, �], we have
(�D��+ �) (�) = $ (J1−��+ J��+� [, � ()]) (�)

= $ (J1−�(1−�)�+ � [, � ()]) (�)
= (�D�(1−�)�+ � [, � ()]) (�) , � ∈ (�, �] .

(64)

From (64) and the fact that�D
�
�+ � ∈ �1−�,log[�, �], we obtain

that

�D
�(1−�)
�+ � [⋅, � (⋅)] ∈ �1−�,log [�, �] . (65)

Next, applying the operator J
�(1−�)
�+ to both sides of (64) we

get

(J�(1−�)�+� D
�
�+�) (�) = (J�(1−�)�+� D

�(1−�)
�+ � [, � ()]) (�) ;

(66)

that is,

J
�(1−�)
�+ $ (J1−��+ �) (�) = (J�(1−�)�+� D

�(1−�)
�+ � [, � ()]) (�) .

(67)

By virtue of

$ (J1−�(1−�)�+ � [, � ()])
= �D�(1−�)�+ � [⋅, � (⋅)] ∈ �1−�,log [�, �] ,

(68)

and � > �(1 − �) and De�nition 2, we have J
1−�(1−�)
�+ � ∈�1�;1−�[�, �] (see the �rst part of the proof, or Lemma 13(b),

for the continuity of J
1−�(1−�)
�+ � for 3 < 1 − �(1 − �)). 
en,


eorem 12 allows us to write

(�D�,��+ �) (�) = � (�, �) − (J
1−�(1−�)
�+ �) (�)
Γ [� (1 − �)]

× (log ��)
�(1−�)−1, � ∈ (�, �] .

(69)

Lemma 20 implies that

(J1−�(1−�)�+ �) (�) = 0 (70)

because 1 − �(1 − �) > 3. Hence, the relation (69) reduces to

(�D�,��+ �) (�) = � (�, � (�)) , � > �. (71)
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Now, we show that the initial condition in (46) also holds. To
this end we apply the operatorJ

1−�
�+ to both sides of (50):

(J1−��+ �) (�) = 8Γ (�)J1−��+ (log �)
�−1 (�)

+ (J1−��+ J��+� [, � ()]) (�)
(72)

and use the Lemma 8 (with � replaced by 1 − � and � by �)
and the Lemma 9 to obtain

(J1−��+ �) (�) = 8 + (J1−�(1−�)�+ � [, � ()]) (�) . (73)

In (73), taking the limit as � → �, we obtain
(J1−��+ �) (�) = 8, (74)

mentioned above J
1−�(1−�)
�+ �[, �()](�) = 0). 
erefore,

the su�ciency is proved, which completes the proof of

eorem 21.

3.2. Existence and Uniqueness of a Solution. In this section
we establish the existence of a unique solution to the Cauchy

type problem (46) in the space ��,�1−�,�[�, �] de�ned in (47)

above under the conditions of 
eorem 21 and an additional
Lipschitz condition

####� [�, �1] − � [�, �2]####	1−�,log[�,] ≤ P####�1 − �2####	1−�,log[�,] (75)
for some positive constant P and every � ∈ [�, �].
�eorem22. Let � = �+�−��where (0 < � < 1, 0 ≤ � ≤ 1).
Assume that � : (�, �] × R → R (� > 0) is a function such
that�[⋅, �(⋅)] ∈ ��,log[�, �] for any � ∈ ��,log[�, �]with 1−� ≤3 < 1 − �(1 − �) and is Lipschitz continuous with respect to its
second variable. 
en, there exists a unique solution � for the
Cauchy type problem (46) in the space ��,�1−�,�[�, �].
Proof. First we prove the existence of a unique solution � in
the space �1−�,log[�, �]. According to 
eorem 21, it su�ces
to prove the existence of a unique solution � ∈ �1−�,log[�, �]
to the nonlinear Volterra integral equation (50).

Let us select �1 in (�, �) such that

B1 := PΓ (�)
Γ (� + �)(log �1� )

2� < 1, (76)

where P > 0 is the Lipschitz constant. We start by proving
that a unique solution � ∈ �1−�,log[�, �1] to (50) exists on the

interval (�, �1]. It is easy to see that the space �1−�,log[�, �1]
is a complete metric space when equipped with the distance
given by

	 (�1, �2) = ####�1 − �2####	1−�,log[�,�1]
:= max
�∈[�,�1]

MMMMMMMM(log
��)
1−� [�1 (�) − �2 (�)]MMMMMMMM .

(77)


e integral equation (50) takes the form

� (�) = (J�) (�) , (78)

where

(J�) (�) = �0 (�) + (J��+� [, � ()]) (�) (79)

with

�0 (�) = 8Γ (�)(log ��)
�−1. (80)

We claim that J maps �1−�,log[�, �1] into itself. Indeed, �0
given by (80) is clearly in �1−�,log[�, �1]. Also, since �[⋅, �] ∈��,log[�, �] for any � ∈ ��,log[�, �] with 3 ∈ R (0 ≤ 3 < 1),
then, by Lemma 13(a) and (b), the integral in the right-hand
side of (79) belongs to ��−�,log[�, �] for 3 > � and to �[�, �]
for 3 ≤ �. Since 3 − � < 1 − �, by Lemma 16 the right-hand
side of (79) belongs to �1−�,log[�, �].

Our second claim is that J is a contraction; that is,####J�1 − J�2####	1−�,log[�,�1] ≤ B1####�1 − �2####	1−�,log[�,�1],
0 < B1 < 1. (81)


is follows from (79), Lemma 13(a), and the fact that

####J�1 − J�2####	1−�,log[�,�1]
= ####J��+� [, �1 ()] −J��+� [, �2 ()]####	1−�,log[�,�1]
≤ (log �1� )

2� Γ (�)
Γ (� + �)####� [, �1 ()] − � [, �2 ()]####	1−�,log[�,�1]

≤ P(log �1� )
2� Γ (�)
Γ (� + �)####�1 () − �2 ()####	1−�,log[�,�1]

= B1####�1 () − �2 ()####	1−�,log[�,�1].
(82)

Our assumption (76) allows us to apply theBanach�xedpoint
theorem to obtain a unique solution �∗ ∈ �1−�,log[�, �1] to
(50) on the interval (�, �1].


is solution �∗ is the limit of a convergent sequenceJ��∗0 :
lim�→∞
####J��∗0 − �∗####	1−�,log[�,�1] = 0, (83)

where �∗0 is any function in �1−�,log[�, �1] and
(J��∗0 ) (�) = (JJ�−1�∗0 ) (�)

= �0 (�) + (J��+� [, (J�−1�∗0 ) ()]) (�) ,
S ∈ N.

(84)

Let us take �∗0 (�) = �0(�) with �0(�) de�ned by (80). If we
denote by

�� (�) := (J��∗0 ) (�) , S ∈ N (85)
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then, clearly,

lim�→∞
####�� − �∗####	1−�,log[�,�1] = 0. (86)

Next, we consider the interval [�1, �]. From (50) we have

� (�) = 8Γ (�)(log ��)
�−1

+ 1Γ (�) ∫
�1

�
(log � )

�−1� [, � ()]
 	

+ 1Γ (�) ∫
�

�1
(log � )

�−1� [, � ()]
 	.

= �01 (�) + 1Γ (�) ∫
�

�1
(log � )

�−1� [, � ()]
 	,

(87)

where �01(�) is de�ned by

�01 (�) = 8Γ (�)(log ��)
�−1

+ 1Γ (�) ∫
�1

�
(log � )

�−1� [, � ()]
 	,

(88)

and is a known function. We note that �01 ∈ �[�1, �].
We want to prove the existence of a unique solution � ∈�[�1, �] of (50) on the interval [�1, �]. For this, we also use

Banach �xed point theorem for the space �[�1, �2] where�2 ∈ (�1, �] satis�es
B2 = P�Γ (�)(log �2�1)

� < 1. (89)


e space �[�1, �2] is a complete metric space with the
distance given by

	 (�1, �2) = ####�1 − �2####	[�1 ,�2] = max
�∈[�1 ,�2]

MMMM�1 (�) − �2 (�)MMMM .
(90)


e integral equation (87) may be written shortly as

� (�) = (J�) (�) , (91)

where the operator (again denoted by J) is given by

(J�) (�) = �01 (�) + 1Γ (�) ∫
�

�1
(log � )

�−1� [, � ()]
 	.

(92)

As in the �rst part of this proof, since �01 ∈ �[�1, �2] and�[⋅, �(⋅)] ∈ ��,log[�, �] for any � ∈ ��,log[�, �], then, �[⋅,�(⋅)] ∈ �[�1, �2], for any � ∈ �[�1, �2], then by Lemma 14,
we deduce that the integral in the right-hand side of (92) also
belongs to �[�1, �2], and hence J� ∈ �[�1, �2].

Moreover, using the Lipschitz condition and applying the
Lemma 14, we �nd####J�1 − J�2####	[�1 ,�2]

= #####J��+1� [, �1 ()] −J��+1� [, �2 ()]#####	[�1 ,�2]
≤ 1�Γ (�)(log �2�1)

�####� [, �1 ()] − � [, �2 ()]####	[�1 ,�2]
≤ P�Γ (�)(log �2�1)

�####�1 () − �2 ()####	[�1 ,�2]
= B2####�1 () − �2 ()####	[�1 ,�2].

(93)


is, together with our assumption 0 < B2 < 1, shows that J
is a contraction and therefore from 
eorem 17, there exists
a unique solution �∗1 ∈ �[�1, �2] to (50) on the interval[�1, �2]. Notice that �∗1 (�1) = �∗(�1) = �01(�1). Further,

eorem 17 guarantees that this solution is the limit of a
convergent sequence J��∗01:

lim�→∞
####J��∗01 − �∗1 ####	[�1 ,�2] = 0, (94)

where �∗01 is any function in �[�1, �2], which we can pick�∗01(�) = �01(�) de�ned by (88). 
erefore,

lim�→∞
####�� − �∗1 ####	[�1,�2] = 0, (95)

where

�� (�) = (J��∗01) (�)
= �01 (�) + 1Γ (�)
× ∫�
�1
(log � )

�−1� [, (J�−1�∗01) ()] 	.
(96)

If �2 ̸= �, we consider the interval [�2, �3], where �3 = �2+ℎ2,ℎ2 > 0 such that �3 ≤ � and
B3 = P�Γ (�)(log �3�2)

� < 1. (97)

Using the same arguments as above, we derive that there
exists a unique solution �∗2 ∈ �[�2, �3] to (50) on the interval[�2, �3]. If �3 ̸= �, then we continue the process until we reach
a solution � to (50), �(�) = �∗� (�), and �∗� ∈ �[��, ��+1]
(' = 1, . . . , U), where � = �0 < �1 < ⋅ ⋅ ⋅ < ��+1 and

B�+1 = P�Γ (�)(log
��+1�� )

� < 1. (98)

Assume that � − � > Γ(� + �)/PΓ(�) (for otherwise, take�1 = �). 
en, divide the length of the interval [� + Γ(� +�)/PΓ(�), �] by (�Γ(�)/P)1/�. Let N be that quotient. It
appears that for U = [N] + 1 and � is reached a�er a �nite
number of steps, ��+1 = �. 
en, there exists a unique
solution � ∈ �[�1, �] to (50) on the interval [�1, �].
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Putting together the solutions in [�, �1] and [�1, �] and
taking into account the Lemma 15, we obtain that there
exists a unique solution � ∈ �1−�,log[�, �] to the Volterra
integral equation (50) on the whole interval (�, �]. Hence,� ∈ �1−�,log[�, �] is the unique solution to the Cauchy-type
problem (46).

It remains to show that such a unique solution is actually

in ��,�1−�,�[�, �]. To this end we need to prove that �D
�,�
�+ � ∈��,log[�, �]. Let us recall that our � is a limit of the sequence��, where �� = J��∗0 ∈ �1−�,log[�, �]; that is,

lim�→∞
####�� − �####	1−�,log[�,] = 0, (99)

with a certain choice of �∗0 (�) on each subinterval [�, �1],. . . , [��, �]. Indeed, this is a consequence of the construc-
tion adopted, the initial values are selected in the space�1−�,log[�, �] (see (80) and (88)) and the operator maps this
space into itself (see argument right a�er (80) and (92)). As
for the convergence in that space it has been proved in (83)
and (95).

If �0(�) ̸= 0,then we can take �∗0 (�) = �0(�). Since 3 ≥1 − �, then by (46), the Lipschitz condition and Lemma 8, we
have ######�D�,��+ �� − �D�,��+ �######	�,log[�,]

= ####� [�, ��] − � [�, �]####	�,log[�,]
≤ P(log ��)

�−1+�####�� − �####	1−�,log[�,].
(100)

In virtue of (99) and (100), it follows that

lim�→∞
######�D�,��+ �� −�D�,��+ �######	�,log[�,] = 0. (101)

We entail from this relation that (�D�,��+ �) ∈ ��,log[�, �] if(�D�,��+ ��) ∈ ��,log[�, �], S = 1, 2, . . .
is latter property

holds in as much as �D
�,�
�+ ��(�) = �[�, ��−1(�)] and�[⋅, �(⋅)] ∈ ��,log[�, �] for any � ∈ ��,log[�, �].

Consequently, � ∈ ��,�1−�,�[�, �]. 
is completes the proof

of 
eorem 22.

4. Stability

In this section, we consider the weighted Cauchy-type prob-
lem

�D
�,�
�+ C () = � (, C ()) ,  > � > 0,

(log �)
(1−�)(1−�) C ()|�=� = �,

(102)

where �D
�,�
+ is the Hilfer-Hadamard fractional derivative

(HHFD) of order 0 < � < 1 and type 0 ≤ � ≤ 1 and� ∈ R∗ (the set of all real numbers except 0). It is interesting to
note that, using an argument similar to the one in the proof of

Lemma 3.5 in [2] (see also Lemma 3.2), we can prove that the
initial condition in (102) and the one in (46) are equivalent.

We will assume the following hypotheses on the function�:
(F∗) �(, C) is a continuous (nonlinear) function on(�,∞) × R and is such that

MMMM� (, C ())MMMM ≤ (log �)
�W () |C ()|�, 3 ≥ 0, S > 1,  ≥ �,

(103)

where W is a continuous (nonnegative) function on [�,∞).
We �rst prove the following inequality.

Lemma 23. If X, ], Y > 0, then for any  > �, � > 0 we have
(log �)

1−] ∫�
�
(log F)

]−1(log F�)
�−1( F�)

−� 	FF ≤ �Y−�,
(104)

where � is a positive constant independent of .
Proof. Let us denote by �() the le�-hand side of the inequal-
ity in the Lemma. We consider the change of variable, Z =(log(F/�))/(log(/�)) then F/� = (/�)� and log(/F) = (1 −Z)(log(/�)). It follows that

� () = (log �)
� ∫1
0
(1 − Z)]−1Z�−1( �)

−��	Z, (105)

or

� () = (log �)
� ∫1
0
(1 − Z)]−1Z�−1 exp (−YZ log( �)) 	Z.

(106)

Observe that, for Z ≥ 1 and [X] + 1 ≥ X we have Z[�]+1 ≥Z�. Also since X + 2 ≥ [X] + 2 and the Gamma function is
increasing in [2,∞)we have Γ(X+2) ≥ Γ([X]+2) or 1/Γ([X]+2) ≥ 1/Γ(X+2).Moreover, ^� ≥ (Z[�]+1/Γ([X]+2)) (Γ([X]+2) =([X] + 1)!), and hence

^� ≥ Z[�]+1Γ ([X] + 2) ≥ Z�Γ ([X] + 2) ≥ Z�Γ (X + 2) , (107)

or

^−� ≤ Γ (X + 2)Z� . (108)


erefore, for 0 ≤ Z < 1/2 we get
(1 − Z)]−1 ≤ max (1, 21−]) . (109)

For 1/2 < Z ≤ 1 and  such that YZ log(/�) ≥ 1 we have
exp(−YZ log( �)) ≤ Γ (X + 2)

(YZ log (/�))� ≤
Y−�Z Γ (X + 2)

≤ 2Y−�Γ (X + 2) .
(110)
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is means that

(log �)
�(1 − Z)]−1Z�−1 exp (−YZ log( �))

≤
{{{{{{{{{{{

max (1, 21−]) (log �)
�Z�−1

× exp (−YZ log( �)) , 0 ≤ Z < 12 ,2(1 − Z)]−1Γ (X + 2) Y−�, 12 < Z ≤ 1.

(111)

Consequently,

� () ≤ max (1, 21−]) (log �)
�

× ∫1/2
0
Z�−1 exp (−YZ log( �)) 	Z

+ 2Y−�Γ (X + 2) ∫1
1/2
(1 − Z)]−1	Z.

(112)

Let C = YZ log(/�), we see that
� () ≤ max (1, 21−]) (log �)

�

× ∫∞
0
( CY log (/�))

�−1^−� 	CY log (/�)
+ 2Y−�Γ (X + 2) [−(1 − Z)]

]

]1
�=1/2
.

(113)


us,

� () ≤ max (1, 21−]) Y−�Γ (X) + 21−]Y−�Γ (X + 2)
]

. (114)

As a result, �() ≤ max{1, 21−]}Γ(X)(1 + X(X + 1)/])Y−�.
For 0 < d < 1, ^� ≥ 1 it is clear that

Γ (X + 2) ^� ≥ 1 ≥ d� (115)

holds and we proceed in the same manner to conclude that
for  such that 0 < YZ log(/�) < 1
(log �)

1−] ∫�
�
(log F)

]−1(log F�)
�−1( F�)

−� 	FF ≤ �Y−�,
(116)

where � = max{1, 21−]}Γ(X)(1 + X(X + 1)/]). 
e proof is
complete.

Let K and L be conjugate exponents; that is, KL = K + L,
and let X1 := 1+K[3−(1−�)S] and X2 := 1+K(�−1), where� := � + � − ��. If 3 − (S − 1)(1 − �) > 0 and L > 1/�, thenX1 > 0 and X2 > 0. We denote by L∗ the positive real number

L
∗ := ( Γ (�)

2�+(�−1)|�|�−1)
�((2�)�S − 1)

1/�

× [ (K − 1)�1
Γ (X1) (1 + X1/X2)]

�/�

.
(117)

�eorem24. Suppose that� satis�es (F∗) and 3 > (S−1)(1−�). If
(####W ()####�)�−1

#########W () (log
�)
−��(1−�)#########� < L

∗
(118)

for some L > 1/�, then, for any solution of Problem (102), there

exists a positive constant � such that |C()| ≤ �(log(/�))�−1, > �, � > 0, where � = � + � − ��.
Proof. Let us consider the Volterra integral equation

C () = �(log �)
�−1 + 1Γ (�) ∫

�

�
(log F)

�−1� [F, C (F)] 	FF ,
 > � > 0

(119)

associated to problem (102). Multiplying both sides of (119)

by (log(/�))1−� and using the assumption (F∗) on � we get

(log �)
1−� |C ()|

≤ |�| + (log (/�))1−�Γ (�)
× ∫�
�
(log F)

�−1 (log F�)
�W (F) |C (F)|� 	FF .

(120)

Let V() denote the le�-hand side of (120). 
e insertion of
the term

(log F�)
(1−�)�(log F�)

−(1−�)�
(121)

inside the integral gives

V () ≤ |�| + (log (/�))1−�Γ (�)
× ∫�
�
(log F)

�−1(log F�)
�−(1−�)�

× W (F) V� (F) 	FF ,  > �.
(122)

Now, the Hölder inequality with exponents K and L yields
∫�
�
(log F)

�−1(log F�)
�−(1−�)�W (F) V� (F) 	FF

≤ (∫�
�
(log F)

�(�−1)(log F�)
�(�−(1−�)�) 	FF� )

1/�

× (∫�
�
W� (F) V�� (F) 	F)1/�

≤ �−1/�(∫�
�
(log F)

�(�−1)(log F�)
�(�−(1−�)�)( F�)

−(�−1) 	FF )
1/�

× (∫�
�
W� (F) V�� (F) 	F)1/�,  > �.

(123)
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Since X1 − 1 = K[3 − (1 − �)S], X2 − 1 = K(� − 1) and X1, X2,K − 1 > 0, we may apply Lemma 9 (with ] replaced by X2, X
replaced by X1 and Y replaced by K − 1) to get

∫�
�
(log F)

�−1(log F�)
�−(1−�)�W (F) V� (F) 	FF

≤ �−1/��1(log �)
�−1

× (∫�
�
W� (F) V�� (F) 	F)1/�,  > �,

(124)

where �1 is the constant appearing in Lemma 9 correspond-
ing to the present exponents. 
at is,

�1 = (2�(�−1)Γ (X1) (1 + X1 (X1 + 1)X2 ) (K − 1)−�1)1/�.
(125)

Combining (122) and (124) we entail that

V () ≤ |�| + �̂1(log �)
−�(1−�)

× (∫�
�
W� (F) V�� (F) 	F)1/�,  > �,

(126)

where �̂1 = �−1/�(�1/Γ(�)). Multiplying both sides of (126)

by (log(/�))�(1−�), we obtain
(log �)

�(1−�)
V ()

≤ |�| (log �)
�(1−�) + �̂1(∫�

�
W� (F) V�� (F) 	F)1/�,

 > �.
(127)

Let j() denote the le�-hand side of (127). 
e insertion of
the term

(log F�)
−���(1−�)(log F�)

���(1−�)
(128)

inside the integral gives

j () ≤ |�| (log �)
�(1−�)

+ �̂1 (∫�
�
W� (F) (log F�)

−���(1−�)j�� (F) 	F)1/�.
(129)

Raising both sides of (129) to the power L we get
j� () ≤ 2�−1 (|�|�(log �)

��(1−�)

+ �̂�1 ∫�� W� (F) (log
F�)
−���(1−�)j�� (F) 	F) .

(130)

Let us set

B () = �̂�1 ∫�� W� (F) (log
F�)
−���(1−�)j�� (F) 	F,  > �.

(131)


en, clearly B(�) = 0, and by di�erentiation

B� () = �̂�1W� () (log �)
−���(1−�)j�� () ,  > �. (132)

Moreover, it is clear that B is a continuous, nonnegative and
nondecreasing function in [�,∞).

Now,wewould like to estimate the right hand side of (132)
in term of B(). From (130) and (131) we entail that

j� () ≤ 2�−1 (|�|�(log �)
��(1−�) + B ()) ,  > �. (133)

Raising both sides of (133) to the powerS we get

j�� () ≤ 2��−1 (|�|��(log �)
���(1−�) + B� ()) ,  > �.

(134)


e substitution of (134) in (132) yields

B� () ≤ 2��−1�̂�1W� () (log �)
−���(1−�)

× (|�|��(log �)
���(1−�) + B� ())

≤ 2��−1|�|���̂�1W� () + 2��−1�̂�1
× (log �)

−���(1−�)W� () B� () .

(135)

Applying Lemma 16 (with B(C) = C�) we infer that
B () ≤ k−1 [k(B (�) + 2��−1|�|���̂�1 ∫�� W� (F) 	F)

+ 2��−1�̂�1 ∫�� (log
F�)
−���(1−�)W� (F) 	F] .

(136)

Let us set

l () = 2��−1|�|���̂�1 ∫�� W� (F) 	F,
' () = 2��−1�̂�1 ∫�� (log

F�)
−���(1−�)W� (F) 	F,

(137)

then

B () ≤ k−1 [k (l ()) + ' ()] , (138)

where we have used the fact that B(�) = 0. Since k(H) =∫��0(	F/F�), H > 0, H0 > 0, then k(H) = (H1−�/(1 − S)) −
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(H1−�0 /(1 − S)) and k−1(�) = [H1−�0 − (S − 1)�]−1/(�−1). 
at
is,

B () ≤ k−1 [l()1−�1 − S −
l(0)1−�1 − S + ' ()]

≤ [l(0)1−� − (S − 1)(l()1−�1 − S −
l(0)1−�1 − S + ' ())]

−1/(�−1)

≤ [l()1−� − (S − 1) ' ()]−1/(�−1).
(139)

As long as

l()�−1' () < 1S − 1 . (140)

In particular, if (‖W()‖�)�−1‖W()(log(/�))−��(1−�)‖� < L
∗/2,

then B() ≤ 41 for some positive constant 41 for all  > �,
and thus, from (129), we see that

j () ≤ |�| (log �)
�(1−�) + 41/�1 , (141)

and then

V () ≤ |�| + 41/�1 (log �)
−�(1−�) ≤ �,  ≥ 0 > � (142)

for some positive constant �. 
is yields that |C()| ≤�(log(/�))�−1 for  ≥ 0 > �. 
e proof is complete.
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