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Abstract. In this paper, we consider an extension of the notion of well-posedness by perturbations,
introduced by Zolezzi for a minimization problem, to a class of variational-hemivariational inequalities
with perturbations in Banach spaces, which includes as a special case the class of mixed variational in-
equalities. Under very mild conditions, we establish some metric characterizations for the well-posed
variational-hemivariational inequality, and show that the well-posedness by perturbations of a variational-
hemivariational inequality is closely related to the well-posedness by perturbations of the corresponding
inclusion problem. Furthermore, in the setting of finite-dimensional spaces we also derive some condi-
tions under which the variational-hemivariational inequality is strongly generalized well-posed-like by
perturbations.

1. Introduction

It is well-known that the notion of well-posedness has played an important role in the optimization
theory. Tykhonov [38] first introduced the classical notion of well-posedness for a minimization problem,
which has been known as the Tykhonov well-posedness. A minimization problem is said to be Tykhonov
well-posed if it has a unique solution toward which every minimizing sequence of the problem converges.
It is clear that the notion of Tykhonov well-posedness is inspired by the numerical methods producing
optimizing sequences for optimization problems. The notion of generalized Tykhonov well-posedness is
also introduced for a minimization problem having more than one solution, which requires the existence of
solutions and the convergence of some subsequence of every minimizing sequence toward some solution.
Another important notion of well-posedness for a minimization problem is the well-posedness by pertur-
bations or extended well-posedness due to Zolezzi [43, 44]. The notion of well-posedness by perturbations
establishes a form of continuous dependence of the solutions upon a parameter. There are many other
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notions of well-posedness in optimization problems. For more details, see, e.g., [1, 6, 10, 15, 18, 26, 31, 38,
39, 43, 44].

On the other hand, the concept of well-posedness has been generalized to other variational problems,
such as variational inequalities [5, 9, 11, 12, 23-26], saddle point problems [4], Nash equilibrium problems
[25, 27-30, 32], equilibrium problems [13], inclusion problems [21, 22] and fixed point problems [21, 22,
40]. An initial notion of well-posedness for a variational inequality is due to Lucchetti and Patrone
[26]. They introduced the notion of well-posedness for variational inequalities and proved some related
results by means of Ekeland’s variational principle. Since then, many papers have been devoted to the
extensions of well-posedness of minimization problems to various variational inequalities. Lignola and
Morgan [24] generalized the notion of well-posedness by perturbations to a variational inequality and
established the equivalence between the well-posedness by perturbations of a variational inequality and
the well-posedness by perturbations of the corresponding minimization problem. Lignola and Morgan [25]
introduced the concepts of α-well-posedness for variational inequalities. Del Prete et al. [9] further proved
that the α-well-posedness of variational inequalities is closely related to the well-posedness of minimization
problems. Recently, Fang et al. [14] generalized the notions of well-posedness and α-well-posedness to a
mixed variational inequality. In the setting of Hilbert spaces, Fang et al. [14] proved that under suitable
conditions the well-posedness of a mixed variational inequality is equivalent to the existence and uniqueness
of its solution. They also showed that the well-posedness of a mixed variational inequality has close links
with the well-posedness of the corresponding inclusion problem and corresponding fixed point problem
in the setting of Hilbert spaces. Very recently, Fang et al. [15] generalized the notion of well-posedness
by perturbations to a mixed variational inequality in Banach spaces. In the setting of Banach spaces,
they established some metric characterizations, and showed that the well-posedness by perturbations of a
mixed variational inequality is closely related to the well-posedness by perturbations of the corresponding
inclusion problem and corresponding fixed point problem. They also derived some conditions under which
the well-posedness by perturbations of the mixed variational inequality is equivalent to the existence and
uniqueness of its solution.

In this paper, we further extend the notion of well-posedness by perturbations to a class of variational-
hemivariational inequalities with perturbations in Banach spaces, which includes as a special case the class
of mixed variational inequalities in [15]. Under very mild conditions, we establish some metric charac-
terizations for the well-posed variational-hemivariational inequality, and show that the well-posedness by
perturbations of a variational-hemivariational inequality is closely related to the well-posedness by pertur-
bations of the corresponding inclusion problem. In addition, in the setting of finite-dimensional spaces we
also derive some conditions under which the variational-hemivariational inequality is strongly generalized
well-posed-like by perturbations.

2. Preliminaries

Throughout this paper, unless stated otherwise, we always suppose that X is a real reflexive Banach
space with its dual X∗ and the duality pairing ⟨·, ·⟩ between X and X∗. For convenience, we denote strong
(r esp., weak) convergence by→ (resp., ⇀). In what follows, let A : X→ X∗ be a mapping, T : X→ X∗ be a
perturbation, and φ : X→ R ∪ {+∞} be a proper, convex and lower semicontinuous functional. Denote by
domφ the domain of functional φ, i.e.,

domφ = {x ∈ X : φ(x) < +∞}.

Consider the following variational-hemivariational inequality of finding x ∈ X such that

VHVI : ⟨Ax + Tx − f , y − x⟩ + J◦(x, y − x) + φ(y) − φ(x) ≥ 0, ∀y ∈ X, (2.1)

where J◦(x, y) denotes the generalized directional derivative in the sense of Clarke of a locally Lipschitz
functional J : X→ R at x in the direction y (see [1]) given by

J◦(x, y) = lim sup
z→x λ↓0

J(z + λy) − J(z)
λ

.
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A concrete example of variational-hemivariational inequality is the adhesive contact problem between
a linear elastic body and a rubber support, which is subject to a nonmonotone multivalued boundary
condition. See, e.g., [34], for more details. More special cases of the VHVI are presented as follows:

(i) LetΩ be an open bounded subset of R3 which is occupied by a linear elastic body, Γ be the boundary
of the Ω which is assumed to be appropriately regular (C0,1, i.e., a Lipschitzian boundary, is sufficient). If
φ = δK and J(u) =

∫
Ω

j(v,u)dΩ, where δK denotes the indicator functional of a nonempty, convex subset K
of a function space X defined on Ω and j : Ω × R → R is a locally Lipschitz continuous function, then the
VHVI reduces to the following variational-hemivariational inequality:

VHVI : ⟨Ax + Tx, y − x⟩ + J◦(x, y − x) ≥ ⟨ f , y − x⟩, ∀y ∈ K,

which has been considered by Goeleven and Mentagui in [17].
(ii) If φ = 0 and T = 0, then the VHVI reduces to finding x ∈ X such that

HVI : ⟨Ax, y − x⟩ + J◦(x, y − x) ≥ ⟨ f , y − x⟩, ∀y ∈ X,

which is known as the hemivariational inequality studied intensively by many authors (see, e.g., [3, 33-35]).
(iii) If T = 0 and J = 0, then the VHVI is equivalent to the following problem: find x ∈ X such that

MVI : ⟨Ax, y − x⟩ + φ(y) − φ(x) ≥ ⟨ f , y − x⟩, ∀y ∈ X,

which is known as the mixed variational inequality (see, e.g., [5, 14, 37, 42] and the references therein).
(iv) If T = 0, J = 0 and φ = δK, then the VHVI reduces to the classical variational inequality:

VI : ⟨Ax − f , y − x⟩ ≥ 0, ∀y ∈ K.

(v) If A = 0, T = 0, J = 0 and f = 0, then the VHVI reduces to the global minimization problem:

MP : min
x∈X

φ(x).

Suppose that L is a parametric normed space, P ⊂ L is a closed ball with positive radius, p∗ ∈ P is a fixed
point. The perturbed problem of the VHVI (2.1) is always given by

VHVIp : find x ∈ X such that
⟨Ã(p, x) + T̃(p, x) − f , x − y⟩ + ( J̃(p, ·))◦(x, y − x) + φ̃(p, y) − φ̃(p, x) ≥ 0, ∀y ∈ X,

where Ã, T̃ : P × X → X∗ is such that Ã(p∗, ·) = A, T̃(p∗, ·) = T, J̃ : P × X → R is such that J̃(p∗, ·) = J and
φ̃ : P × X→ R ∪ {+∞} is such that φ̃(p∗, ·) = φ.

Let ∂φ : X→ 2X∗ \ {∅} and ∂J : X→ 2X∗ \ {∅} denote the subgradient of convex functional φ in the sense
of convex analysis (see [36]) and the Clarke’s generalized gradient of locally Lipschitz functional J (see [8]),
respectively. That is,

∂φ(x) = {x∗ ∈ X∗ : φ(y) − φ(x) ≥ ⟨x∗, y − x⟩, ∀y ∈ X}

and
∂J(x) = {z∗ ∈ X∗ : J◦(x, y) ≥ ⟨z∗, y⟩, ∀y ∈ X}.

Remark 2.1. (see [3]) The Clarke’s generalized gradient of a locally Lipschitz functional J : X → R at a
point x is given by

∂J(x) = ∂(J◦(x, ·))(0).

About the subgradient in the sense of convex analysis, the Clarke’s generalized directional derivative
and the Clarke’s generalized gradient, we have the following basic properties (see, e.g., [2, 3, 34, 36]).
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Proposition 2.2. Let X be a Banach space and φ : X→ R∪ {+∞} be a convex and proper functional. Then we have
the following properties of ∂φ:

(i) ∂φ(x) is convex and weak∗-closed;
(ii) If φ is continuous at x ∈ domφ, then ∂φ(x) is nonempty, convex, bounded, and weak∗-compact;
(iii) If φ is Gateaux differentiable at x ∈ domG, then ∂φ(x) = {Dφ(x)}, where Dφ(x) is the Gateaux derivative of

φ at x.

Proposition 2.3. Let X be a Banach space and φ1, φ2 : X→ R∪ {+∞} be two convex functionals. If there is a point
x0 ∈ domφ1 ∩ domφ2 at which φ1 is continuous, then the following equation holds:

∂(φ1 + φ2)(x) = ∂φ1(x) + ∂φ2(x), ∀x ∈ X.

Proposition 2.4. Let X be a Banach space, x, y ∈ X and J be a locally Lipschitz functional defined on X. Then
(i) The function y 7→ J◦(x, y) is finite, positively homogeneous, subadditive and then convex on X;
(ii) J◦(x, y) is upper semicontinuous as a function of (x, y), as a function of y alone, is Lipschitz continuous on X;
(iii) J◦(x,−y) = (−J)◦(x, y);
(iv) ∂J(x) is a nonempty, convex, bounded, weak∗-compact subset of X∗;
(v) For every y ∈ X, one has

J◦(x, y) = max{⟨ξ, y⟩ : ξ ∈ ∂J(x)}.

Now we recall some important definitions and useful results.

Definition 2.5. (see [41]) Let X be a real Banach space with its dual X∗ and T be an operator from X to its
dual space X∗. T is said to be monotone if

⟨Tx − Ty, x − y⟩ ≥ 0, ∀x, y ∈ X.

Definition 2.6. (see [41]) A mapping T : X → X∗ is said to be hemicontinuous if for any x, y ∈ X, the
function t 7→ ⟨T(x + t(y − x)), y − x⟩ from [0, 1] into R is continuous at 0+.

Clearly, the continuity implies the hemicontinuity, but the converse is not true in general.

Theorem 2.7. (see [16]) Let C ⊂ X be nonempty, closed and convex, C∗ ⊂ X∗ be nonempty, closed, convex and
bounded, ψ : X → R ∪ {+∞} be proper, convex and lower semicontinuous and y ∈ C be arbitrary. Assume that, for
each x ∈ C, there exists x∗(x) ∈ C∗ such that

⟨x∗(x), x − y⟩ ≥ ψ(y) − ψ(x).

Then, there exists y∗ ∈ C∗ such that

⟨y∗, x − y⟩ ≥ ψ(y) − ψ(x), ∀x ∈ C.

Definition 2.8. (see [20]) Let S be a nonempty subset of X. The measure, say µ, of noncompactness for the
set S is defined by

µ(S) := inf{ε > 0 : S ⊂
n∪

i=1

Si, diam|Si| < ε, i = 1, 2, ..., n, for some integer n ≥ 1},

where diam|Si|means the diameter of set Si.

Definition 2.9. (see [20]) Let A,B be nonempty subsets of X. The HausdorffmetricH(·, ·) between A and B
is defined by

H(A,B) = max{e(A,B), e(B,A)},
where e(A,B) := supa∈A d(a,B) with d(a,B) := infb∈B ∥a − b∥.
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Let {An} be a sequence of nonempty subsets of X. We say that An converges to A in the sense of Hausdorff
metric ifH(An,A) → 0. It is easy to see that e(An,A) → 0 if and only if d(an,A) → 0 for all section an ∈ An.
For more details on this topic, we refer the readers to [20].

Lemma 2.10. Let A : X → X∗ be monotone and hemicontinuous, and φ : X → R ∪ {+∞} be proper, convex and
lower semicontinuous. Then for a given x ∈ X, the following statements are equivalent:

(i) ⟨A(x) + T(x) − f , y − x⟩ + J◦(x, y − x) + φ(y) − φ(x) ≥ 0, ∀y ∈ X;
(ii) ⟨A(y) + T(x) − f , y − x⟩ + J◦(x, y − x) + φ(y) − φ(x) ≥ 0, ∀y ∈ X.

Proof. (i) ⇒ (ii). It is easy to see that the conclusion (ii) follows from the monotonicity of mapping A.
(ii) ⇒ (i). Suppose that

⟨A(y) + T(x) − f , y − x⟩ + J◦(x, y − x) + φ(y) − φ(x) ≥ 0, ∀y ∈ X. (2.2)

For any z ∈ X and t ∈ [0, 1], letting y = tz + (1 − t)x = x + t(z − x) in (3.2), we obtain

⟨A(tz + (1 − t)x) + T(x) − f , t(z − x)⟩ + J◦(x, t(z − x)) + φ(tz + (1 − t)x) − φ(x) ≥ 0.

Since Clarke’s generalized directional derivative J◦(x, y) is positively homogeneous with respect to y and φ
is convex, it follows that

⟨A(tz + (1 − t)x) + T(x) − f , z − x⟩ + J◦(x, z − x) + φ(z) − φ(x) ≥ 0. (2.3)

Taking the limit t→ 0+ in (2.3), we conclude from the hemicontinuity of mapping A that

⟨A(x) + T(x) − f , z − x⟩ + J◦(x, z − x) + φ(z) − φ(x) ≥ 0. (2.3)

Thus, the conclusion (i) follows from the arbitrariness of z ∈ X. This completes the proof.

3. Well-posedness by perturbations and metric characterizations

In this section, we generalize the concepts of well-posedness by perturbations to the variational-
hemivariational inequality and establish their metric characterizations. In the sequel we always denote by
→ and ⇀ the strong convergence and weak convergence, respectively. Let α ≥ 0 be a fixed number. For
convenience, we write J̃p = J̃(p, ·) and J̃◦p(x, y) = ( J̃(p, ·))◦(x, y) for all (x, y) ∈ X × X and p ∈ P. In particular,

J̃p∗ = J, J̃◦p∗ = J◦ and ∂ J̃p∗ = ∂J.

Definition 3.1. Let {pn} ⊂ P be with pn → p∗. A sequence {xn} ⊂ X is called an α-approximating sequence
corresponding to {pn} for VHVI (2.1) if there exists a sequence {εn} of nonnegative numbers with εn → 0
such that xn ∈ domφ̃(pn, ·) and

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + J̃◦pn
(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn)

≥ −α2 ∥y − xn∥2 − εn, ∀y ∈ X, n ≥ 1.

Whenever α = 0, we say that {xn} is an approximating sequence corresponding to {pn} for VHVI (2.1).
Clearly, every α2-approximating sequence corresponding to {pn} is α1-approximating corresponding to {pn}
whenever α1 > α2 ≥ 0.

Definition 3.2. We say that VHVI (2.1) is strongly (resp., weakly) α-well-posed by perturbations if VHVI
(2.1) has a unique solution and for any {pn} ⊂ P with pn → p∗, every α-approximating sequence correspond-
ing to {pn} converges strongly (resp., weakly) to the unique solution. In the sequel, strong (resp., weak)
0-well-posedness by perturbations is always called as strong (resp., weak) well-posedness by perturbations.
If α1 > α2 ≥ 0, then strong (resp., weak) α1-well-posedness by perturbations implies strong (resp., weak)
α2-well-posedness by perturbations.
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Remark 3.3. (i) If T̃ = 0, f = 0 and J̃ = 0, Definitions 3.1 and 3.2 coincide with Definitions 3.1 and 3.2 of
[15], respectively. (ii) When X is a Hilbert space, T̃ = 0, f = 0, J̃ = 0 and pn = p∗ (∀n ≥ 1), Definitions 3.1
and 3.2 coincide with Definitions 3.1 and 3.2 of [14], respectively. (iii) When T̃ = 0, f = 0, J̃ = 0 and φ = δK,
Definitions 3.1 and 3.2 reduce to the definitions of approximating sequences of the classical variational
inequality (see [9, 24]).

Definition 3.4. We say that VHVI (2.1) is strongly (resp., weakly) generalizedα-well-posed by perturbations
if VHVI (2.1) has a nonempty solution set S and for any {pn} ⊂ P with pn → p∗, every α-approximating
sequence corresponding to {pn} has some subsequence which converges strongly (resp., weakly) to some
point of S. Strong (resp., weak) generalized 0-well-posedness by perturbations is always called as strong
(resp., weak) generalized well-posedness by perturbations. Clearly, if α1 > α2 ≥ 0, then strong (resp., weak)
generalizedα1-well-posedness by perturbations implies strong (resp., weak) generalizedα2-well-posedness
by perturbations.

Remark 3.5. (i) When X is a Hilbert space, T̃ = 0, f = 0, J̃ = 0 and pn = p∗ (∀n ≥ 1), Definition 3.4 coincides
with Definition 3.3 of [14]. (ii) When T̃ = 0, f = 0, J̃ = 0 and φ̃ = δK, Definition 3.4 reduces to the definition
of strong (resp., weak) parametric α-well-posedness in the generalized sense for the classical variational
inequality (see [9, 24, 25]). (iii) When T̃ = 0, f = 0, J̃ = 0, Ã = 0 and α = 0, Definition 3.4 coincides with the
definition of well-posedness by perturbations introduced for a minimization problem [43, 44].

To derive the metric characterizations of α-well-posedness by perturbations, we consider the following
approximating solution set of VHVI (2.1):

Ωα(ε) =
∪

p∈B(p∗,ε){x ∈ domφ̃(p, ·) : ⟨Ã(p, x) + T̃(p, x) − f , y − x⟩ + ( J̃(p, ·))◦(x, y − x)
+φ̃(p, y) − φ̃(p, x) ≥ −α2 ∥y − x∥2 − ε, ∀y ∈ X}, ∀ε ≥ 0,

where B(p∗, ε) denotes the closed ball centered at p∗ with radius ε. In this section, we always suppose that
x∗ is a fixed solution of VHVI (2.1). Define

θ(ε) = sup{∥x − x∗∥ : x ∈ Ωα(ε)}, ∀ε ≥ 0.

It is easy to see that θ(ε) is the radius of the smallest closed ball centered at x∗ containing Ωα(ε). Now, we
give a metric characterization of strong α-well-posedness by perturbations by considering the behavior of
θ(ε) when ε→ 0.

Theorem 3.6. VHVI (2.1) is strongly α-well-posed by perturbations if and only if θ(ε)→ 0 as ε→ 0.

Proof. Let VHVI (2.1) be strongly α-well-posed by perturbations. Then x∗ ∈ X is the unique solution of
VHVI (2.1). Assume by contradiction that θ(ε) ̸→ 0 as ε→ 0. Then there exist δ and 0 < εn → 0 such that

θ(εn) > δ > 0.

By the definition of θ, there exists xn ∈ Ωα(εn) such that

∥xn − x∗∥ > δ. (3.1)

Being xn ∈ Ωα(εn), there exists pn ∈ B(p∗, εn) such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + (J̃(pn, ·))◦(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn) ≥ −α
2
∥y − xn∥2 − εn,

for all y ∈ X and n ≥ 1. Clearly, pn → p∗ and {xn} is an α-approximating sequence corresponding to {pn} for
VHVI (2.1). Since VHVI (2.1) is strongly α-well-posed by perturbations, we get ∥xn−x∗∥ → 0, a contradiction
to (3.1).
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Conversely, suppose that θ(ε)→ 0 as ε→ 0. Then x∗ ∈ X is the unique solution of VHVI (2.1). Indeed, if
x̄ (, x∗) is another solution of VHVI (2.1). By definition, θ(ε) ≥ ∥x∗ − x̄∥ > 0 for all ε ≥ 0, a contradiction. Let
pn ∈ P be with pn → p∗ and let {xn} be an α-approximating sequence corresponding to {pn} for VHVI (2.1).
Then there exists 0 < εn → 0 such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + (J̃(pn, ·))◦(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn) ≥ −α
2
∥y − xn∥2 − εn,

for all y ∈ X and n ≥ 1. Take δn = ∥pn − p∗∥ and ε′n = max{δn, εn}. It is easy to see that xn ∈ Ωα(ε′n) with
ε′n → 0. Set

tn = ∥xn − x∗∥.
By the definition of θ,

θ(ε′n) ≥ tn = ∥xn − x∗∥.
Sinceθ(ε′n)→ 0, we get ∥xn−x∗∥ → 0 as n→∞. So, VHVI (2.1) is stronglyα-well-posed by perturbations.

Remark 3.7. Theorem 3.6 improves Proposition 2.2 of [9], Theorem 3.1 of [14] and Theorem 3.1 of [15].

Now, we give an example to illustrate Theorem 3.6.

Example 3.8. Let X = R, P = [−1, 1], p∗ = 0, α = 2, Ã(p, x) = T̃(p, x) = 1
2 x(p2 + 1), f = 0, J̃ = 0 and

φ̃(p, x) = x2 for all x ∈ X, p ∈ P. Clearly, x∗ = 0 is a solution of VHVI (2.1). For any ε > 0, it follows that

Ω
p
α(ε) = {x ∈ R : x(p2 + 1)(y − x) + y2 − x2 ≥ −(y − x)2 − ε, ∀y ∈ R}

= {x ∈ R : x(p2 + 1)(x − y) + x2 − y2 ≤ (x − y)2 + ε, ∀y ∈ R}
= {x ∈ R : −2(y + p2−1

4 x)2 +
(p2+3)2

8 x2 ≤ ε, ∀y ∈ R}
= [− 2

√
2ε

(p2+3) ,
2
√

2ε
(p2+3) ].

Therefore,

Ωα(ε) =
∪

p∈B(0,ε)

Ω
p
α(ε) = [−2

√
2ε

3
,

2
√

2ε
3

]

for sufficiently small ε > 0. By trivial computation, we have

θ(ε) = sup{∥x − x∗∥ : x ∈ Ωα(ε)} = 2
√

2ε
3
→ 0 as ε→ 0.

By Theorem 3.6, VHVI (2.1) is 2-well-posed by perturbations.

To derive a characterization of strong generalized α-well-posedness by perturbations, we need another
function q which is defined by

q(ε) = e(Ωα(ε),S), ∀ε ≥ 0,

where S is the solution set of VHVI (2.1) and e is defined as in Proposition 2.2.

Theorem 3.9. VHVI (2.1) is strongly generalized α-well-posed by perturbations if and only if S is nonempty compact
and q(ε)→ 0 as ε→ 0.

Proof. Suppose that VHVI (2.1) is strongly generalized α-well-posed by perturbations. Obviously, S is
nonempty. Let {xn} be any sequence in S and {pn} ⊂ P be with pn = p∗. Then {xn} is an α-approximating
sequence corresponding to {pn} for VHVI (2.1). By the strong generalizedα-well-posedness by perturbations
of VHVI (2.1), {xn} has a subsequence which converges strongly to some point of S. Thus S is compact. If
q(ε) ̸→ 0 as ε→ 0, then there exist l > 0, 0 < εn → 0, and xn ∈ Ωα(εn) such that

xn < S + B(0, l), ∀n ≥ 1. (3.2)
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Since xn ∈ Ωα(εn), there exists pn ∈ B(p∗, εn) such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + (J̃(pn, ·))◦(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn) ≥ −α
2
∥y − xn∥2 − εn,

for all y ∈ X and n ≥ 1. Clearly, pn → p∗ and {xn} is an α-approximating sequence corresponding to
{pn} for VHVI (2.1). Since VHVI (2.1) is strongly generalized α-well-posed by perturbations, there exists a
subsequence {xnk } of {xn} converging strongly to some point of S. This contradicts (3.2), and so q(ε)→ 0 as
ε→ 0.

Conversely, we suppose that S is nonempty compact and q(ε)→ 0 as ε→ 0. Let {pn} ⊂ P be with pn → p∗

and let {xn} be an α-approximating sequence corresponding to {pn}. Take ε′n = max{εn, ∥pn − p∗∥}. It is easy
to see that ε′n → 0 and xn ∈ Ωα(ε′n). It follows that

d(xn,S) ≤ e(Ωα(ε′n),S) = q(ε′n)→ 0.

Since S is compact, there exists x̄n ∈ S such that

∥xn − x̄n∥ = d(xn, S)→ 0.

Again from the compactness of S, {x̄n} has a subsequence {x̄nk } converging strongly to x̄ ∈ S. Hence, the
corresponding subsequence {xnk } of {xn} converges strongly to x̄. Thus, VHVI (2.1) is strongly generalized
α-well-posed by perturbations.

Example 3.10. Let X = R, P = [−1, 1], p∗ = 0, α = 2, Ã(p, x) = T̃(p, x) = 1
2 x(p2 + 1), f = 0, J̃ = 0 and

φ̃(p, x) = x2 for all x ∈ X, p ∈ P. Clearly, x∗ = 0 is a solution of VHVI (2.1). Repeating the same argument as
in Example 3.8, we obtain that for any ε > 0,

Ωα(ε) =
∪

p∈B(0,ε)

Ω
p
α(ε) = [−2

√
2ε

3
,

2
√

2ε
3

]

for sufficiently small ε > 0. By trivial computation, we have

q(ε) = e(Ωα(ε),S) = sup
x(ε)∈Ωα(ε)

d(x(ε),S)→ 0 as ε→ 0.

By Theorem 3.9, VHVI (2.1) is generalized α-well-posed by perturbations.

The strong generalized α-well-posedness by perturbations can be also characterized by the behavior of
the noncompactness measure µ(Ωα(ε)).

Theorem 3.11. Let L be finite-dimensional, (Ã + T̃) : P × X → X∗ be a continuous mapping, J̃◦p(x, y) be upper
semicontinuous as a functional of (p, x, y) ∈ P × X × X and φ̃ : P × X→ R ∪ {+∞} be a continuous functional such
that φ̃(p, ·) is proper and convex. Then VHVI (2.1) is strongly generalized α-well-posed by perturbations if and only
ifΩα(ε) , ∅, ∀ε > 0 and µ(Ωα(ε))→ 0 as ε→ 0.

Proof. First, we shall prove thatΩα(ε) is closed for all ε ≥ 0. Let {xn} ⊂ Ωα(ε) with xn → x̄. Then there exists
pn ∈ B(p∗, ε) such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + J̃◦pn
(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn) ≥ −α

2
∥y − xn∥2 − ε, (3.3)

for all y ∈ X and n ≥ 1. Without loss of generality, we may assume pn → p̄ ∈ B(p∗, ε) since L is finite-
dimensional. Note that J̃◦p(x, y) is upper semicontinuous as a functional of (p, x, y) ∈ P × X × X. Hence it

follows from (3.3) and the continuity of (Ã + T̃) and φ̃ that

⟨Ã(p̄, x̄) + T̃(p̄, x̄) − f , y − x̄⟩ + J̃◦p̄(x̄, y − x̄) + φ̃(p̄, y) − φ̃(p̄, x̄)
≥ lim sup

n→∞
{⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + J̃◦pn

(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn)}

≥ lim sup
n→∞

{−α
2
∥y − xn∥2 − ε}

= −α2 ∥y − x̄∥2 − ε, ∀y ∈ X.
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Thus, x̄ ∈ Ωα(ε) and soΩα(ε) is closed.
Second, we show that

S =
∩
ε>0

Ωα(ε). (3.4)

It is obvious that S ⊂ ∩ε>0Ωα(ε). Let x∗ ∈ ∩ε>0Ωα(ε). Let {εn} be a sequence of positive numbers such that
εn → 0. Then x∗ ∈ Ωα(εn) and so there exists pn ∈ B(p∗, εn) such that

⟨Ã(pn, x∗) + T̃(pn, x∗) − f , y − x∗⟩ + J̃◦pn
(x∗, y − x∗) + φ̃(pn, y) − φ̃(pn, x∗) ≥ −

α
2
∥y − x∗∥2 − εn,

for all y ∈ X and n ≥ 1. It is clear that pn → p∗. Letting n→∞ in the last inequality we get

⟨A(x∗) + T(x∗) − f , y − x∗⟩ + J◦(x∗, y − x∗) + φ(y) − φ(x∗)
= ⟨Ã(p∗, x∗) + T̃(p∗, x∗) − f , y − x∗⟩ + J̃◦p∗(x

∗, y − x∗) + φ̃(p∗, y) − φ̃(p∗, x∗)
≥ −α2 ∥y − x∗∥2, ∀y ∈ X.

(3.5)

For any z ∈ X and t ∈ (0, 1), letting y = x∗ + t(z − x∗) in (3.5) we have

t{⟨A(x∗) + T(x∗) − f , z − x∗⟩ + J◦(x∗, z − x∗) + φ(z) − φ(x∗)} ≥ −αt2

2
∥z − x∗∥2.

This implies that

⟨A(x∗) + T(x∗) − f , z − x∗⟩) + J◦(x∗, z − x∗) + φ(z) − φ(x∗) ≥ −αt
2
∥z − x∗∥2, ∀z ∈ X.

Letting t→ 0 in the last inequality we get

⟨A(x∗) + T(x∗) − f , z − x∗⟩) + J◦(x∗, z − x∗) + φ(z) − φ(x∗) ≥ 0, ∀z ∈ X.

Consequently, x∗ ∈ S and so (3.4) is proved.
Now, we suppose that VHVI (2.1) is strongly generalized α-well-posed by perturbations. By Theorem

3.9, S is nonempty compact and q(ε)→ 0. ThenΩα(ε) , ∅ since S ⊂ Ωα(ε) for all ε > 0. Observe that for all
ε > 0,

H(Ωα(ε),S) = max{e(Ωα(ε),S), e(S,Ωα(ε))} = e(Ωα(ε),S).

Taking into account the compactness of S, we get

µ(Ωα(ε)) ≤ 2H(Ωα(ε),S) = 2e(Ωα(ε),S) = 2q(ε)→ 0.

Conversely, we suppose that Ωα(ε) , ∅, ∀ε > 0 and µ(Ωα(ε)) → 0 as ε → 0. Since Ωα(ε) is increasing
with respect to ε > 0, by the Kuratowski theorem ([20, p. 318]), we have from (3.4)

q(ε) = H(Ωα(ε),S)→ 0 as ε→ 0

and S is nonempty compact. By Theorem 3.9, VHVI (2.1) is strongly generalized α-well-posed by pertur-
bations.

Remark 3.12. Theorem 3.11 generalizes Theorem 3.2 of [14] and Theorem 3.3 of [15].

Remark 3.13. Clearly, any solution of VHVI (2.1) is a solution of the α problem: find x ∈ X such that

⟨A(x) + T(x) − f , y − x⟩ + J◦(x, y − x) + φ(y) − φ(x) ≥ −α
2
∥y − x∥2, ∀y ∈ X,

but the converse is not true in general. To show this, let X = R, A(x) = T(x) = 1
2 x, f = 0, J = 0 and f (x) = −x2

for all x ∈ X. It is easy to verify that the solution set of VHVI (2.1) is empty and 0 is the unique solution of
the corresponding α problem with α = 2. If φ is proper and convex, then VHVI (2.1) and α problem have
the same solution (This fact has been shown in the proof of Theorem 3.11).
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4. Links with the well-posedness by perturbations of inclusion problems

Lemaire et al. [22] introduced the concept of well-posedness by perturbations for an inclusion problem.
In this section, we shall show that the well-posedness by perturbations of a variational-hemivariational
inequality is closely related to the well-posedness by perturbations of the corresponding inclusion problem.
Let us recall some concepts. Let M : X→ 2X∗ . The inclusion problem associated with M is defined by

IP(M) : find x ∈ X such that 0 ∈M(x).

The perturbed problem of IP(M) is given by

IPp(M) : find x ∈ X such that 0 ∈ M̃(p, x),

where M̃ : P × X→ 2X∗ is such that M̃(p∗, ·) =M.

Definition 4.1. (see [22]) Let {pn} ⊂ P be with pn → p∗. A sequence {xn} ⊂ X is called an approximating
sequence corresponding to {pn} for IP(M) if xn ∈ DomM̃(pn, ·) for all n ≥ 1 and d(0, M̃(pn, xn)) → 0, or
equivalently, there exists ζn ∈ M̃(pn, xn) such that ∥ζn∥ → 0 as n→∞.

Definition 4.2. (see [22]) We say that IP(M) is strongly (resp., weakly) well-posed by perturbations if it
has a unique solution and for any {pn} ⊂ P with pn → p∗, every approximating sequence corresponding
to {pn} converges strongly (resp., weakly) to the unique solution of IP(M). IP(M) is said to be strongly
(resp., weakly) generalized well-posed by perturbations if the solution set S of IP(M) is nonempty and for
any {pn} ⊂ P with pn → p∗, every approximating sequence corresponding to {pn} has a subsequence which
converges strongly (resp., weakly) to a point of S.

Definition 4.3. Let {pn} ⊂ P be with pn → p∗. A sequence {xn} ⊂ X is called an approximating-like sequence
corresponding to {pn} for VHVI (2.1) if there exists a nonnegative sequence {εn}with εn → 0 as n→∞ such
that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + J̃◦pn
(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn) ≥ −εn∥y − xn∥, ∀y ∈ X.

Definition 4.4. We say that VHVI (2.1) is strongly (resp., weakly) well-posed-like by perturbations if it has
a unique solution and for any {pn} ⊂ P with pn → p∗, every approximating-like sequence corresponding
to {pn} converges strongly (resp., weakly) to the unique solution of VHVI (2.1). VHVI (2.1) is said to be
strongly (resp., weakly) generalized well-posed-like by perturbations if the solution set S of VHVI (2.1) is
nonempty and for any {pn} ⊂ P with pn → p∗, every approximating-like sequence corresponding to {pn} has
a subsequence which converges strongly (resp., weakly) to some solution of VHVI (2.1).

Let φ : X→ R∪ {+∞} be a proper, convex and lower semicontinuous functional. Denote by ∂φ and ∂εφ
the subdifferential and ε-subdifferential of φ respectively, i.e.,

∂φ(x) = {x∗ ∈ X∗ : φ(y) − φ(x) ≥ ⟨x∗, y − x⟩, ∀y ∈ X}, ∀x ∈ domφ,

and
∂εφ(x) = {x∗ ∈ X∗ : φ(y) − φ(x) ≥ ⟨x∗, y − x⟩ − ε, ∀y ∈ X}, ∀x ∈ domφ.

It is known that ∂φ is maximal monotone and ∂εφ(x) ⊃ ∂φ(x) , ∅ for all x ∈ domφ and for all ε > 0. In
terms of ∂φ, VHVI (2.1) is equivalent to the following inclusion problem:

IP(A + T − f + ∂J + ∂φ) : find x ∈ X such that 0 ∈ A(x) + T(x) − f + ∂J(x) + ∂φ(x).

In other words, we have the following lemma.
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Lemma 4.5. (see [39, Lemma 4.1]) Let A,T be two mappings from Banach space X to its dual X∗, J : X → R be a
locally Lipschitz functional and φ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous functional. Then
x ∈ X is a solution of VHVI (2.1) if and only if x is a solution of the following inclusion problem

IP(A + T − f + ∂J + ∂φ) : find x ∈ X such that 0 ∈ A(x) + T(x) − f + ∂J(x) + ∂φ(x).

Naturally, we consider the perturbed problem of IP(A + T − f + ∂J + ∂φ) as follows:

IPp(A + T − f + ∂J + ∂φ) : find x ∈ X such that 0 ∈ Ã(p, x) + T̃(p, x) − f + ∂ J̃p(x) + ∂φ̃(p, ·)(x),

where J̃ : P × X → R is such that J̃(p, ·) is a locally Lipschitz functional for each p ∈ P and J̃(p∗, ·) = J, and
φ̃ : P × X → R ∪ {+∞} is such that φ̃(p, ·) is proper, convex and lower semicontinuous for each p ∈ P and
φ̃(p∗, ·) = φ.

The following theorems establish the relations between the strong (resp., weak) well-posedness by
perturbations of variational-hemivariational inequalities and the strong (resp., weak) well-posedness by
perturbations of inclusion problems.

Theorem 4.6. Let X be a real Banach space and X∗ be its dual space. Let Ã, T̃ : P × X → X∗ be two mappings, and
J̃ : P×X→ R be a functional such that J̃(p, ·) is locally Lipschitz continuous for each p ∈ P. Let φ̃ : P×X→ R∪{+∞}
be a functional such that φ̃(p, ·) is proper, convex and lower semicontinuous for each p ∈ P. Then the following hold:

(a) IP(A + T − f + ∂J + ∂φ) is strongly (resp., weakly) well-posed by perturbations whenever VHVI (2.1) is
strongly (resp., weakly) 1-well-posed by perturbations;

(b) VHVI (2.1) is strongly (resp., weakly) well-posed-like by perturbations whenever IP(A + T − f + ∂J + ∂φ) is
strongly (resp., weakly) well-posed by perturbations.

Proof. (a) Suppose that VHVI (2.1) is strongly (resp., weakly) 1-well-posed by perturbations. Then VHVI
(2.1) has a unique solution x∗ ∈ X. Hence from Lemma 4.5 it follows that x∗ is the unique solution
of IP(A + T − f + ∂J + ∂φ). Let {pn} ⊂ P be with pn → p∗ and let {xn} be an approximating sequence
corresponding to {pn} for IP(A + T − f + ∂J + ∂φ). Then xn ∈ domφ̃(pn, ·) for all n ≥ 1, and there exists a
sequence ωn ∈ Ã(pn, xn) + T̃(pn, xn) − f + ∂ J̃pn (xn) + ∂φ̃(pn, ·)(xn) such that ∥ωn∥ → 0 as n→ ∞. And so there
exists ξn ∈ ∂ J̃pn (xn) and ηn ∈ ∂φ̃(pn, ·)(xn) such that

ωn = Ã(pn, xn) + T̃(pn, xn) − f + ξn + ηn, ∀n ≥ 1. (4.1)

From the definition of the Clarke’s generalized gradient for locally Lipschitz functional and the subgradient
for convex functional, we obtain by multiplying y − xn at both sides of the last equation (4.1) that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + J̃◦pn
(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn)

≥ ⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + ⟨ξn, y − xn⟩ + ⟨ηn, y − xn⟩
= ⟨ωn, y − xn⟩
≥ −∥ωn∥∥y − xn∥
≥ − 1

2∥ωn∥2 − 1
2∥y − xn∥2, ∀y ∈ X.

(4.2)

Putting εn =
1
2∥ωn∥2 and α = 1, from (4.2) with ∥ωn∥ → 0 we deduce that {xn} is an α-approximating

sequence corresponding to {pn} for VHVI (2.1) where α = 1. Therefore, it follows from the strong (resp.,
weak) 1-well-posedness by perturbations of VHVI (2.1) that {xn} converges strongly (resp., weakly) to the
unique solution x∗ of IP(A + T − f + ∂J + ∂φ). Consequently, the inclusion problem IP(A + T − f + ∂J + ∂φ)
is strongly (resp., weakly) well-posed by perturbations.

(b) Suppose that IP(A + T − f + ∂J + ∂φ) is strongly (resp., weakly) well-posed by perturbations. Then
IP(A + T − f + ∂J + ∂φ) has a unique solution x∗ ∈ X, which hence implies that x∗ is the unique solution
of VHVI (2.1) by Lemma 4.5. Let {pn} ⊂ P be with pn → p∗ and let {xn} be an approximating-like sequence
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corresponding to {pn} for VHVI (2.1). Then there exists a nonnegative sequence {εn} with εn → 0 as n→∞
such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + J̃◦pn
(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn) ≥ −εn∥y − xn∥, ∀y ∈ X.

From the fact that

J̃◦pn
(xn, y − xn) = (J̃(pn, ·))◦(xn, y − xn) = max{⟨ω, y − xn⟩ : ω ∈ ∂ J̃pn (xn)},

we conclude that there exists a ωpn (xn, y) ∈ ∂ J̃pn (xn) such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + ⟨ωpn (xn, y), y − xn⟩ + φ̃(pn, y) − φ̃(pn, xn) ≥ −εn∥y − xn∥, (4.3)

for all y ∈ X. PuttingΦ(pn, y) = φ̃(pn, y)+ εn∥y− xn∥, ∀y ∈ X, we can easily see thatΦ(pn, ·) is proper, convex
and lower semicontinuous. Note that {Ã(pn, xn) + T̃(pn, xn) − f + ω : ω ∈ ∂ J̃pn (xn)} is nonempty, convex and
bounded in X∗. Thus, it follows from (4.3) and Theorem 2.7 with Φ(pn, y) = φ̃(pn, y) + εn∥y − xn∥, that there
exists ωpn (xn) ∈ ∂ J̃pn (xn) such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + ⟨ωpn (xn), y − xn⟩ + φ̃(pn, y) − φ̃(pn, xn) ≥ −εn∥y − xn∥, (4.4)

for all y ∈ X. For convenience, we write ωn = ωpn (xn), it follows from (4.4) that

φ̃(pn, xn) ≤ φ̃(pn, y) + ⟨Ã(pn, xn) + T̃(pn, xn) − f + ωn, y − xn⟩ + εn∥y − xn∥,

for all y ∈ X. Define the functional φ̄(pn, ·) : X→ R ∪ {+∞} as follows:

φ̄(pn, y) = φ̃(pn, y) +H(pn, y) + εnQn(y),

where H(pn, ·) and Qn are two functionals on X defined by

H(pn, y) = ⟨Ã(pn, xn) + T̃(pn, xn) − f + ωn, y − xn⟩ and Qn(y) = ∥y − xn∥.

Clearly, φ̄(pn, ·) is proper, convex and lower semicontinuous and xn is a global minimizer of φ̄(pn, ·) on X.
Thus, 0 ∈ ∂φ̄(pn, ·)(xn). Since the functionals H(pn, ·) and Qn are continuous on X and φ̃(pn, ·) is proper,
convex and lower semicontinuous, it follows from Proposition 2.2 that

∂φ̄(pn, ·)(y) = ∂φ̃(pn, ·)(y) + Ã(pn, xn) + T̃(pn, xn) − f + ωn + εn∂Qn(y).

It is easy to calculate
∂Qn(y) = {y∗ ∈ X∗ : ∥y∗∥ = 1, ⟨y∗, y − xn⟩ = ∥y − xn∥}

and so there exists a ξn ∈ ∂Qn(xn) with ∥ξn∥ = 1 such that

0 ∈ ∂φ̃(pn, ·)(xn) + Ã(pn, xn) + T̃(pn, xn) − f + ωn + εnξn. (4.5)

Letting ζn = −εnξn, then ∥ζn∥ → 0 as εn → 0. Moreover, since ωn ∈ ∂ J̃pn (xn), it follows from (4.5) that

ζn ∈ Ã(pn, xn) + T̃(pn, xn) − f + ∂ J̃pn (xn) + ∂φ̃(pn, ·)(xn),

which implies that {xn} is an approximating sequence for IP(A+T− f +∂J+∂φ). Since IP(A+T− f +∂J+∂φ) is
strongly (resp., weakly) well-posed by perturbations, it is known that {xn} converges strongly (resp., weakly)
to the unique solution x∗. Therefore, the variational-hemivariational inequality VHVI (2.1) is strongly (resp.,
weakly) well-posed-like by perturbations. This completes the proof.
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Theorem 4.7. Let X be a real Banach space and X∗ be its dual space. Let Ã, T̃ : P × X → X∗ be two mappings, and
J̃ : P×X→ R be a functional such that J̃(p, ·) is locally Lipschitz continuous for each p ∈ P. Let φ̃ : P×X→ R∪{+∞}
be a functional such that φ̃(p, ·) is proper, convex and lower semicontinuous for each p ∈ P. Then the following hold:

(a) IP(A + T − f + ∂J + ∂φ) is strongly (resp., weakly) generalized well-posed by perturbations whenever VHVI
(2.1) is strongly (resp., weakly) generalized 1-well-posed by perturbations;

(b) VHVI (2.1) is strongly (resp., weakly) generalized well-posed-like by perturbations whenever IP(A + T − f +
∂J + ∂φ) is strongly (resp., weakly) generalized well-posed by perturbations.

Proof. The proof is similar to that in Theorem 4.6 and so we omit it here.

For any ε > 0, we define the following set:

Ω(ε) = {(p, x) ∈ P × X : ⟨Ã(p, x) + T̃(p, x) − f , y − x⟩ + J̃◦p(x, y − x)
+ φ̃(p, y) − φ̃(p, x) ≥ −ε∥y − x∥, ∀y ∈ X}.

Theorem 4.8. Let L = Rm. Suppose that Ã, T̃ : P × Rm → Rm be two mappings such that Ã(·, x) is a continuous
mapping for each x ∈ Rm, Ã(p, ·) is a monotone and hemicontinuous mapping for each p ∈ P and T̃ is a continuous
mapping. Let J̃ : P×Rm → R be a functional such that J̃(p, ·) is locally Lipschitz continuous for each p ∈ P and J̃◦p(x, y)
is upper semicontinuous as a functional of (p, x, y). Let φ̃ : P × Rm → R ∪ {+∞} be a continuous functional such
that φ̃(p, ·) is proper and convex for each p ∈ P. If there exists some ε > 0 such thatΩ(ε) is nonempty and bounded.
Then the variational-hemivariational inequality VHVI (2.1) is strongly generalized well-posed-like by perturbations.

Proof. Let {pn} ⊂ P be with pn → p∗ and let {xn} be an approximating-like sequence corresponding to {pn} for
VHVI (2.1). Then there exists a nonnegative sequence {εn}with εn → 0 as n→∞ such that

⟨Ã(pn, xn) + T̃(pn, xn) − f , y − xn⟩ + J̃◦pn
(xn, y − xn) + φ̃(pn, y) − φ̃(pn, xn) ≥ −εn∥y − xn∥, ∀y ∈ Rm. (4.6)

Let ε0 > 0 be such thatΩ(ε0) is nonempty and bounded. Then there exists n0 ≥ 1 such that (pn, xn) ∈ Ω(ε0)
for all n > n0 and this implies that {xn} is bounded by the boundedness of Ω(ε0). Thus, there exists a
subsequence {xnk } of {xn} such that xnk → x̄ as k→∞. Since Ã(·, x) is a continuous mapping for each x ∈ Rm,
Ã(p, ·) is a monotone mapping for each p ∈ P, T̃ is a continuous mapping, the Clarke generalized directional
derivative J̃◦p(x, y) is upper semicontinuous with respect to (p, x, y) and φ̃ is continuous, it follows from (4.6)
that

⟨A(y) + T(x̄) − f , y − x̄⟩ + J◦(x̄, y − x̄) + φ(y) − φ(x̄)
= ⟨Ã(p∗, y) + T̃(p∗, x̄) − f , y − x̄⟩ + J̃◦p∗(x̄, y − x̄) + φ̃(p∗, y) − φ̃(p∗, x̄)
≥ lim sup

n→∞
{Ã(pnk , y) + T̃(pnk , xnk ) − f , y − xnk⟩ + J̃◦pnk

(xnk , y − xnk ) + φ̃(pnk , y) − φ̃(pnk , xnk )}

≥ lim sup
n→∞

{Ã(pnk , xnk ) + T̃(pnk , xnk ) − f , y − xnk⟩ + J̃◦pnk
(xnk , y − xnk ) + φ̃(pnk , y) − φ̃(pnk , xnk )}

≥ lim sup
n→∞

(−εnk∥y − xnk∥)
= 0, ∀y ∈ Rm.

(4.7)

Since Ã(p∗, ·) : Rm → Rm is monotone and hemicontinuous, and φ̃(p∗, ·) : Rm → R ∪ {+∞} be proper, convex
and lower semicontinuous, in terms of Lemma 2.10 we get

⟨A(x̄) + T(x̄) − f , y − x̄⟩ + J◦(x̄, y − x̄) + φ(y) − φ(x̄) ≥ 0, ∀y ∈ Rm,

which implies that x̄ solves the VHVI (2.1). Therefore, the VHVI (2.1) is strongly generalized well-posed-like
by perturbations.



L.-C. Ceng et al. / Filomat 26:5 (2012), 881–895 894

5. Concluding remarks

In this paper, we introduce some concepts of well-posedness by perturbations for a class of variational-
hemivariational inequalities with perturbations, which includes as special cases the classical variational
inequalities and hemivariational inequalities. Under very mild conditions, we establish some metric char-
acterizations for the well-posed variational-hemivariational inequality, and investigate the relation between
the strong (resp., weak) well-posedness by perturbations of a variational-hemivariational inequality and
the strong (resp., weak) well-posedness by perturbations of the corresponding inclusion problem. In ad-
dition, we also give some conditions under which the variational-hemivariational inequality is strongly
generalized well-posed-like by perturbations in the finite-dimensional space Rm.

It is worth pointing out that there are many other concepts of well-posedness for optimization problems,
variational inequalities and Nash equilibrium problems, such as L-well-posedness [23], parametric well-
posedness [11] and Levitin-Polyak well-posedness [19], etc. However, we wonder whether the concepts
mentioned as above can be extended to the strongly mixed variational-hemivariational inequality. Beyond
question, this is an interesting problem.
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